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ABSTRACT

In our previous research, we have shown that prosody can be
used to dramatically improve the performance of the automatic
speech translation system VERBMOBIL [9]. The methods to
classify prosodic events have been developed on the German
sub-corpus of the VERBMOBIL speech database. In this paper
we describe how the methods that we developed on the German
sub-corpus can be applied to other languages. Preliminary ex-
periments show that these methods are suited for English and
Japanese, as well. Efficiency problems are addressed and a new
set of features that eliminates most of these problems is pre-
sented. The new set of features facilitates a multi-lingual module
for prosodic processing. We present an architecture for such a
multi-lingual module and discuss the advantages of this approach
compared to an approach that uses separate modules for differ-
ent languages. This multi-lingual module and the new feature
set are evaluated w.r.t. computation time, memory requirement,
and classification performance. Preliminary results show that the
memory requirement can be reduced by at least 70%, whereas the
recognition accuracy does not decrease.

1. INTRODUCTION

The research presented in this paper was conducted as part of the
VERBMOBIL project. The VERBMOBIL system translates spon-
taneous human-to-human appointment scheduling dialogs [6].
During the translation process prosodic information is used at
various stages. Phrase boundaries, phrase accents, and sentence
mood are used to guide syntactic parsing, disambiguate between
several possible meanings [10], and improve the naturalness of
the synthesis. Irregular boundary markers are used to deal with
corrections [12]. Furthermore, some preliminary emotion detec-
tion is integrated in order to improve the system behavior in the
case of errors [7].

In VERBMOBIL the output of a word recognizer is structured as
a word hypotheses graph (WHG). Every edge represents a word
hypothesis and every path through the graph a possible acoustic–
phonetic interpretation of the observed utterance. The edges in
the graph are marked with start and end time, thus making it pos-
sible to determine the corresponding segment of the speech sig-
nal. In order to make prosodic information available, each edge
in the WHG is enriched with probabilities for prosodic events.
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The probabilities are determined in a classification process. For
every word hypothesis, prosodic features are extracted from the
speech signal (see Section 3) and used as input to multi layer per-
ceptrons (MLP) for each prosodic event. The output of a MLP
can be interpreted as a-posteriori probability [4].

As the importance of prosody for the system performance could
be shown on a German sub-corpus of the VERBMOBIL data [9]
we investigate the applicability of our approach for the other
VERBMOBIL languages. These experiments are described in Sec-
tion 4.1. In these experiments, a time alignment of the phoneme
sequence of the recognized words was necessary to perform a
phone intrinsic normalization of energy and duration features.
A phone intrinsic normalization is important because individual
phonemes are affected differently by a change in speaking-rate or
loudness [13, 3, 8, 1].

The normalization has some draw-backs, though, specifically if
it is used for several languages simultaneously in one software
system. First, in order to compute the time alignment of the
phoneme sequence acoustic models for the phonemes of each lan-
guage have to be trained and used. This requires a large amount of
memory. Second, a Viterbi alignment of the phoneme sequence
is expensive in terms of computational effort. Third, the fea-
tures based on phoneme intervals are very sensitive to errors in
the time alignment. Thus, we focus on how to overcome these
draw-backs and describe a set of features (Section 3) and a system
architecture (Section 5) which allow fast and robust multi-lingual
prosodic processing.

We show that with the new set of features and a multi-lingual
system architecture better classification results can be achieved
than with the old features and three monolingual modules. At the
same time, the memory requirement and computation effort can
be reduced significantly (Section 4.2 and 4.3). But first we give
a few examples of how and why prosody is used in VERBMOBIL

in Section 2.

