
Approach to Active Knowledge Based SceneExplorationU. Ahlrichs, J. Fischer, D. Paulus, H. NiemannLehrstuhl f�ur Mustererkennung (Informatik 5)Universit�at Erlangen-N�urnbergMartensstra�e 3, 91058 Erlangen, GermanyThis paper was submitted to es'99December 1999, Cambridge, England



Contents1 Introduction 12 Problem Description 23 The Knowledge Representation Scheme 34 Embedding Camera Actions into the Knowledge Base 44.1 Declarative Knowledge : : : : : : : : : : : : : : : : : : : : : : 44.2 Procedural Knowledge : : : : : : : : : : : : : : : : : : : : : : : 65 Parallel Iterative Control 66 Expanding the Control to Actions 87 Experimental Results 108 Conclusion and Future Work 12

J. Fischer, U. Ahlrichs, D. Paulus, H. Niemann: Approach to Active Knowl-edge Based Scene Exploration,



Approach to Active Knowledge Based SceneExplorationU. Ahlrichs, J. Fischer, D. Paulus, H. NiemannLehrstuhl f�ur Mustererkennung (Informatik 5)Universit�at Erlangen-N�urnbergMartensstra�e 3, 91058 Erlangen, GermanyAbstractIn almost every knowledge based image analysis system the knowledgebase serves as model for the application domain and is used during theinterpretation of the images. However, in visual based scene explorationa system needs the ability to perform camera movements, because objectsmay not be visible with the initial camera setting. Nevertheless, most ofthe known systems lack a representation of such movements which arenecessary to acquire missing information. In this paper we will showhow to integrate these (camera) movements into a conventional know-ledge base using a semantic network formalism. To use the knowledgeduring the interpretation, an iterative control algorithm is applied whichhas any-time capabilities. This control algorithm was extended in orderto deal with the actions which have been integrated into the knowledgebase.The suitability of the approach is veri�ed by experiments in whichan o�ce scene is explored with an active camera. These experimentsrevealed, that in 93 % of all cases the objects were found correctly.1 IntroductionIn the near future autonomous mobile systems which use visual information willbecome more and more important for daily life. Examples for systems whichcarry out simple routine tasks like the transportation of mail, books or dishescan be found in [1]. In order to ful�ll such tasks the system has to be ableto interpret an image and perform actions to acquire information which is notavailable in the current image, but is needed for the task to be accomplished.If, for example, the robot wants to localize an object and this object is notvisible in the initial camera set-up, the camera parameters have to be changedand the object localization starts with the new image. Another example isthe modi�cation of focus, if the image is blurred, or the modi�cation of zoom,if small objects cannot be reliably recognized. The strategy which suggeststhese adaptations of camera parameters is called active vision [2]. The goalis to change the camera parameters such that they are suitable for following



processing steps, e.g. the image interpretation. The criterion of suitability hasto be de�ned according to the task of the system.In order to explore the environment autonomous systems use knowledgeabout the objects which are important for the task to be performed, and aboutthe scene. In this paper a new approach is presented which combines the tra-ditional representation of knowledge about objects and the scene with cameraactions as suggested by the strategy of active vision. A camera action corre-sponds to a selection of new camera parameters or the move of the camera. Theknowledge about scene information and camera actions is uniformly representedin one knowledge base using a semantic network formalism.In classical image analysis, of course, many systems like VISIONS [3], SPAM[4] or SIGMA [5] are known which use information represented in a knowlegdebase. But all these systems lack a representation of camera actions. Relatedwork on the selection and performance of actions using Bayesian networks canbe found in [6, 7]. Examples of approaches for uniform representation of actionsand knowledge about the task domain are the situation calculus or decisionnetworks, see [8, 9] for an overview or [10] for an example using Bayesian net-works. We found the semantic network representation formalism particularlysuitable for the description of objects [11], of medical decisions [12], and of adialogue system [13], and prefer this formalism to a uniform description usinge.g. Bayesian networks which give a less obvious object representation [10].In order to make use of the represented knowledge about the scene, a con-trol algorithm has to be provided. We proposed an iterative control algorithmwhich is particularly suitable for the application domain because of its any-timecapabilities [14]. This algorithm was originally developed for pattern interpre-tation tasks. Here we demonstrate how we extended this control algorithm inorder to handle the camera actions represented in the very same frameworkand allow an active scene exploration.After an outline of the problem we deal with in section 2 we describe theknowledge representation formalism in section 3. In section 4 we explain therepresentation of actions. We outline the iterative control used in section 5 andits extension to actions in section 6. Finally, we demonstrate the feasibilityand e�ciency of our approach by means of experiments with a system for o�cescene exploration (section 7).2 Problem DescriptionThe problemwhich has to be solved by our system is the exploration of arbitraryo�ce scenes with static objects, i.e. motion of objects is not modelled. Thegoal is to �nd pre{de�ned objects in these scenes where the location of theobjects is not restricted. Since the main contribution of the approach is on theconceptional work to integrate the camera actions into the knowledge base, onlya simpli�ed task for object recognition is choosen in the experiments. Threered objects, a punch, a gluestick and an adhesive tape are used as shown below.These objects need not be visible in the initial set-up which makes it necessaryto perform camera movements to search for the objects. Since these movementsare time-consuming, e�cient strategies are needed to choose the next camerasetting or to determine if a camera movement should be performed at all. Thedecision where to look next relies heavily on the objects which have been found



