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ABSTRACT

In this paper we address the localization of a single 2-D
or 3-D object in scenes with complex background. A
wavelet transform is applied to the 2-D gray level im-
age for the extraction of local features. We use discrete
tensor product wavelets and compute feature values for
all image positions from the wavelet coefficients. A sta-
tistical object model of these features is defined. The
object model is combined with a statistical background
model in a mixture density for the image. The object
localization is performed with an Expectation Maxi-
mization (EM) approach.

1. INTRODUCTION AND MOTIVATION

Object recognition in images can be accomplished by
the two main approaches in computer vision: based on
low level segmentation or on object appearance. The
segmentation approach suffers from errors in the seg-
mentation and the loss of information when restricting
the recognition process to a higher abstraction level. As
the segmentation is an isolated first step in the recog-
nition task this step does not use knowledge about the
concerned objects to adapt to different object parts.
Appearance based approaches avoid the intermedi-
ate step of low level segmentation. They rather model
the pixel intensities or derived local features of an ob-
ject directly. The simplest method in this area is cor-
relation with an object template. [3] describe a recog-
nition method based on the singular value decomposi-
tion of a vector space spanned by the gray-level data
of several images. Thereby a large number of images is
approximately encoded by a small number of basis im-
ages. The projection parameters of an image into this
eigenspace can be used for recognition. Maximization
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of the mutual information between an object model and
an object in a scene is a further approach [6].

[2] describe a method based on mixture densities of
the gray level values of object images. To incorporate
local coherence into their model they use the POEM
(Perceptually Organgamized EM) algorithm for recog-
nition which adds a heuristic (quadratic) weighting fac-
tor to the EM energy term. As all possible object po-
sitions are modeled as hidden variables in a mixture
density and without an hierarchical solution, this ap-
proach tends to be very complex.

We have developed a statistical appearance based
3-D object model for local wavelet features in [5]. The
model — as most of the others — is suitable to detect
one or more appearances of one object in scenes with
homogeneous background. If there is no object occlu-
sion and the image data contains no extreme outliers
this model is applicable for the localization of a 2-D ob-
ject with heterogeneous background. This is also true
for 3-D objects if the model is trained with different
types of background. Due to the amount of training
data needed this is no practical solution. Therefore a
background model is trained independently of the ob-
ject and combined with the object model in a mixture
density. In contrast to the POEM algorithm, which
adds a heuristic weighting term to the expectation, we
consider statistical dependencies for a better local co-
herence.

2. FEATURES

Instead of using the image gray-level data directly for
modeling, we apply a wavelet transform to the image
in order to extract multiscale features. Local feature
vectors are constructed by either only the features on
one scale or the features of different scales. By this we
either can take an hierarchical approach for pose search
as described in [5] or we get a multidimensional feature
description of each image location, which contains in-
formation about different neighborhood regions.
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Figure 1: Object covered with grid for feature extrac-
tion

Given an image f(z,y) with z € {0,1,...,D, — 1},
y € {0,1,...,D, — 1} the observed feature values at
scale s and resolution 7, € R™ are denoted by ¢ (z,y) =
(cs,O, sy cs,N—l)Ta (:13 € {O5TS5 sy TSD:E - 1}5
y € {0,rs,...,7sD, — 1}). In the experiments of this
paper the features ¢, are chosen as the logarithmic co-
efficients of a discrete Johnston wavelet transform.

3. STATISTICAL MODEL

3.1. Overview

The aim of the presented system is the pose estimation
of a rigid 2-D or 3-D object in a single 2-D image. We
assume that the objects do not vary in scale.

Let é; be the vector of the concatenated feature
values for scale s, Bs the model parameters and R, ¢
be the 3-D rotation matrix and translation vector. The
rotation R is defined by the rotation angles ¢, ¢, and
¢, round the z—, y— and z—axis respectively.

The model parameters B consist of geometric in-
formation like probability density locations and other
density parameters. The density p(és|Bs, R,t) can
then be used for generating object location hypothe-
ses with a maximum likelihood estimation:

(IA{s,fs) = argmax p(¢;|Bs, R, t).
(R, 1)

3.2. Object density

This section shows the definition of a probability den-
sity function for a single object. To simplify the nota-
tion the index s is omitted.

