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Abstract

In almost every knowledge based image analysis system the knowledge
base serves as model for the application domain and is used during the
interpretation of the images. However, in visual based scene exploration
a system needs the ability to perform camera movements, because objects
may not be visible with the initial camera setting. Nevertheless, most of
the known systems lack a representation of such movements which are
necessary to acquire missing information. In this paper we will show
how to integrate these (camera) movements into a conventional know-
ledge base using a semantic network formalism. To use the knowledge
during the interpretation, an iterative control algorithm is applied which
has any-time capabilities. This control algorithm was extended in order
to deal with the actions which have been integrated into the knowledge
base.

The suitability of the approach is verified by experiments in which
an office scene is explored with an active camera. These experiments
revealed, that in 93 % of all cases the objects were found correctly.

1 Introduction

In the near future autonomous mobile systems which use visual information will
become more and more important for daily life. Examples for systems which
carry out simple routine tasks like the transportation of mail, books or dishes
can be found in [1]. In order to fulfill such tasks the system has to be able
to interpret an image and perform actions to acquire information which is not
available in the current image, but is needed for the task to be accomplished.
If, for example, the robot wants to localize an object and this object is not
visible in the initial camera set-up, the camera parameters have to be changed
and the object localization starts with the new image. Another example is
the modification of focus, if the image is blurred, or the modification of zoom,
if small objects cannot be reliably recognized. The strategy which suggests
these adaptations of camera parameters is called active vision [2]. The goal
is to change the camera parameters such that they are suitable for following



processing steps, e.g. the image interpretation. The criterion of suitability has
to be defined according to the task of the system.

In order to explore the environment autonomous systems use knowledge
about the objects which are important for the task to be performed, and about
the scene. In this paper a new approach is presented which combines the tra-
ditional representation of knowledge about objects and the scene with camera
actions as suggested by the strategy of active vision. A camera action corre-
sponds to a selection of new camera parameters or the move of the camera. The
knowledge about scene information and camera actions is uniformly represented
in one knowledge base using a semantic network formalism.

In classical image analysis, of course, many systems like VISIONS [3], SPAM
[4] or SIGMA [5] are known which use information represented in a knowlegde
base. But all these systems lack a representation of camera actions. Related
work on the selection and performance of actions using Bayesian networks can
be found in [6, 7]. Examples of approaches for uniform representation of actions
and knowledge about the task domain are the situation calculus or decision
networks, see [8, 9] for an overview or [10] for an example using Bayesian net-
works. We found the semantic network representation formalism particularly
suitable for the description of objects [11], of medical decisions [12], and of a
dialogue system [13], and prefer this formalism to a uniform description using
e.g. Bayesian networks which give a less obvious object representation [10].

In order to make use of the represented knowledge about the scene, a con-
trol algorithm has to be provided. We proposed an iterative control algorithm
which is particularly suitable for the application domain because of its any-time
capabilities [14]. This algorithm was originally developed for pattern interpre-
tation tasks. Here we demonstrate how we extended this control algorithm in
order to handle the camera actions represented in the very same framework
and allow an active scene exploration.

After an outline of the problem we deal with in section 2 we describe the
knowledge representation formalism in section 3. In section 4 we explain the
representation of actions. We outline the iterative control used in section 5 and
its extension to actions in section 6. Finally, we demonstrate the feasibility
and efficiency of our approach by means of experiments with a system for office
scene exploration (section 7).

2 Problem Description

The problem which has to be solved by our system is the exploration of arbitrary
office scenes with static objects, i.e. motion of objects is not modelled. The
goal is to find pre—defined objects in these scenes where the location of the
objects is not restricted. Since the main contribution of the approach is on the
conceptional work to integrate the camera actions into the knowledge base, only
a simplified task for object recognition is choosen in the experiments. Three
red objects, a punch, a gluestick and an adhesive tape are used as shown below.
These objects need not be visible in the initial set-up which makes it necessary
to perform camera movements to search for the objects. Since these movements
are time-consuming, efficient strategies are needed to choose the next camera
setting or to determine if a camera movement should be performed at all. The
decision where to look next relies heavily on the objects which have been found



already in the scene. This motivated the design of a knowledge base which
contains both, the knowledge which is needed for identifying the objects, and
the information about search strategies.

3 The Knowledge Representation Scheme

For the representation of task—specific knowledge we propose our semantic net-
work formalism [15, 16] which provides the following types of network nodes:

e Concepts representing abstract terms, events, tasks, actions, etc.;
e Instances representing actual realizations of concepts in the sensor data;

e Modified Concepts representing concepts that are modified by restrictions
arising from intermediate results (i.e., the interpretation of part of the
sensor data leads to restrictions on the interpretation of the remaining
sensor data).