already in the scene. This motivated the design of a knowledge base whichcontains both, the knowledge which is needed for identifying the objects, andthe information about search strategies.3 The Knowledge Representation SchemeFor the representation of task{speci�c knowledge we propose our semantic net-work formalism [15, 16] which provides the following types of network nodes:� Concepts representing abstract terms, events, tasks, actions, etc.;� Instances representing actual realizations of concepts in the sensor data;� Modi�ed Concepts representing concepts that are modi�ed by restrictionsarising from intermediate results (i.e., the interpretation of part of thesensor data leads to restrictions on the interpretation of the remainingsensor data).There are also the following network links:� Part Links connecting concepts to the parts they consist of;� Concrete Links connecting concepts on di�erent levels of abstraction;� Specialization Links establishing inheritance relations from general con-cepts to more speci�c ones.Thus, our knowledge model is a network of concepts linked to each other by thevarious types of links.Since there may be many di�erent possibilities for the realizations of aconcept, modalities have been introduced1 with the implication that each in-dividual modality may de�ne the concept. Examples will follow in section 4.Furthermore, parts of a concept may be de�ned as being obligatory or optional.For the de�nition of properties or features, a concept has a set of attributes.There may also be relations between the attributes of a concept. Each attributereferences a function which computes its value and a judgment function whichcomputes a measure of con�dence for the attribute value. During the computa-tion of an instance (i.e. the instantiation of a concept) values for all attributes,relations and the corresponding judgment values are calculated; therefore a con-cept can only be instantiated if instances for all obligatory parts and concretesof the concept have been computed before in previous analysis steps.Due to errors in the image segmentation (arising from noise and processingerrors) and ambiguities in the knowledge base (arising, for example, from thevarious modalities), competing instances may be computed for a single concept.In order to measure the degree of con�dence of an instance, a judgment functionis needed (and included into the de�nition of a concept). In most cases thisjudgment function combines the judgment of the attributes, relations, and theinstances of the parts and concretes of a concept.The goal of the analysis is represented by one or more concepts, the goal con-cepts. Subsequently, an interpretation of the whole sensor data is represented1Another possibility for the representation of di�erent concept realizations is to de�ne aconcept for each realization; this, however, inhibits a compact knowledge representation.
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zoom on regionFig. 1: Semantic network which combines the representation of camera actions(white ovals) with the representation of the scene (gray ovals). In addition, thenetwork contains generalizations for some concepts, which are left out to keepup clarity.by an instance of a goal concept. Now, in order to �nd the `best' interpretation,the computation of an optimal instance of a goal concept with respect to thejudgment function of the corresponding concept is required. In our approachthe interpretation problem is viewed as a combinatorial optimization problemand solved as such (section 5).4 Embedding Camera Actions into theKnowledge Base4.1 Declarative KnowledgeThe structure of the knowledge base of our application domain is shown inFig. 1. As we have motivated in the introduction, the knowledge base uni-�es the representation of objects and their relations and the representation ofcamera actions on di�erent levels of abstraction. The gray ovals represent in-formation which would be found in almost any conventional knowledge base onthis matter. This set of concepts contains, for example, the objects of the appli-cation domain, e.g. the concepts \punch", \gluestick" or \adhesive tape" andtheir concrete representation which modelled by the concept \color region".The concepts representing the objects are parts of the concept \o�ce scene"2.In addition to the representation of scene concepts, concepts for cameraactions are integrated into the knowledge base. On the highest level of abstrac-tion one can �nd camera actions which are equivalent to search procedures andwhich are used to �nd objects in a scene. The �rst example is the concept\direct search". Each instantiation of this concept computes a new pan angle2In the following the \ seg" part of the concept names stands for segmentation.



