
Color and Depth in Appearance Based StatisticalObject LocalizationJosef P�osl �, Benno Heigl �� and Heinrich NiemannLehrstuhl f�ur Mustererkennung (Informatik 5)Universit�at Erlangen{N�urnbergMartensstr. 3, D{91058 Erlangen, Germanyemail: fpoesl,heigl,niemanng@informatik.uni-erlangen.deAbstractAppearance based approaches use the intensityinformation of images directly for object recog-nition without an intermediate step of low levelsegmentation. In this paper we show how poseestimation results can be improved by additionalcolor and depth data. We de�ne a statistical 3{Dobject model and describe a method for depthcalculation based on a dense disparity map. Theexperiments show that the additional data helpsto solve for ambiguities caused by object symme-tries and similar object and background intensityvalues.1 Introduction and MotivationObject recognition in images can be accomplishedby the two main approaches in computer vision:based on low level segmentation or on objectappearance. The segmentation approach su�ersfrom errors in the segmentation and the loss ofinformation when restricting the recognition pro-cess to a higher level of abstraction. As the seg-mentation is an isolated �rst step in the recogni-tion task this step does not use knowledge aboutthe concerned objects to adapt to di�erent objectparts.Appearance based approaches avoid the inter-mediate step of low level segmentation. Theyrather model the pixel intensities or derived lo-cal features originating of an object directly. Thesimplest method in this area is correlation with�The author is member of the Center of Excellence 3-DImage Analysis and Synthesis sponsored by the "DeutscheForschungsgemeinschaft\ (DFG).��This work was partially funded by the DFG undergrant number SFB 182.

an object template. [2] describe a recognitionmethod based on the singular value decomposi-tion of a vector space spanned by the gray{leveldata of several images. [1] present a method withmixture densities of the gray level values of objectimages.We have developed a statistical appearancebased 3{D object model for local wavelet featuresin [4, 3]. There the model is evaluated for gray{level images. In this paper we will evaluate thegain of additional information for the recognitiontask. We will consider color as well as depth inthe experiments. The depth map is calculatedfrom a dense disparity map computed by a phasebased method [5].2 Statistical Model2.1 OverviewThe aim of the presented system is the pose es-timation of a rigid 3{D object in a single 2{Dimage with multi channels for color and depth.We assume that the objects do not vary in scale.In a �rst step of the localization process amulti{resolution analysis of the image is used toderive feature values on a rough scale s 2 ZZand resolution (sampling rate) rs 2 IR+ at thelocations of rectangular sampling grids. In thispaper we evaluate the approach only for onerough scale. The estimation can be re�ned withfurther scale levels as described in [4]. Givenan image f(x; y) with x 2 f0; 1; : : : ;Dx � 1g,y 2 f0; 1; : : : ;Dy � 1g the observed featurevalues at scale s are denoted by cs(x; y) =(cs;0; : : : ; cs;N�1)T (x 2 f0; rs; : : : ; rsDx � 1g, y 2f0; rs; : : : ; rsDy � 1g). In the experiments of thispaper the features cs are chosen as the logarith-
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Figure 1: Object covered with grid for featureextractionmic coe�cients of the scaling functions | thatare the low pass coe�cients | of a discrete John-ston wavelet transform (N = 1).Let ~cs be the vector of the concatenated featurevalues detected in an image on scale s, Bs themodel parameters and R; t be the 3{D rotationmatrix and translation vector. The rotation Ris de�ned by the rotation angles �x, �y and �zround the x{, y{ and z{axis respectively.The model parameters Bs consist of geomet-ric information like probability density locationsand other density parameters. The densityp(~csjBs;R; t) can then be used for generating ob-ject location hypotheses with a maximum likeli-hood estimation:( bRs;bts) = argmax(R; t) p(~csjBs;R; t):2.2 Model formulationThis section shows the de�nition of a probabilitydensity function for a single object. To simplifythe notation the index s is omitted.The model object is covered with a rectangulargrid of local feature vectors (see Figure 1). Thegrid resolution is the same as the image resolutionon the actual scale. Let A � IR2 be a small re-gion (e.g. rectangular) which contains the objectprojection to the image plane for all possible ro-tations �ext = (�y; �x) outside the image plane.Let X = fxmgm=0;:::;M�1, xm 2 IR2 denote thegrid locations and c(x) the feature vector at lo-cation x. We assume the background featuresas distibuted uniformly and independent of theobject features. Then it is su�cient to considerp(cAjB;R; t), where cA is the subset of c which iscovered by A. The grid positions and the modelarea A are part of the model parameters B.The feature vectors are assumed to be normallydistributed with independent components. LetN (cj�;�) denote the normal density, where � is

