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Abstract

Appearance based approaches use the intensity
information of images directly for object recog-
nition without an intermediate step of low level
segmentation. In this paper we show how pose
estimation results can be improved by additional
color and depth data. We define a statistical 3-D
object model and describe a method for depth
calculation based on a dense disparity map. The
experiments show that the additional data helps
to solve for ambiguities caused by object symme-
tries and similar object and background intensity
values.

1 Introduction and Motivation

Object recognition in images can be accomplished
by the two main approaches in computer vision:
based on low level segmentation or on object
appearance. The segmentation approach suffers
from errors in the segmentation and the loss of
information when restricting the recognition pro-
cess to a higher level of abstraction. As the seg-
mentation is an isolated first step in the recogni-
tion task this step does not use knowledge about
the concerned objects to adapt to different object
parts.

Appearance based approaches avoid the inter-
mediate step of low level segmentation. They
rather model the pixel intensities or derived lo-
cal features originating of an object directly. The
simplest method in this area is correlation with
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an object template. [2] describe a recognition
method based on the singular value decomposi-
tion of a vector space spanned by the gray—level
data of several images. [1] present a method with
mixture densities of the gray level values of object
images.

We have developed a statistical appearance
based 3-D object model for local wavelet features
in [4, 3]. There the model is evaluated for gray—
level images. In this paper we will evaluate the
gain of additional information for the recognition
task. We will consider color as well as depth in
the experiments. The depth map is calculated
from a dense disparity map computed by a phase
based method [5].

2 Statistical Model

2.1 Overview

The aim of the presented system is the pose es-
timation of a rigid 3-D object in a single 2-D
image with multi channels for color and depth.
We assume that the objects do not vary in scale.

In a first step of the localization process a
multi-resolution analysis of the image is used to
derive feature values on a rough scale s € 7
and resolution (sampling rate) r; € IR™ at the
locations of rectangular sampling grids. In this
paper we evaluate the approach only for one
rough scale. The estimation can be refined with
further scale levels as described in [4]. Given
an image f(z,y) with z € {0,1,...,D, — 1},
y € {0,1,...,Dy, —1} the observed feature
values at scale s are denoted by cg(z,y) =
(Cs,O’ e ’cs,Nfl)T (.’1} € {Ovrsa cee a'rsDw - 1}’ Y€
{0,7s,...,7sDy —1}). In the experiments of this
paper the features c; are chosen as the logarith-
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Figure 1: Object covered with grid for feature
extraction

mic coefficients of the scaling functions — that
are the low pass coefficients — of a discrete John-
ston wavelet transform (N = 1).

Let é; be the vector of the concatenated feature
values detected in an image on scale s, By the
model parameters and R,t be the 3-D rotation
matrix and translation vector. The rotation R
is defined by the rotation angles ¢, ¢, and ¢,
round the z—, y— and z—axis respectively.

The model parameters B consist of geomet-
ric information like probability density locations
and other density parameters. The density
p(€s|Bs, R, t) can then be used for generating ob-
ject location hypotheses with a maximum likeli-
hood estimation:

(IAIS,ES) = argmax p(¢és| B;, R, t).
(R,t)

2.2 Model formulation

This section shows the definition of a probability
density function for a single object. To simplify
the notation the index s is omitted.

The model object is covered with a rectangular
grid of local feature vectors (see Figure 1). The
grid resolution is the same as the image resolution
on the actual scale. Let A C IR? be a small re-
gion (e.g. rectangular) which contains the object
projection to the image plane for all possible ro-
tations ¢.,; = (¢y, ¢z) outside the image plane.
Let X = {@m}—0. 10 Tm € IR? denote the
grid locations and e¢(x) the feature vector at lo-
cation . We assume the background features
as distibuted uniformly and independent of the
object features. Then it is sufficient to consider
p(ca|B, R,t), where ¢4 is the subset of ¢ which is
covered by A. The grid positions and the model
area A are part of the model parameters B.

The feature vectors are assumed to be normally
distributed with independent components. Let
N (e|p, X) denote the normal density, where p is

the mean vector with concatenated local feature
mean vectors pu,,, and X is the covariance matrix
with elements o, m.n = COV(Cmn, Cmn)-

The density parameters are a function of the
rotation parameters ¢,, ¢, for 3-D objects, so
that:

p(cA|Ba R, t)
p(CA|(H(¢y, ¢z)a 2(¢ya ¢z))a R, t)
N(CA(¢25 t2D)|I1'(¢y, ¢:L')7 2(¢ya ¢m))a

with e4(R (¢.),t2p) as the concatenated feature
vectors ¢(R (¢,) m +tap), the 2-D rotation ma-
trix R (¢,) for the rotation and the translation
top in the image plane. The image feature vec-
tors at the transformed 2-D locations are cal-
culated by linear interpolation. Assuming con-
tinuous functions p,,, ¥ they can be rewrit-
ten using a basis set for the domain of two-
dimensional functions {v,},_, ., with coordi-
nates am .y bmmnyr € R (r = ’0,7. ..,00) and the
elements 0y, m n of the inverse covariance matrix
> L

oo 00
Hmmn = E Ammn,rVry Ommn = § bm,m,n,rvr-
r=0

r=0

The functions are approximated by using only
part of the complete basis set {v,},_o 7 ;. The
Taylor decomposition shows, that the approxima-
tion error can be made as small as possible by
choosing L large enough. With this approxima-
tion a fast computation of the density function
and a maximum likelihood estimation of the ba-
sis coefficients is possible. The estimation results
in closed estimation terms if Gy, is assumed
as constant (see [3]). The value of L is limited
mainly by the computation time for the density
and the size of the training set for estimation.