searchdirectindirectsearch
Fig. 2: Di�erence between indirect and direct search.and a new zoom for the camera in such a way, that overview images, whichare images captured with a small focal length, are obtained. If we look at alloverview images as one image, we get a scan of the whole scene. The secondexample is the concept \indirect search". This concept represents an indirectsearch [17], that is the search for an object using an intermediate object whichis the punch in our application domain. Usually, large objects like tables orbook shelves are used as intermediate objects. These objects have in commonthat they are relatively large and therefore can be found in an image capturedwith a small focal length. This is advantageous because less images are nec-essary to scan a whole scene. An example for the e�ect of direct and indirectsearch is depicted in Fig. 2. Using direct search a second overview images istaken, using indirect search with the cupboard as an intermediate object aclose-up view of an area above the cupboard is generated. In our applicationthe indirect search is performed only if we have already found an adhesive tapeand a punch and we are searching for the gluestick. Recall that the punch ischoosen as intermediate object in our application.On the intermediate level of abstraction in Fig. 1, the camera action\zoom on region" can be found. The e�ect of this action is the fovealization ofregions which are hypotheses for the objects the system is searching for. Duringthe fovealization the pan angle and the zoom of the camera are adjusted in sucha way that the region can be found in the middle of an image afterwards andis larger than before fovealization. The fovealization bases on the observationthat the regions which are found in the overview images are too small for agood veri�cation. Images taken after fovealization are called close-up views.On the lowest level of abstraction camera actions are modelled which areperformed data-driven and are independent of the application domain. Thefocus of a camera, for example, has to be adjusted in order to get sharp images.Furthermore, the zoom setting has to be chosen in such a way that not only



one homogeneous region is in the image.Recall that the instantiation of a camera action concept leads to the se-lection of new camera parameters or the performance of a camera action. So,only one of the camera action concepts can be instantiated in a single step. Inorder to represent competing camera actions, i.e. actions which can not be per-formed at the same time, we make use of modalities (section 3). For example,the concept \explore o�ce" has as parts the concepts \direct search" and \in-direct search", each of them is represented in one modality of \explore o�ce".The concept \region seg image" is another example for a concept which con-tains two modalities, one for \explore o�ce image" and one for \o�ce image".In section 5 we explain how we deal with the ambiguities arising from themodalities.4.2 Procedural KnowledgeIn addition to declarative knowledge, each concept contains procedural know-ledge which consists of the functions for value and judgment value computationof attributes, relations, and instances (section 3).In the concepts of our scene representation, for example, functions for at-tribute value computation are de�ned which compute the color of a region (inthe concept \color region") or the height and the width of an object (in theconcepts \punch", \gluestick" and \adhesive tape"). In addition, each of theseconcepts contains attributes for the focal length and for the distance of therepresented object refering to the close-up views of the objects.A management of uncertainty is provided by the control based on the judg-ment functions (section 5). In order to rate the di�erent camera actions, autility-based approach is applied [18]. Probabilities are used to estimate theinstances of the scene concepts \punch", \gluestick" and \adhesive tape" be-cause the utility measure relies on the evidence if an object has been foundduring analysis. The probabilities are calculated using a priori trained normaldistributions for the individual attributes, the height, and the width of the ob-jects. During training we calculate the mean and variance of these attributesfor each object using 40 images.5 Parallel Iterative ControlOur control algorithm [13, 14] treats the search for an optimal interpretationand for optimal camera actions as a combinatorial optimization problem andsolves it by means of iterative optimization methods, e.g. simulated annealing,stochastic relaxation, and genetic algorithms. One advantage of this algorithmis its any{time capability. After each iteration step a (sub{)optimal solutionis available and this solution can be improved by performing more iterations.If we have got enough time for analysis, the optimal solution is always found.Another advantage is that the algorithm allows an e�cient exploitation of paral-lelism by automatically compiling the concept{centered semantic network intoa �ne{grained task{graph, the so{called attribute network. This network repre-sents the dependencies of all attributes, relations, and judgments of conceptsto be considered for the computation of goal instances. In Fig. 3 a schema ofthe parallel iterative control is shown. In following we explain how the control
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current assignmentFig. 3: Scheme of the parallel iterative control algorithm.works principally. The attribute network is automatically generated in twosteps from the semantic network:� Expansion First the semantic network is expanded top-down such thatall concepts which are necessary for the instantiation of the goal conceptsexist. Concepts which have more than one predecessor in the networklike the concept \color region" in Fig. 1 are duplicated.� Re�nement The expanded network is re�ned by the determinationof dependencies between sub{conceptual entities (attributes, relations,judgments, etc.) of all concepts in the expanded network. These sub{conceptual entities are represented by the nodes of the attribute networkand the dependencies between them by the links.Both steps are executed automatically in advance to search and depend onlyon the syntax of the semantic network representation. Nodes without predeces-sors (primitive attributes in Fig. 3) represent attributes that provide an inter-face to the initial segmentation (for example color regions), and nodes withoutsuccessors (judgment of goal concepts in Fig. 3) represent the judgments (i.e.con�dence measures) of goal concepts. Now, for the computation of instancesof the goal concepts, all nodes of the attribute network are processed in a singlebottom{up step. Therefore the 
ow of information is �xed from the primitiveattribute node to the judgment nodes of the goal concepts. This bottom{upinstantiation corresponds to a single iteration of the iterative optimization.Parallelism can be exploited on the network and on the control level. Eachnode of the network for example may be mapped to a multiprocessor systemfor parallel processing (depicted in Fig. 3 as parallel bottom{up instantiation).In addition, several competing instances of the goal concepts may be computed



