
OBJECT LOCALIZATION WITH MIXTURE DENSITIES OF WAVELETFEATURESJosef P�osl �and Heinrich NiemannLehrstuhl f�ur Mustererkennung (Informatik 5)Universit�at Erlangen{N�urnbergMartensstr. 3, D{91058 Erlangen, Germanyemail: fpoesl,niemanng@informatik.uni-erlangen.deABSTRACTIn this paper we address the localization of a single 2{Dor 3{D object in scenes with complex background. Awavelet transform is applied to the 2{D gray level im-age for the extraction of local features. We use discretetensor product wavelets and compute feature values forall image positions from the wavelet coe�cients. A sta-tistical object model of these features is de�ned. Theobject model is combined with a statistical backgroundmodel in a mixture density for the image. The objectlocalization is performed with an Expectation Maxi-mization (EM) approach.1. INTRODUCTION AND MOTIVATIONObject recognition in images can be accomplished bythe two main approaches in computer vision: based onlow level segmentation or on object appearance. Thesegmentation approach su�ers from errors in the seg-mentation and the loss of information when restrictingthe recognition process to a higher abstraction level. Asthe segmentation is an isolated �rst step in the recog-nition task this step does not use knowledge about theconcerned objects to adapt to di�erent object parts.Appearance based approaches avoid the intermedi-ate step of low level segmentation. They rather modelthe pixel intensities or derived local features of an ob-ject directly. The simplest method in this area is cor-relation with an object template. [3] describe a recog-nition method based on the singular value decomposi-tion of a vector space spanned by the gray{level dataof several images. Thereby a large number of images isapproximately encoded by a small number of basis im-ages. The projection parameters of an image into thiseigenspace can be used for recognition. Maximization�The author is member of the Center of Excellence 3-D ImageAnalysis and Synthesis sponsored by the "Deutsche Forschungs-gemeinschaft\ (DFG).

of the mutual information between an object model andan object in a scene is a further approach [6].[2] describe a method based on mixture densities ofthe gray level values of object images. To incorporatelocal coherence into their model they use the POEM(Perceptually Organgamized EM) algorithm for recog-nition which adds a heuristic (quadratic) weighting fac-tor to the EM energy term. As all possible object po-sitions are modeled as hidden variables in a mixturedensity and without an hierarchical solution, this ap-proach tends to be very complex.We have developed a statistical appearance based3{D object model for local wavelet features in [5]. Themodel | as most of the others | is suitable to detectone or more appearances of one object in scenes withhomogeneous background. If there is no object occlu-sion and the image data contains no extreme outliersthis model is applicable for the localization of a 2{D ob-ject with heterogeneous background. This is also truefor 3{D objects if the model is trained with di�erenttypes of background. Due to the amount of trainingdata needed this is no practical solution. Therefore abackground model is trained independently of the ob-ject and combined with the object model in a mixturedensity. In contrast to the POEM algorithm, whichadds a heuristic weighting term to the expectation, weconsider statistical dependencies for a better local co-herence. 2. FEATURESInstead of using the image gray{level data directly formodeling, we apply a wavelet transform to the imagein order to extract multiscale features. Local featurevectors are constructed by either only the features onone scale or the features of di�erent scales. By this weeither can take an hierarchical approach for pose searchas described in [5] or we get a multidimensional featuredescription of each image location, which contains in-formation about di�erent neighborhood regions.
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Figure 1: Object covered with grid for feature extrac-tionGiven an image f(x; y) with x 2 f0; 1; : : : ; Dx � 1g,y 2 f0; 1; : : : ; Dy � 1g the observed feature values atscale s and resolution rs 2 IR+ are denoted by cs(x; y) =(cs;0; : : : ; cs;N�1)T, (x 2 f0; rs; : : : ; rsDx � 1g,y 2 f0; rs; : : : ; rsDy � 1g). In the experiments of thispaper the features cs are chosen as the logarithmic co-e�cients of a discrete Johnston wavelet transform.3. STATISTICAL MODEL3.1. OverviewThe aim of the presented system is the pose estimationof a rigid 2{D or 3{D object in a single 2{D image. Weassume that the objects do not vary in scale.Let ~cs be the vector of the concatenated featurevalues for scale s, Bs the model parameters and R; tbe the 3{D rotation matrix and translation vector. Therotation R is de�ned by the rotation angles �x, �y and�z round the x{, y{ and z{axis respectively.The model parameters Bs consist of geometric in-formation like probability density locations and otherdensity parameters. The density p(~csjBs;R; t) canthen be used for generating object location hypothe-ses with a maximum likelihood estimation:(bRs;bts) = argmax(R; t) p(~csjBs;R; t):3.2. Object densityThis section shows the de�nition of a probability den-sity function for a single object. To simplify the nota-tion the index s is omitted.The model object is covered with a rectangular gridof local feature vectors (see Figure 1). The grid resolu-tion is the same as the image resolution on the actualscale. Let A � IR2 be a small region (e.g. rectangu-lar) which contains the object projection to the imageplane for all possible rotations �ext = (�y ; �x) outsidethe image plane. Let X = fxmgm=0;:::;M�1, xm 2 IR2denote the grid locations and c(x) the feature vectorat location x. We assume the background features asdistibuted uniformly in this section and independent