3 Depth Information

We recorded different views of an object with a
camera mounted on a robot arm. The camera
moved around the object within a partial sphere
always pointing to one point inside the object.
The single positions are arranged in a grid-like
manner.

To compute the displacement vectors between
two images, we applied the technique proposed
in [5] providing a dense displacement vector field
and additionally a dense reliability map. Other
methods also could be applied.



Figure 2: (a) one input image; (b) corresponding
combined weighted depth map from four neigh-
bors; (c) and (e) depth maps with different neigh-
bors; (d) reliability map

Using two adjacent views we can calculate the
homogeneous matrix H describing the transfor-
mation from one position to the other (Hyq = 1).
Knowing this transformation and assuming or-
thogonal projection the following dependency be-
tween the projection p = (pl,pg)T of an object
point & = (z,y, z, l)T in the first view and the
displacement vector d = (di,d2)" to the second
view holds: p+ d = H. x, where H consists of
the first two rows of H. The depth value z then
can be calculated at every position p, describing
the distance in units of pixel size.

If we model depth data with the appearance
based approach proposed above, two main prob-
lems have to be solved:

e The first problem is how to consider the re-

liabilities of depth values at every point,

e and the second is how to handle the depen-
dency of the depth values on the locations
of the different views to calculate the depth
image.

The first problem can be seen in Figure 2 (c,d).
In areas of high reliability, the calculated depth
structure is according to the real one, but in areas
of low reliability, the errors are obviously great.
To solve this problem, we chose the way of weight-
ing the depth values by their reliability, ranging
from 0 to 1. Therefore in homogeneous regions,
the depth values become nearly zero whereas in
structured regions, where the depth values are
significant, they are nearly equal the real values.
To see the second problem, imagine the ideal

Figure 3: Objects (a), (b) and (c)

stereo configuration where two positions are
translated only horizontally. At horizontal gray—
level edges no depth values can be calculated,
But if you choose a configuration with verti-
cally translated views, the depth of vertical edges
cannot be calculated. As described before, our
recording positions are arranged in a grid-like
manner, so for one viewing position, we get sev-
eral neighbors, which all can be used to calculate
a weighted depth image. Figure 2 (c) and (e)
show two different depth maps for two different
neighbors. To combine these views, we calculated
the average weighted depth value. The argument
for this approach is the same as for the solution
of the first problem. The result is shown in Fig-
ure 2 (b), where four weighted depth maps were
combined.

Following equation describes the resulting so-
lution of the two problems:

SRS

2(z,y) = Zrk(m’y)'zk(m’y),
k=1

where 7 (z,y) denotes the reliability value at the
position (z,y)" using the k—th neighbor. The
value zx(z,y) denotes the corresponding depth
value computed as described above. It is not a
depth value in the usual sense, but it combines
information about inhomogeneity and depth and
therefore gives new relevant information about
the appearance.

4 Results

Figure 3 shows the objects used in this work. The
images are 256 pixels in square. The localization
was performed on one scale level sg with resolu-
tion ry, = 8 pixels, L = 21, constant X and row
dependencies. Only the best localization result of
level sq is evaluated. The Downhill Simplex algo-
rithm was used for the local parameter search fol-
lowing the global grid search. The computation



Object | Data Fail [% Error

Transl. (Pix) | int.Rot. (°) | ext.Rot. (°)

mean | max | mean | max | mean | max

(a) | Gray 0 11 | 25 | 13 | 32 | 1.3 | 68
Col+Depth4 0 1.1 2.5 1.3 4.0 1.2 3.4

(b) Gray 33 2.5 5.3 0.4 2.4 3.5 8.6
Color 2 14 3.4 0.9 3.2 2.0 8.3
Gray+Depth4 0 1.4 2.6 0.7 2.9 1.2 4.3
Col+Depthl 0 1.1 2.9 0.9 3.1 1.9 7.2
Col+Depth4 0 1.1 2.5 1.0 2.9 1.3 4.5

(c) Gray 55 1.8 3.5 1.3 5.9 3.7 8.9
Color 37 1.3 3.2 2.1 6.7 2.8 8.9
Gray+Depth4 29 1.5 3.3 1.9 7.1 2.5 8.8
Col+Depthl 39 1.3 3.8 2.3 7.9 3.0 8.9
Col+Depth4 22 1.3 3.6 2.3 6.8 2.5 8.5

Table 1: Results for different data types

time on a SGI O2 (R10000) is about 16 seconds
for feature extraction and localization of one of
the objects.

Each object is available in four image sequences
with 256 images each. The background is ho-
mogeneous and the external rotation parameters
are restricted to —30° < ¢,,¢, < 30°. Three
sequences were taken for training, the other for
testing. The range of ¢,,t was considered com-
pletely, resulting in a five-dimensional search.
The depth values of an image were calculated
from four adjacent views to get a more accurate
depth map (Depth4) for training. Tests were per-
formed for these accurate maps as well as depth
maps (Depthl) from one neighboring image with
test sets of 196 images.

Table 1 shows experimental results for different
combinations of the available color and depth in-
formation. An estimation result is classified as
failure if the translation error is more than 10
Pixels and the rotation error is more than 9°.

The experiments demonstrate the improve-
ment in position estimation as well as failures.
Object (a) bears enough gray-level information
to perform the recognition quite well without ad-
ditional data. Nevertheless color and depth infor-
mation improve the position estimation. Object
(b) appears almost symmetrical in gray—valued
images but is asymmetrical in color images. This
leads to typical rotation errors of 180° for the
gray—data which disappear with color. The main
part of object (c) has almost the same intensity
values as the background. Furthermore the light-
ing was changed more than for the other objects.
The gain in failure rate also is significant there.

All experiments confirm the expectation that
additional color or depth information will give
better recognition results. This is especially true
if object symmetries can only be distinguished
or the object is only separable from background
with this additional data.
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