There are also the following network links:
e Part Links connecting concepts to the parts they consist of;
e Concrete Links connecting concepts on different levels of abstraction;

o Specialization Links establishing inheritance relations from general con-
cepts to more specific ones.

Thus, our knowledge model is a network of concepts linked to each other by the
various types of links.

Since there may be many different possibilities for the realizations of a
concept, modalities have been introduced' with the implication that each in-
dividual modality may define the concept. Examples will follow in section 4.
Furthermore, parts of a concept may be defined as being obligatory or optional.

For the definition of properties or features, a concept has a set of attributes.
There may also be relations between the attributes of a concept. Each attribute
references a function which computes its value and a judgment function which
computes a measure of confidence for the attribute value. During the computa-
tion of an instance (i.e. the instantiation of a concept) values for all attributes,
relations and the corresponding judgment values are calculated; therefore a con-
cept can only be instantiated if instances for all obligatory parts and concretes
of the concept have been computed before in previous analysis steps.

Due to errors in the image segmentation (arising from noise and processing
errors) and ambiguities in the knowledge base (arising, for example, from the
various modalities), competing instances may be computed for a single concept.
In order to measure the degree of confidence of an instance, a judgment function
is needed (and included into the definition of a concept). In most cases this
judgment function combines the judgment of the attributes, relations, and the
instances of the parts and concretes of a concept.

The goal of the analysis is represented by one or more concepts, the goal con-
cepts. Subsequently, an interpretation of the whole sensor data is represented

L Another possibility for the representation of different concept realizations is to define a
concept for each realization; this, however, inhibits a compact knowledge representation.
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Fig. 1: Semantic network which combines the representation of camera actions
(white ovals) with the representation of the scene (gray ovals). In addition, the
network contains generalizations for some concepts, which are left out to keep
up clarity.

by an instance of a goal concept. Now, in order to find the ‘best’ interpretation,
the computation of an optimal instance of a goal concept with respect to the
judgment function of the corresponding concept is required. In our approach
the interpretation problem is viewed as a combinatorial optimization problem
and solved as such (section 5).

4 Embedding Camera Actions into the
Knowledge Base

4.1 Declarative Knowledge

The structure of the knowledge base of our application domain is shown in
Fig. 1. As we have motivated in the introduction, the knowledge base uni-
fies the representation of objects and their relations and the representation of
camera actions on different levels of abstraction. The gray ovals represent in-
formation which would be found in almost any conventional knowledge base on
this matter. This set of concepts contains, for example, the objects of the appli-
cation domain, e.g. the concepts “punch”, “gluestick” or “adhesive_tape” and
their concrete representation which modelled by the concept “color_region”.
The concepts representing the objects are parts of the concept “office_scene”?.

In addition to the representation of scene concepts, concepts for camera
actions are integrated into the knowledge base. On the highest level of abstrac-
tion one can find camera actions which are equivalent to search procedures and
which are used to find objects in a scene. The first example is the concept
“direct_search”. Each instantiation of this concept computes a new pan angle

2In the following the “_seg” part of the concept names stands for segmentation.
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and a new zoom for the camera in such a way, that overview images, which
are images captured with a small focal length, are obtained. If we look at all
overview images as one image, we get a scan of the whole scene. The second
example is the concept “indirect_search”. This concept represents an indirect
search [17], that is the search for an object using an intermediate object which
is the punch in our application domain. Usually, large objects like tables or
book shelves are used as intermediate objects. These objects have in common
that they are relatively large and therefore can be found in an image captured
with a small focal length. This is advantageous because less images are nec-
essary to scan a whole scene. An example for the effect of direct and indirect
search is depicted in Fig. 2. Using direct search a second overview images is
taken, using indirect search with the cupboard as an intermediate object a
close-up view of an area above the cupboard is generated. In our application
the indirect search is performed only if we have already found an adhesive tape
and a punch and we are searching for the gluestick. Recall that the punch is
choosen as intermediate object in our application.

On the intermediate level of abstraction in Fig. 1, the camera action
“zoom_on_region” can be found. The effect of this action is the fovealization of
regions which are hypotheses for the objects the system is searching for. During
the fovealization the pan angle and the zoom of the camera are adjusted in such
a way that the region can be found in the middle of an image afterwards and
is larger than before fovealization. The fovealization bases on the observation
that the regions which are found in the overview images are too small for a
good verification. Images taken after fovealization are called close-up views.