of the object features. Then it is su�cient to considerp(cAjB;R; t), where cA is the subset of c which is cov-ered by A. The grid positions and the model area Aare part of the model parameters B.The feature vectors are assumed to be normally dis-tributed with independent components. Let N (cj�;�)denote the normal density, where � is the mean vectorwith concatenated local feature mean vectors �m and� is the covariance matrix with elements �m; �m;n =cov(cm;n; c �m;n).The density parameters are a function of the rota-tion parameters �y; �x for 3{D objects, so that:p ( cAjB;R; t)= p(cAj(�(�y; �x);�(�y; �x));R; t)= N (cA(�z ; t2D)j�(�y; �x);�(�y; �x));with cA(R (�z) ; t2D) as the concatenated feature vec-tors c(R (�z)xm+t2D), the 2{D rotationmatrixR (�z)for the rotation and the translation t2D in the im-age plane. The image feature vectors at the trans-formed 2{D locations are calculated by linear interpo-lation. Assuming continuous functions �m, � they canbe rewritten using a basis set for the domain of two{dimensional functions fvrgr=0;:::;1 with coordinatesam;n;r; bm; �m;n;r 2 IR (r = 0; : : : ;1) and the elements~�m; �m;n of the inverse covariance matrix ��1:�m;n = 1Xr=0 am;n;rvr; ~�m; �m;n = 1Xr=0 bm; �m;n;rvr:The functions are approximated by using only partof the complete basis set fvrgr=0;:::;L�1. The Tay-lor decomposition shows, that the approximation errorcan be made as small as possible by choosing L largeenough. With this approximation a fast computation ofthe density function and a maximum likelihood estima-tion of the basis coe�cients is possible. The estimationresults in closed estimation terms if ~�m; �m;n is assumedas constant (see [4]). The value of L is limited mainlyby the computation time for the density and the sizeof the training set for estimation.3.3. Mixture densitiy for arbitrary backgroundIn the previous section we have shown the de�nition ofthe statistical model for a single object. This model al-ready contains a implicit background model. We nowconsider background explicitly. First we model arbi-trary background. This type of background occurs ifmultiple objects are contained in the background butwe do not know their position or class.Let 
1 denote the object class and 
0 the back-ground class which has the same normal distributionat each image location and therefore no positional pa-rameters. We assume that each image location belongs



�M�2�M�1�1 �2
c0 cM�1
�0

c2c1 cM�2
Figure 2: Dependency structure of mixtureeither to background or object. Let � : X ! f0; 1g de-note the assignment function which bears the hiddeninformation to which class 
�(xm) location xm belongs.For a shorter notation we write �m = �(m) := �(xm).Then the mixture density isp(cjB;R; t) = X� p(c; �jB;R; t)with � = (�(m))xm2X . In [4] we have shown thatbetter localization results can be achieved by consider-ing local dependencies in the object model instead ofassuming all local features as independent. Thereforewe assume row dependencies with respect to the im-age locations in this paper. The theory can easily begeneralized to other neighborhood systems.We describe the density for one{dimensional fea-ture vectors c(xm) = cm. Let the feature locations beordered by their row dependency. Then we getp(cj
1;B;R; t) = p(c0j
1;B;R; t)Yxm2Xnfx0g p(cmjcm�1;
1;B;R; t)for the object density, where the features outside theobject window A are modeled as background. Thebackground density is built of independent and locallyinvariant components p(cmj
0;B;R; t) = p(cj
0;B):p(cj
0;B;R; t) = Yxm2X p(cmj
0;B):The mixture density with the same type of depen-dencies extended to both, features and assignment (seeFigure 2), isp(c j B;R; t) =X� p(c0; �(0)jB;R; t)Yxm2Xnfx0g p(cm; �(m)jcm�1; �(m� 1);B;R; t):The mixture considers all possible assignments of thelocal feature vectors. The product terms can be written