in parallel on several workstations. This is shown in Fig. 3 as parallel searchon p workstations WS1, : : :, WSp.The search space the control algorithm has to deal with is determined bythe competing segmentation results which arise, for example, from an erroneoussegmentation, and by the di�erent modalities of the concepts in the knowledgebase (section 3). Recall that in our application domain the segmentation resultsare the color regions and the modalities determine which camera action isperformed, e.g. the indirect or the direct search. In addition, we de�ne thecurrent state of analysis of our combinatorial optimization as a vector r whichcontains the assignment of segmentation results to primitive attributes and thechoice of a modality for each (ambiguous) concept:r = h(Ai; O(i)j ); (Ck;Mod(k)l )iTwith i = 1; : : : ;m ; k = 1; : : : ; n :where m denotes the number of primitive attributes, j the index of the seg-mentation results, k the number of concepts in the semantic network, and l theindex of the modality for each corresponding concept. In each iteration stepjudgments for the goal concepts are computed for the actual state of analy-sis. After an iteration step one randomly chosen entry of the analysis vectoris changed. For example another segmentation result is bound to a primitiveattribute node. Furthermore, a performance function for the state of analysisvector is introduced. The task of the control algorithm is now to optimize theperformance function, i.e. to �nd that state of analysis which leads to the bestinterpretation, i.e. to an optimal instance of a goal concept.Fig. 3 shows, for example, that in the current state of analysis for which theattribute network is computed on the �rst workstation (WS1), the segmentationobject Oq is assigned to the primitive attribute node A4, modality 2 is assignedto the concept C3, and modality 3 and modality 1 are assigned to the conceptsC9 and Cn, respectively, which are goal concepts (thus stated as Cg9 and Cgn).Furthermore, it is shown that di�erent instances (recall that the computationof instances depends only on the current state of analysis) are computed onthe several workstations: the current state of analysis for which instances arecomputed on workstation p (WSp) di�ers from that on WS1 at least by theassignment of di�erent modalities to the goal concepts Cg9 and Cgn.In our current application we have only one goal concept, which is \ex-plore o�ce", and the performance function corresponds to the judgment func-tion of this concept.6 Expanding the Control to ActionsThe goal in our application is to instantiate the concept \explore o�ce". There-fore we alternately have to interprete the image data and perform camera ac-tions. This alternating computation cannot directly be expressed by either thesyntax of the semantic network nor by the attribute network. This means thatwe have to extend the control algorithm.If we compute the whole attribute network for our goal concept in onebottom{up step as described in section 5, we select the camera actions \di-rect search" or \indirect search" possibly without an optimal interpretation of



camera actioncamera action
primitive attribute

goal concept
subgoal\punch"

camera action
\zoom on region"\color region"
\explore o�ce seg"\indirect search"perform the selected\direct search" \explore o�ce"