On the lowest level of abstraction camera actions are modelled which are
performed data-driven and are independent of the application domain. The
focus of a camera, for example, has to be adjusted in order to get sharp images.
Furthermore, the zoom setting has to be chosen in such a way that not only



one homogeneous region is in the image.

Recall that the instantiation of a camera action concept leads to the se-
lection of new camera parameters or the performance of a camera action. So,
only one of the camera action concepts can be instantiated in a single step. In
order to represent competing camera actions, i.e. actions which can not be per-
formed at the same time, we make use of modalities (section 3). For example,
the concept “explore_office” has as parts the concepts “direct_search” and “in-
direct_search”, each of them is represented in one modality of “explore_office”.
The concept “region_seg_image” is another example for a concept which con-
tains two modalities, one for “explore_office_image” and one for “office.image”.
In section 5 we explain how we deal with the ambiguities arising from the
modalities.

4.2 Procedural Knowledge

In addition to declarative knowledge, each concept contains procedural know-
ledge which consists of the functions for value and judgment value computation
of attributes, relations, and instances (section 3).

In the concepts of our scene representation, for example, functions for at-
tribute value computation are defined which compute the color of a region (in
the concept “color_region”) or the height and the width of an object (in the
concepts “punch”, “gluestick” and “adhesive_tape”). In addition, each of these
concepts contains attributes for the focal length and for the distance of the
represented object refering to the close-up views of the objects.

A management of uncertainty is provided by the control based on the judg-
ment functions (section 5). In order to rate the different camera actions, a
utility-based approach is applied [18]. Probabilities are used to estimate the
instances of the scene concepts “punch”, “gluestick” and “adhesive_tape” be-
cause the utility measure relies on the evidence if an object has been found
during analysis. The probabilities are calculated using a priori trained normal
distributions for the individual attributes, the height, and the width of the ob-
jects. During training we calculate the mean and variance of these attributes
for each object using 40 images.

5 Parallel Iterative Control

Our control algorithm [13, 14] treats the search for an optimal interpretation
and for optimal camera actions as a combinatorial optimization problem and
solves it by means of iterative optimization methods, e.g. simulated annealing,
stochastic relaxation, and genetic algorithms. One advantage of this algorithm
is its any-time capability. After each iteration step a (sub—)optimal solution
is available and this solution can be improved by performing more iterations.
If we have got enough time for analysis, the optimal solution is always found.
Another advantage is that the algorithm allows an efficient exploitation of paral-
lelism by automatically compiling the concept—centered semantic network into
a fine—-grained task—graph, the so—called attribute network. This network repre-
sents the dependencies of all attributes, relations, and judgments of concepts
to be considered for the computation of goal instances. In Fig. 3 a schema of
the parallel iterative control is shown. In following we explain how the control
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Fig. 3: Scheme of the parallel iterative control algorithm.

works principally. The attribute network is automatically generated in two
steps from the semantic network:

e Expansion First the semantic network is expanded top-down such that
all concepts which are necessary for the instantiation of the goal concepts
exist. Concepts which have more than one predecessor in the network
like the concept “colorregion” in Fig. 1 are duplicated.

¢ Refinement The expanded network is refined by the determination
of dependencies between sub—conceptual entities (attributes, relations,
judgments, etc.) of all concepts in the expanded network. These sub-
conceptual entities are represented by the nodes of the attribute network
and the dependencies between them by the links.

Both steps are executed automatically in advance to search and depend only
on the syntax of the semantic network representation. Nodes without predeces-
sors (primitive attributes in Fig. 3) represent attributes that provide an inter-
face to the initial segmentation (for example color regions), and nodes without
successors (judgment of goal concepts in Fig. 3) represent the judgments (i.e.
confidence measures) of goal concepts. Now, for the computation of instances
of the goal concepts, all nodes of the attribute network are processed in a single
bottom—up step. Therefore the flow of information is fixed from the primitive
attribute node to the judgment nodes of the goal concepts. This bottom—up
instantiation corresponds to a single iteration of the iterative optimization.
Parallelism can be exploited on the network and on the control level. Each
node of the network for example may be mapped to a multiprocessor system
for parallel processing (depicted in Fig. 3 as parallel bottom—up instantiation).
In addition, several competing instances of the goal concepts may be computed



in parallel on several workstations. This is shown in Fig. 3 as parallel search
on p workstations WSy, ..., WS;,.