The model object is covered with a rectangular grid
of local feature vectors (see Figure 1). The grid resolu-
tion is the same as the image resolution on the actual
scale. Let A C IR? be a small region (e.g. rectangu-
lar) which contains the object projection to the image
plane for all possible rotations ¢,,;, = (¢y, d,) outside
the image plane. Let X = {@m},,_o 11 Tm € R?
denote the grid locations and ¢(x) the feature vector
at location . We assume the background features as
distibuted uniformly in this section and independent

of the object features. Then it is sufficient to consider
p(ea|B, R,t), where c4 is the subset of ¢ which is cov-
ered by A. The grid positions and the model area A
are part of the model parameters B.

The feature vectors are assumed to be normally dis-
tributed with independent components. Let N'(c|u, X)
denote the normal density, where p is the mean vector
with concatenated local feature mean vectors pu,, and
Y is the covariance matrix with elements o, ,3,,n =
CoV(Cm,n» Cimyn)-

The density parameters are a function of the rota-
tion parameters ¢,, ¢, for 3-D objects, so that:

p ( CA |Ba Ra t)

p(cal(n(dy, ¢z), Z(dy, b)), R, t)
= N(CA(¢zat2D)‘ﬂ(¢’ya ‘f’z)a 2(¢ya ¢m))a

with c4(R (¢,),t2p) as the concatenated feature vec-
tors ¢(R ($,) €m+tap), the 2-D rotation matrix R (¢,)
for the rotation and the translation ¢;p in the im-
age plane. The image feature vectors at the trans-
formed 2-D locations are calculated by linear interpo-
lation. Assuming continuous functions u,,, X they can
be rewritten using a basis set for the domain of two—
dimensional functions {v,},_, . with coordinates
am,n,rs Om,mn,yr € R (r =0,...,00) and the elements
Gm,m,n Of the inverse covariance matrix L

0 %)
Km,n = § Am,n,rVry  Om,m,n = § bm,r‘n,n,rvr-
r=0 r=0

The functions are approximated by using only part
of the complete basis set {v,},_, ;. The Tay-
lor decomposition shows, that the approximation error
can be made as small as possible by choosing L large
enough. With this approximation a fast computation of
the density function and a maximum likelihood estima-
tion of the basis coefficients is possible. The estimation
results in closed estimation terms if &, i, is assumed
as constant (see [4]). The value of L is limited mainly
by the computation time for the density and the size
of the training set for estimation.

3.3. Mixture densitiy for arbitrary background

In the previous section we have shown the definition of
the statistical model for a single object. This model al-
ready contains a implicit background model. We now
consider background explicitly. First we model arbi-
trary background. This type of background occurs if
multiple objects are contained in the background but
we do not know their position or class.

Let Qq denote the object class and Qg the back-
ground class which has the same normal distribution
at each image location and therefore no positional pa-
rameters. We assume that each image location belongs
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Figure 2: Dependency structure of mixture

either to background or object. Let { : X — {0,1} de-
note the assignment function which bears the hidden
information to which class Q¢ (g,,) location @, belongs.
For a shorter notation we write (,, = ((m) := {(zm).
Then the mixture density is

p(c|B, R, 1) > p(c,¢|B, R,t)
¢
with ¢ = ({(m))z,,ex- In [4] we have shown that

better localization results can be achieved by consider-
ing local dependencies in the object model instead of
assuming all local features as independent. Therefore
we assume row dependencies with respect to the im-
age locations in this paper. The theory can easily be
generalized to other neighborhood systems.

We describe the density for one-dimensional fea-
ture vectors ¢(@,,) = cm. Let the feature locations be
ordered by their row dependency. Then we get

p(c|Q,B,R,t) = p(c|Q1, B, R,t)

H p(cm‘cmflaQIaBaRat)
TmeX\{To}

for the object density, where the features outside the
object window A are modeled as background. The
background density is built of independent and locally
invariant components p(c,,|Qo, B, R, t) = p(c|Q0, B):

H D cm|QOa

r,cX

p(c|, B, R, 1)

The mixture density with the same type of depen-
dencies extended to both, features and assignment (see
Figure 2), is

p(c\BRt)z

Zp Co,
H p(em, ((m)|em—1,((m —

T eX\{To}

0)|B, R, t)

1), B,R,t).