as:p(cm; �(m) j cm�1; �(m� 1);B;R; t) =p(cm; cm�1j�(m); �(m � 1);B;R; t)p(cm�1j�(m� 1);B;R; t)p(�(m); �(m � 1)jB;R; t)p(�(m� 1)jB;R; t)If two neighbor locations are assigned to the same classthe term p(cm; cm�1j�(m); �(m�1);B;R; t) is equal top(cm; cm�1j
�(m);B;R; t). Otherwise it is assumed asp(cmj
�(m);B;R; t)p(cm�1j
�(m�1);B;R; t).In order to localize the object in an image we usean expectation maximization approach. The followingexpectation term (Kullback{Leibler) is maximized:E� (log p(c; �jB;R; t)jc;B;R; t) =Xxm2Xhm(cm; cm�1)with h0 (c0; c�1) =X�(0) p(�(0)jc0;B; (R; t))log (p(c0j�(0);B; (R; t))andhm (cm; cm�1) =X�(m�1);�(m) p(�(m� 1); �(m)jcm�1; cm;B; (R; t))log (p(cm; �(m)jcm�1; �(m� 1);B;R; t)for m > 0. In contrast to the standard EM-approachwe perform no alternating estimation of assignmentprobability and parameters. We maximize the esti-mation function directly. The expectation is a sumof local functions hm. If we subtract the logarithmicbackground density which we assume as constant withrespect to the parameters, we only have to consider lo-cal functions ~hm for the features inside the object areaA: Xxm2A ~hm(cm; cm�1):Therefore its calculation has the same time complexityas the calculation of the single object density.The observation, that many of the simple constituentfunctions are similar, suggests to approximate the ex-pectation term by a small subset n~hkok=0:::K�1 of thosefunctions by ~hm � K�1Xk=0 ~hk L�1Xr=0 dm;kvr:This leads to a �lter technique for the global posesearch. First the image features are transformed byeach of the functions ~hk separately. The transformationresults are then combined by convolutions.



Figure 3: Objects car and pig and walking person fortraining (top) and test (bottom)3.4. Mixture density with static backgroundIf we know the appearance of the background we in-troduce a third class in the mixture model. This back-ground model assumes di�erent densities for all featurelocations. The densities do not depend on the objecttransformation parameters. This type of model is ap-plicable for example if a person moves in front of astatic background and we want to determine the po-sition of the head. The expectation term is similar tothe case with arbitrary background only. A speed up ofthe global search by a �lter technique is also possible.4. RESULTSFigure 3 shows the objects used in this work. Theimages are 256 pixels in square. The local assignmentprobabilities were assumed as independent.For the experiments with varying background thelocalization was performed on one rough scale level s0with resolution rs0 = 8 pixels. The logarithmic lowpass coe�cient of a Johnston 8 transform was chosenas local feature resulting in one{dimensional featurevectors for each location.The 2{D object car was trained with 20 images withhomogeneous background and di�erent object positionsand lighting. The test images contain heterogeneousbackground and object occlusions. The localizationwith the mixture was correct for 10/20 images. With-out the mixture density we got 9/20 correct results.This shows that the single object density can cope withocclusions because of its local structure but still can beimproved by a mixture model.For object pig from the Columbia Object ImageLibrary (COIL) one image sequence with a completeobject rotation with respect to �y in 72 equidistantsteps and homogeneous background was available. Half

of the images were used for training. The other halfwere mixed with a background image for testing. Therange of �z ; t was searched completely, resulting in afour-dimensional search. The localization with inde-pendence assumption gave 18/36 correct results, wherethe mean error was one pixel for translation, 1o (6o) forinternal (external) rotation and the maximum allowedrotational error was 15o. The translation was estimatedcorrectly for all images. The rotation was partially in-correct due to similar appearance on the rough scale.The experiments with static background were per-formed on a �ne scale with resolution rs0 = 2 pixels andindependence assumption. The �nest three resolutionlevels of a Johnston transform were used for feature ex-traction. Each four{dimensional local feature vector iscomposed of the logarithm of the sums of the high passcoe�cients for each analysis scale and the logarithmiclow pass coe�cient of the roughest scale. A generalhead model was trained with 140 images of 20 di�erentpeople and combined with a general background modeland a static background trained on all images. Thestatic model was trained for each test sequence. Themodel was tested for two sequences of walking peoplewith 100 images altogether. A global search for thehead without object rotations resulted in 5% incorrectresults for the mixture density and 20% for the singleobject density. If the search is restricted to a local areaafter a global search in the �rst image of the sequence,no errors occur. The localization thereby is consideredas correct if the main part of the head is inside theobject window. 5. REFERENCES[1] Proceedings of the 5th International Conference onComputer Vision (ICCV), Boston, Juni 1995. IEEEComputer Society Press.[2] V. Kumar and E. S. Manolakos. Unsupervised model{based object recognition by parameter estimation of hi-erarchical mixtures. In Proceedings of the InternationalConference on Image Processing (ICIP), pages 967{970,Lausanne, Schweiz, September 1996. IEEE ComputerSociety Press.[3] H. Murase and S. K. Nayar. Visual learning and recog-nition of 3{D objects from appearance. Int. Journal ofComputer Vision, 14(1):5{24, Januar 1995.[4] J. P�osl. Statistical pose estimation with local dependen-cies. In H.-P. Seidel, B. Girod, and H. Niemann, editors,3D Image Analysis and Synthesis '97, pages 147{154,Erlangen, November 1997. In�x.[5] J. P�osl and H. Niemann. Statistical 3{D object loca-lization without segmentation using wavelet analysis.In Computer Analysis of Images and Patterns (CAIP),pages 440{447, Kiel, September 1997. Springer.[6] P. Viola and W. Wells III. Alignment by maximizationof mutual information. In ICCV 95 [1], pages 16{23.