The search space the control algorithm has to deal with is determined by
the competing segmentation results which arise, for example, from an erroneous
segmentation, and by the different modalities of the concepts in the knowledge
base (section 3). Recall that in our application domain the segmentation results
are the color regions and the modalities determine which camera action is
performed, e.g. the indirect or the direct search. In addition, we define the
current state of analysis of our combinatorial optimization as a vector » which
contains the assignment of segmentation results to primitive attributes and the
choice of a modality for each (ambiguous) concept:

. T
ro= |(4,00); (Cx, Mod("))
withi=1,...,m; k=1,...,n.

where m denotes the number of primitive attributes, j the index of the seg-
mentation results, k& the number of concepts in the semantic network, and [ the
index of the modality for each corresponding concept. In each iteration step
judgments for the goal concepts are computed for the actual state of analy-
sis. After an iteration step one randomly chosen entry of the analysis vector
is changed. For example another segmentation result is bound to a primitive
attribute node. Furthermore, a performance function for the state of analysis
vector is introduced. The task of the control algorithm is now to optimize the
performance function, i.e. to find that state of analysis which leads to the best
interpretation, i.e. to an optimal instance of a goal concept.

Fig. 3 shows, for example, that in the current state of analysis for which the
attribute network is computed on the first workstation (WS ), the segmentation
object O, is assigned to the primitive attribute node A4, modality 2 is assigned
to the concept C3, and modality 3 and modality 1 are assigned to the concepts
Cy and C,, respectively, which are goal concepts (thus stated as C§ and C9).
Furthermore, it is shown that different instances (recall that the computation
of instances depends only on the current state of analysis) are computed on
the several workstations: the current state of analysis for which instances are
computed on workstation p (WS;) differs from that on WS; at least by the
assignment of different modalities to the goal concepts Cj and CY.

In our current application we have only one goal concept, which is “ex-
plore_office”, and the performance function corresponds to the judgment func-
tion of this concept.

6 Expanding the Control to Actions

The goal in our application is to instantiate the concept “explore_office”. There-
fore we alternately have to interprete the image data and perform camera ac-
tions. This alternating computation cannot directly be expressed by either the
syntax of the semantic network nor by the attribute network. This means that
we have to extend the control algorithm.

If we compute the whole attribute network for our goal concept in one
bottom—up step as described in section 5, we select the camera actions “di-
rect_search” or “indirect_search” possibly without an optimal interpretation of
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Fig. 4: Excerpt of the attribute network for the knowledge base depicted in
Fig. 1 showing a subset of the network for the concepts “explore_office” and
“office_scene”. Only the most important arrows are shown.

the concepts “punch”, “gluestick” and “adhesive_tape”. This makes no sense,
because we first need to find an optimal interpretation for the view under the
actual camera setting, before deciding which camera action has to be performed
next. In addition, if we instantiate the concept “new_zoom” and then go on
with the bottom—up computation of the attribute network we get an instance
of “explore_office” based on image data which was taken with the old zoom.

In order to solve these problems, the control for the bottom—up instantiation
of the attribute network is extended as it was already successfully demonstrated
for an application with a speech dialog system [13]. The instantiation is divided
into several data driven instantiations of subnets of the attribute network. The
division is initiated by specifying subgoals prior to the computation of the
attribute network which has to be done by the user once before the system
is run. From these subgoals, the subnets can be automatically derived by the
network encoder. This induces a partial order of the subgoals in the attribute
network. Initial subgoals are chosen from the lowest level in the network.
Analysis starts by the instantiation of the initial subgoal. This means that
the bottom-up computation of the corresponding subnet is iterated until an
optimum is found. Afterwards, the control chooses the next subgoal to be
instantiated, and so on. This process continues until an optimal instance of the
“explore_office” is found.



To give an example: If the user chooses, for example, the concepts “re-
gion_seg_image” and “office_scene” as subgoals, the control starts finding the
best instance of “region seg image”. Afterwards, it searches for the best in-
stance of “office_scene”. Once this instance has been found, the subnet which
belongs to the goal concept “explore_office” is instantiated. This is done un-
til the goal concept, that is “explore_office”, is reached or a camera action is
performed. If the judgment of the instance of the “explore_office” is below
an application dependent threshold, the control starts again with the subgoal
“region_seg_image”. In Fig. 4 the subnets belonging to “explore_office” and
to “office_scene” are depicted. The excerpt of the attribute network shows a
part of the expanded knowledge base described in Fig. 1. Thus, we have three
modified concepts of “color_region” which are bound to the concepts “punch”,
“gluestick” and “adhesive_tape”. The highlighted areas contain the attributes
which belong to the corresponding concepts. In addition, camera actions are
performed by computing the attribute pan of concept “explore_office” and con-
cept “explore_office_seg”.