The mixture considers all possible assignments of the
local feature vectors. The product terms can be written

as:

p(cm, ((m) ‘ cm-1,{(m —1), B, R,t) =
p(cm, cm—l‘C(m)’ ((m - 1), B, R, t)
p(em-1/¢(m — 1), B, R, 1)
p(¢(m),{(m —1)|B, R, t)
p(¢(m — 1)‘B’ R, t)
If two neighbor locations are assigned to the same class
the term p(cm, em—1/¢(m), ((m—1), B, R,t) is equal to
P(Cmy Cm—1|Q¢(m), B, R,t). Otherwise it is assumed as
p(cm‘ﬂg(m)a B, R, t)p(cmfl |QC(m—1)a B,R, t)'
In order to localize the object in an image we use
an expectation maximization approach. The following
expectation term (Kullback-Leibler) is maximized:

:Z hm(cma cmfl)

EC (log p(C,C‘B,R,t)‘C, B, Rat)

TmeX
with
CO,C 1 Zp |COa 5(R5t))
10%‘( (co[¢(0), B, (R, 1))
and

hy, (Cma cm—l) =

> p(¢m

¢(m—1),¢(m)
log (p(cma C(m)|cm71a C(m - 1)) Ba Ra t)

for m > 0. In contrast to the standard EM-approach
we perform no alternating estimation of assignment
probability and parameters. We maximize the esti-
mation function directly. The expectation is a sum
of local functions h,,. If we subtract the logarithmic
background density which we assume as constant with
respect to the parameters, we only have to consider lo-
cal functions h,, for the features inside the object area

A: :
Z hm(cm, cm—l)-
L.,cA
Therefore its calculation has the same time complexity
as the calculation of the single object density.
The observation, that many of the simple constituent
functions are similar, suggests to approximate the ex-

- l)a C(m)‘CH‘L—la Cm, B5 (R5 t))

pectation term by a small subset {flk of those
functions by e
K-1 L-1
flm ~ flk Z dm,kv,
k=0 r=0

This leads to a filter technique for the global pose
search. First the image features are transformed by
each of the functions hy, separately. The transformation
results are then combined by convolutions.



Figure 3: Objects car and pig and walking person for
training (top) and test (bottom)

3.4. Mixture density with static background

If we know the appearance of the background we in-
troduce a third class in the mixture model. This back-
ground model assumes different densities for all feature
locations. The densities do not depend on the object
transformation parameters. This type of model is ap-
plicable for example if a person moves in front of a
static background and we want to determine the po-
sition of the head. The expectation term is similar to
the case with arbitrary background only. A speed up of
the global search by a filter technique is also possible.

4. RESULTS

Figure 3 shows the objects used in this work. The
images are 256 pixels in square. The local assignment
probabilities were assumed as independent.

For the experiments with varying background the
localization was performed on one rough scale level sg
with resolution r,, = 8 pixels. The logarithmic low
pass coefficient of a Johnston 8 transform was chosen
as local feature resulting in one-dimensional feature
vectors for each location.

The 2-D object car was trained with 20 images with
homogeneous background and different object positions
and lighting. The test images contain heterogeneous
background and object occlusions. The localization
with the mixture was correct for 10/20 images. With-
out the mixture density we got 9/20 correct results.
This shows that the single object density can cope with
occlusions because of its local structure but still can be
improved by a mixture model.

For object pig from the Columbia Object Image
Library (COIL) one image sequence with a complete
object rotation with respect to ¢, in 72 equidistant
steps and homogeneous background was available. Half

of the images were used for training. The other half
were mixed with a background image for testing. The
range of ¢,,t was searched completely, resulting in a
four-dimensional search. The localization with inde-
pendence assumption gave 18/36 correct results, where
the mean error was one pixel for translation, 1° (6°) for
internal (external) rotation and the maximum allowed
rotational error was 15°. The translation was estimated
correctly for all images. The rotation was partially in-
correct due to similar appearance on the rough scale.

The experiments with static background were per-
formed on a fine scale with resolution r, = 2 pixels and
independence assumption. The finest three resolution
levels of a Johnston transform were used for feature ex-
traction. Each four—dimensional local feature vector is
composed of the logarithm of the sums of the high pass
coefficients for each analysis scale and the logarithmic
low pass coefficient of the roughest scale. A general
head model was trained with 140 images of 20 different
people and combined with a general background model
and a static background trained on all images. The
static model was trained for each test sequence. The
model was tested for two sequences of walking people
with 100 images altogether. A global search for the
head without object rotations resulted in 5% incorrect
results for the mixture density and 20% for the single
object density. If the search is restricted to a local area
after a global search in the first image of the sequence,
no errors occur. The localization thereby is considered
as correct if the main part of the head is inside the
object window.
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