the mean vector with concatenated local featuremean vectors �m and � is the covariance matrixwith elements �m; �m;n = cov(cm;n; c �m;n).The density parameters are a function of therotation parameters �y; �x for 3{D objects, sothat:p(cAjB;R; t)= p(cAj(�(�y; �x);�(�y; �x));R; t)= N (cA(�z; t2D)j�(�y; �x);�(�y; �x));with cA(R (�z) ; t2D) as the concatenated featurevectors c(R (�z)xm+t2D), the 2{D rotation ma-trix R (�z) for the rotation and the translationt2D in the image plane. The image feature vec-tors at the transformed 2{D locations are cal-culated by linear interpolation. Assuming con-tinuous functions �m, � they can be rewrit-ten using a basis set for the domain of two-dimensional functions fvrgr=0;:::;1 with coordi-nates am;n;r; bm; �m;n;r 2 IR (r = 0; : : : ;1) and theelements ~�m; �m;n of the inverse covariance matrix��1:�m;n = 1Xr=0 am;n;rvr; ~�m; �m;n = 1Xr=0 bm; �m;n;rvr:The functions are approximated by using onlypart of the complete basis set fvrgr=0;:::;L�1. TheTaylor decomposition shows, that the approxima-tion error can be made as small as possible bychoosing L large enough. With this approxima-tion a fast computation of the density functionand a maximum likelihood estimation of the ba-sis coe�cients is possible. The estimation resultsin closed estimation terms if ~�m; �m;n is assumedas constant (see [3]). The value of L is limitedmainly by the computation time for the densityand the size of the training set for estimation.3 Depth InformationWe recorded di�erent views of an object with acamera mounted on a robot arm. The cameramoved around the object within a partial spherealways pointing to one point inside the object.The single positions are arranged in a grid{likemanner.To compute the displacement vectors betweentwo images, we applied the technique proposedin [5] providing a dense displacement vector �eldand additionally a dense reliability map. Othermethods also could be applied.



(a) (b)
(c) (d) (e)Figure 2: (a) one input image; (b) correspondingcombined weighted depth map from four neigh-bors; (c) and (e) depth maps with di�erent neigh-bors; (d) reliability mapUsing two adjacent views we can calculate thehomogeneous matrix H describing the transfor-mation from one position to the other (H44 = 1).Knowing this transformation and assuming or-thogonal projection the following dependency be-tween the projection p = (p1; p2)T of an objectpoint x = (x; y; z; 1)T in the �rst view and thedisplacement vector d = (d1; d2)T to the secondview holds: p+ d = ~H � x, where ~H consists ofthe �rst two rows of H . The depth value z thencan be calculated at every position p, describingthe distance in units of pixel size.If we model depth data with the appearancebased approach proposed above, two main prob-lems have to be solved:� The �rst problem is how to consider the re-liabilities of depth values at every point,� and the second is how to handle the depen-dency of the depth values on the locationsof the di�erent views to calculate the depthimage.The �rst problem can be seen in Figure 2 (c,d).In areas of high reliability, the calculated depthstructure is according to the real one, but in areasof low reliability, the errors are obviously great.To solve this problem, we chose the way of weight-ing the depth values by their reliability, rangingfrom 0 to 1. Therefore in homogeneous regions,the depth values become nearly zero whereas instructured regions, where the depth values aresigni�cant, they are nearly equal the real values.To see the second problem, imagine the ideal

(a) (b) (c)Figure 3: Objects (a), (b) and (c)stereo con�guration where two positions aretranslated only horizontally. At horizontal gray{level edges no depth values can be calculated,But if you choose a con�guration with verti-cally translated views, the depth of vertical edgescannot be calculated. As described before, ourrecording positions are arranged in a grid{likemanner, so for one viewing position, we get sev-eral neighbors, which all can be used to calculatea weighted depth image. Figure 2 (c) and (e)show two di�erent depth maps for two di�erentneighbors. To combine these views, we calculatedthe average weighted depth value. The argumentfor this approach is the same as for the solutionof the �rst problem. The result is shown in Fig-ure 2 (b), where four weighted depth maps werecombined.Following equation describes the resulting so-lution of the two problems:ẑ(x; y) = 1n nXk=1 rk(x; y) � zk(x; y) ;where rk(x; y) denotes the reliability value at theposition (x; y)T using the k{th neighbor. Thevalue zk(x; y) denotes the corresponding depthvalue computed as described above. It is not adepth value in the usual sense, but it combinesinformation about inhomogeneity and depth andtherefore gives new relevant information aboutthe appearance.4 ResultsFigure 3 shows the objects used in this work. Theimages are 256 pixels in square. The localizationwas performed on one scale level s0 with resolu-tion rs0 = 8 pixels, L = 21, constant � and rowdependencies. Only the best localization result oflevel s0 is evaluated. The Downhill Simplex algo-rithm was used for the local parameter search fol-lowing the global grid search. The computation