\o�ce scene"
Fig. 4: Excerpt of the attribute network for the knowledge base depicted inFig. 1 showing a subset of the network for the concepts \explore o�ce" and\o�ce scene". Only the most important arrows are shown.the concepts \punch", \gluestick" and \adhesive tape". This makes no sense,because we �rst need to �nd an optimal interpretation for the view under theactual camera setting, before deciding which camera action has to be performednext. In addition, if we instantiate the concept \new zoom" and then go onwith the bottom{up computation of the attribute network we get an instanceof \explore o�ce" based on image data which was taken with the old zoom.In order to solve these problems, the control for the bottom{up instantiationof the attribute network is extended as it was already successfully demonstratedfor an application with a speech dialog system [13]. The instantiation is dividedinto several data driven instantiations of subnets of the attribute network. Thedivision is initiated by specifying subgoals prior to the computation of theattribute network which has to be done by the user once before the systemis run. From these subgoals, the subnets can be automatically derived by thenetwork encoder. This induces a partial order of the subgoals in the attributenetwork. Initial subgoals are chosen from the lowest level in the network.Analysis starts by the instantiation of the initial subgoal. This means thatthe bottom-up computation of the corresponding subnet is iterated until anoptimum is found. Afterwards, the control chooses the next subgoal to beinstantiated, and so on. This process continues until an optimal instance of the\explore o�ce" is found.



To give an example: If the user chooses, for example, the concepts \re-gion seg image" and \o�ce scene" as subgoals, the control starts �nding thebest instance of \region seg image". Afterwards, it searches for the best in-stance of \o�ce scene". Once this instance has been found, the subnet whichbelongs to the goal concept \explore o�ce" is instantiated. This is done un-til the goal concept, that is \explore o�ce", is reached or a camera action isperformed. If the judgment of the instance of the \explore o�ce" is belowan application dependent threshold, the control starts again with the subgoal\region seg image". In Fig. 4 the subnets belonging to \explore o�ce" andto \o�ce scene" are depicted. The excerpt of the attribute network shows apart of the expanded knowledge base described in Fig. 1. Thus, we have threemodi�ed concepts of \color region" which are bound to the concepts \punch",\gluestick" and \adhesive tape". The highlighted areas contain the attributeswhich belong to the corresponding concepts. In addition, camera actions areperformed by computing the attribute pan of concept \explore o�ce" and con-cept \explore o�ce seg".Fig. 4 depicts two subnets, one above the horizontal line, one below. Theupper subnet belongs to the concept \explore o�ce" and shows the attributesrequired for the instantiation of that concept. Attributes originating from oneconcept are boxed and highlighted. The lower subnet explains the relationsof attributes used to instantiate the subgoal \o�ce scene". Three modi�edconcepts of \color region" are bound to the concepts \punch", \gluestick" and\adhesive tape"; only one (\punch") is depicted in the �gure for simplicity.Depending on the state of analysis, a zoom camera action is performed if thecolor region assigned to the primitive attribute is too small.7 Experimental ResultsSo far the lower part of the knowledge base in Fig. 1 is provided as one module.This part contains the concepts \o�ce image", \new zoom", \new focus", \ex-plore o�ce image", \explore o�ce seg", and \zoom on region". In this modulehypotheses for the red objects are computed by a histogram backprojection [19]which is applied to an overview image taken with the minimal focal length ofthe camera (cf. Fig. 5). In order to verify these hypotheses they are fovealizedby moving the camera and varying the camera's focal length. This is exactlythe task of the lower part of the knowledge base shown in Fig. 1. The hypothe-ses correspond to color regions which are the input of the primitive concept\color region" of the semantic network. Thus, the primitive concept serves asinterface to the module performing the task of the lower part of the knowledgebase.The suitability of the approach has been tested in 20 experiments whileperforming explorations in two di�erent o�ces. In each experiment the objectswere positioned at di�erent places. Ten experiments took place in o�ce 1 andthe other ten in o�ce 2. In the experiments, seven red objects are used, wherethree of them are modelled in the knowledge base. These three objects whichare interesting for the interpretation step were hypothesized in 54 cases of 60possible ones by the data driven hypotheses generation module using histogrambackprojection. On average six close-up views were generated, that is, sixobject hypotheses were found in each overview image. The search space for the