Fig. 4 depicts two subnets, one above the horizontal line, one below. The
upper subnet belongs to the concept “explore_office” and shows the attributes
required for the instantiation of that concept. Attributes originating from one
concept are boxed and highlighted. The lower subnet explains the relations
of attributes used to instantiate the subgoal “office_scene”. Three modified
concepts of “color_region” are bound to the concepts “punch”, “gluestick” and
“adhesive_tape”; only one (“punch”) is depicted in the figure for simplicity.
Depending on the state of analysis, a zoom camera action is performed if the
color region assigned to the primitive attribute is too small.

7 Experimental Results

So far the lower part of the knowledge base in Fig. 1 is provided as one module.

This part contains the concepts “office_image”, “new_zoom”, “new _focus”, “ex-

plore_office_image”, “explore_office_seg”, and “zoom_on_region”. In this module
hypotheses for the red objects are computed by a histogram backprojection [19]
which is applied to an overview image taken with the minimal focal length of
the camera (cf. Fig. 5). In order to verify these hypotheses they are fovealized
by moving the camera and varying the camera’s focal length. This is exactly
the task of the lower part of the knowledge base shown in Fig. 1. The hypothe-
ses correspond to color regions which are the input of the primitive concept
“color_region” of the semantic network. Thus, the primitive concept serves as
interface to the module performing the task of the lower part of the knowledge
base.

The suitability of the approach has been tested in 20 experiments while
performing explorations in two different offices. In each experiment the objects
were positioned at different places. Ten experiments took place in office_1 and
the other ten in office_2. In the experiments, seven red objects are used, where
three of them are modelled in the knowledge base. These three objects which
are interesting for the interpretation step were hypothesized in 54 cases of 60
possible ones by the data driven hypotheses generation module using histogram
backprojection. On average six close-up views were generated, that is, six
object hypotheses were found in each overview image. The search space for the
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Fig. 5: Overview images of two different office scenes (office_1 on the left, office_2
on the right). The close-up views below the overview images show fovealized
object hypotheses.

number of iterations IV;
10 30 50 100 150
office1 | 57% |82 % |93 % | 93 % | 93 %
office2 | 13% [ 46 % | 54 % | 70 % | 79 %

Table 1: Percentage of correct recognized objects.

iterative control algorithm was reduced by restrictions concerning the color of
the objects. These restrictions were propagated once from the higher concepts
to the primitive concepts at the beginning of analysis. However, the task gets
not trivial due to the propagation of the restrictions because on average between
43 and 66 color regions fulfill the restrictions. Therefore the system needs the
ability to detect the objects in this set of hypotheses which is done by making
use of the knowledge represented in the knowledge base. In Table 1 the results
are shown for the two different offices. The recognition rates give the ratio
between the number of correctly recognized objects and the total number of
verified objects, performing N; iterations. One can see that the recognition
rate increases with the number of iterations up to a maximum of 93 % for
office.1 and 79 % for office_2. Currently we use only 2D features which are
view-point dependent. Because the objects’ pose is more restricted in office_1
the recognition rate is higher than for office_2.

The increase with the number of iterations shows particularly well the any-
time capability of the algorithm. The results revealed furthermore that 50
iterations for office_1 and 150 iterations for office.2 are sufficient to achieve an
optimal result for a specific camera setting. The number of necessary itera-
tions depends upon the number of hypotheses which are generated by the data
driven module. For office_2 eight hypotheses were found on average, whereas
for office_1 only five hypotheses were found. Therefore, more iterations had to
be performed for office_2.

As optimization method the stochastic relaxation was used. The process-



ing cycle for one camera setting for interpretation (i.e., from the data driven
hypotheses generation up to the computation of an optimal instance of “ex-
plore_office”) lasts around five minutes. The major time need arises by moving
the camera axes, waiting until the goal position is reached, for the median filter-
ing in the histogram backprojection, and the segmentation of the color regions.
One iteration, that is one bottom-up instantiation of the attribute network for
the scene part of the knowledge base, takes on average only 0.015 s, that is,
2.25 s for 150 iterations.

8 Conclusion and Future Work

In this paper, we proposed an integrated formalism for representing and using
knowledge about an application domain combined with the various camera
actions the system needs to perform in order to explore a scene. The application
domain is the exploration of office scenes. The current task of the system is
the localization of three pre-defined red objects. In order to use the knowledge
and actions represented we employed a parallel iterative control algorithm with
any-time capabilities. Initial experiments have proved the feasibility of the
approach.

Future work will concentrate on completing the implementation of the ap-
proach for the application presented. This includes a systematic determination
of the subgoals by a goalconcept estimation and a reduction of processing time.
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