Object Data Fail [%] ErrorTransl. (Pix) int.Rot. (o) ext.Rot. (o)mean max mean max mean max(a) Gray 0 1.1 2.5 1.3 3.2 1.3 6.8Col+Depth4 0 1.1 2.5 1.3 4.0 1.2 3.4(b) Gray 33 2.5 5.3 0.4 2.4 3.5 8.6Color 2 1.4 3.4 0.9 3.2 2.0 8.3Gray+Depth4 0 1.4 2.6 0.7 2.9 1.2 4.3Col+Depth1 0 1.1 2.9 0.9 3.1 1.9 7.2Col+Depth4 0 1.1 2.5 1.0 2.9 1.3 4.5(c) Gray 55 1.8 3.5 1.3 5.9 3.7 8.9Color 37 1.3 3.2 2.1 6.7 2.8 8.9Gray+Depth4 29 1.5 3.3 1.9 7.1 2.5 8.8Col+Depth1 39 1.3 3.8 2.3 7.9 3.0 8.9Col+Depth4 22 1.3 3.6 2.3 6.8 2.5 8.5Table 1: Results for di�erent data typestime on a SGI O2 (R10000) is about 16 secondsfor feature extraction and localization of one ofthe objects.Each object is available in four image sequenceswith 256 images each. The background is ho-mogeneous and the external rotation parametersare restricted to �30o < �y; �z < 30o. Threesequences were taken for training, the other fortesting. The range of �z; t was considered com-pletely, resulting in a �ve-dimensional search.The depth values of an image were calculatedfrom four adjacent views to get a more accuratedepth map (Depth4) for training. Tests were per-formed for these accurate maps as well as depthmaps (Depth1) from one neighboring image withtest sets of 196 images.Table 1 shows experimental results for di�erentcombinations of the available color and depth in-formation. An estimation result is classi�ed asfailure if the translation error is more than 10Pixels and the rotation error is more than 9o.The experiments demonstrate the improve-ment in position estimation as well as failures.Object (a) bears enough gray{level informationto perform the recognition quite well without ad-ditional data. Nevertheless color and depth infor-mation improve the position estimation. Object(b) appears almost symmetrical in gray{valuedimages but is asymmetrical in color images. Thisleads to typical rotation errors of 180o for thegray{data which disappear with color. The mainpart of object (c) has almost the same intensityvalues as the background. Furthermore the light-ing was changed more than for the other objects.The gain in failure rate also is signi�cant there.

All experiments con�rm the expectation thatadditional color or depth information will givebetter recognition results. This is especially trueif object symmetries can only be distinguishedor the object is only separable from backgroundwith this additional data.References[1] V. Kumar and E. S. Manolakos. Unsupervisedmodel{based object recognition by parame-ter estimation of hierarchical mixtures. InProceedings of the International Conferenceon Image Processing (ICIP), pages 967{970,Lausanne, Schweiz, September 1996. IEEEComputer Society Press.[2] H. Murase and S. K. Nayar. Visual learningand recognition of 3{D objects from appear-ance. International Journal of Computer Vi-sion, 14(1):5{24, January 1995.[3] J. P�osl. Statistical pose estimation with lo-cal dependencies. In H.-P. Seidel, B. Girod,and H. Niemann, editors, 3D Image Analysisand Synthesis '97, pages 147{154, Erlangen,November 1997. In�x.[4] J. P�osl and H. Niemann. Statistical 3{D ob-ject localization without segmentation usingwavelet analysis. In Computer Analysis ofImages and Patterns (CAIP), pages 440{447,Kiel, Germany, September 1997. Springer.[5] W.M. Theimer and H.A. Mallot. Phase{based binocular vergence control and depthreconstruction using active vision. Com-puter Vision, Graphics, and Image Process-ing, 60(3):343{358, 1995.