Fig. 5: Overview images of two di�erent o�ce scenes (o�ce 1 on the left, o�ce 2on the right). The close-up views below the overview images show fovealizedobject hypotheses. number of iterations Ni10 30 50 100 150o�ce 1 57 % 82 % 93 % 93 % 93 %o�ce 2 13 % 46 % 54 % 70 % 79 %Table 1: Percentage of correct recognized objects.iterative control algorithm was reduced by restrictions concerning the color ofthe objects. These restrictions were propagated once from the higher conceptsto the primitive concepts at the beginning of analysis. However, the task getsnot trivial due to the propagation of the restrictions because on average between43 and 66 color regions ful�ll the restrictions. Therefore the system needs theability to detect the objects in this set of hypotheses which is done by makinguse of the knowledge represented in the knowledge base. In Table 1 the resultsare shown for the two di�erent o�ces. The recognition rates give the ratiobetween the number of correctly recognized objects and the total number ofveri�ed objects, performing Ni iterations. One can see that the recognitionrate increases with the number of iterations up to a maximum of 93 % foro�ce 1 and 79 % for o�ce 2. Currently we use only 2D features which areview-point dependent. Because the objects' pose is more restricted in o�ce 1the recognition rate is higher than for o�ce 2.The increase with the number of iterations shows particularly well the any-time capability of the algorithm. The results revealed furthermore that 50iterations for o�ce 1 and 150 iterations for o�ce 2 are su�cient to achieve anoptimal result for a speci�c camera setting. The number of necessary itera-tions depends upon the number of hypotheses which are generated by the datadriven module. For o�ce 2 eight hypotheses were found on average, whereasfor o�ce 1 only �ve hypotheses were found. Therefore, more iterations had tobe performed for o�ce 2.As optimization method the stochastic relaxation was used. The process-



ing cycle for one camera setting for interpretation (i.e., from the data drivenhypotheses generation up to the computation of an optimal instance of \ex-plore o�ce") lasts around �ve minutes. The major time need arises by movingthe camera axes, waiting until the goal position is reached, for the median �lter-ing in the histogram backprojection, and the segmentation of the color regions.One iteration, that is one bottom-up instantiation of the attribute network forthe scene part of the knowledge base, takes on average only 0.015 s, that is,2.25 s for 150 iterations.8 Conclusion and Future WorkIn this paper, we proposed an integrated formalism for representing and usingknowledge about an application domain combined with the various cameraactions the system needs to perform in order to explore a scene. The applicationdomain is the exploration of o�ce scenes. The current task of the system isthe localization of three pre-de�ned red objects. In order to use the knowledgeand actions represented we employed a parallel iterative control algorithm withany{time capabilities. Initial experiments have proved the feasibility of theapproach.Future work will concentrate on completing the implementation of the ap-proach for the application presented. This includes a systematic determinationof the subgoals by a goalconcept estimation and a reduction of processing time.References[1] K. Kawamura and M. Iskarous. Trends in Service Robots for the Disabledand the Elderly. In Intelligent Robots and Systems, pages 1647{1654,M�unchen, 1994.[2] J. Aloimonos, I. Weiss, and A. Bandyopadhyay. Active vision. Interna-tional Journal of Computer Vision, 2(3):333{356, 1988.[3] A. Hanson and E. Riseman. Visions: A computer system for interpretingscenes. In A. Hanson and E. Riseman, editors, Computer Vision Systems,pages 303{333. Academic Press, Inc., New York, 1978.[4] D. McKeown, W. Harvey, and J. McDermott. Rule-based interpretation ofaerial imagery. IEEE Trans. on Pattern Analysis and Machine Intelligence,7(5):570{585, 1985.[5] T. Matsuyama and V. Hwang. SIGMA. A Knowledge-Based Aerial ImageUnderstanding System, volume 12 of Advances in Computer Vision andMachine Intelligence. Plenum Press, New York and London, 1990.[6] R. Rimey. Control of Selective Perception using Bayes Nets and DecisionTheory. Technical report, Department of Computer Science, College ofArts and Science, University of Rochester, Rochester, New York, 1993.[7] T. Levitt, T. Binford, G. Ettinger, and P. Gelband. Probability basedcontrol for computer vision. In Proc. of DARPA Image UnderstandingWorkshop, pages 355{369, 1989.
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