2. PROSODY AND DIALOG

Dialog processing in VERBMOBIL is very complex and prosody
is used at various stages during the translation process [10]. Thus,
we can only give a few examples of how prosody is used. The
word recognition components of the VERBMOBIL system pro-
duce lattices of word hypotheses as shown in Figure 1. These
lattices are the basis for later syntactic and semantic parsing as
described in [12]. Important prosodic information in the context
of syntactic/semantic parsing is:
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Figure 1: Word lattice produced by the English VERBMOBIL word recognizer. The utterance was ”No. Of course not. On the second
of May.” The word graph is shown after prosodic annotation. Boundary hypotheses are displayed as vertical lines and phrase accent
positions are indicated by slanted characters. Sentence mood is not shown.

1. Which words of an utterance carry a phrase accent?

2. Where in an utterance are prosodic boundaries?

3. What is the sentence mood at the prosodic boundaries?

This information does not only speed up parsing. In some cases
prosodic information is necessary in order to disambiguate be-
tween several possible meanings. If only acoustic–phonetic in-
formation were available many possible readings of the utterance
shown in Figure 1 and 2 had to be considered, e.g.

1. No . Of course not on the second of May .
vs. 2. No ! Of course not ! On the second of May!
vs. 3. No . Of course not . On the second of May?
vs. 4. No ?Of course not on the second of May ?

Notice that the first two interpretations both make sense in the
same context of an appointment scheduling dialog. Interpreta-
tion 1 might be a confirmation that the second of May is not an
available date, whereas interpretation 2 expresses the contrary.
At this point of a dialog prosody might help to recover from an
otherwise unrecoverable error.

Figure 1 illustrates how the output of a word recognizer can be
enriched with prosodic information. For simplicity, in the figure
only presence/absence of prosodic events is displayed, whereas
in the VERBMOBIL system probabilities are used. In addition to
phrase boundaries, phrase accent, and sentence mood, every edge
in a WHG is annotated with probabilities for irregular boundaries
and emotion. Furthermore, a subset of the prosodic features is
transmitted to the synthesis module. This additional prosodic in-
formation is used in the VERBMOBIL system as follows:

Irregular boundaries: Irregular boundary markers are used
to detect self-corrections. In spontaneous speech self-
corrections are very frequent: A speaker starts a sentence,
hesitates/stops, optionally utters an edit term, and then cor-
rects himself. The point of interruption is usually distinc-
tively prosodically marked. A Part-Of-Speech analysis be-
fore and after the point of interruption often allows to “re-
pair” WHGs of such utterances [12].

Emotion: In the VERBMOBIL domain only anger vs. not anger
is distinguished. Anger indicates that the dialog goes astray.
In such circumstances strategies to recover from error might
be employed [7].

Speech synthesis: A subset of prosodic features is sent to the
synthesis module. These features can be used to adapt the
synthesized speech to the speaker and to make the output
sound more natural.

Since manual labeling is very time consuming, only parts of the
VERBMOBIL speech database have yet been prosodically labeled.
A set of four labels is used for boundary annotation, four lev-
els of accents are distinguished, and sentence mood is labeled at
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Figure 2: Utterance ”No. Of course not. On the second of May.”
with the phoneme sequence in SAMPA notation.

prosodic boundaries as a combination of a question marker and
a TOBI-like tonal sequence. Self-corrections are labeled as (1.)
begin of Reparandum (first word which is corrected), (2.) point
of interruption, (3.) Edit Term (e.g. ”no”, ”uhm”, . . . ), and (4.)
end of Reparans (replacement for reparandum). Since there is al-
most no occurrence of anger in the regular VERBMOBIL speech
database, emotional data was collected in Wizard-of-Oz experi-
ments. Each word of the data is labeled as angry/not angry. Fur-
thermore, a large part of the speech database is annotated with
syntactic-prosodic labels [2].

3. FEATURE EXTRACTION

Aim of the extraction of prosodic features is to compactly de-
scribe the properties of a speech signal which are relevant for
the detection of prosodic events. Prosodic events, such as phrase
boundaries and phrase accents, manifest themselves in variations
of speaking-rate, loudness, pitch, and pausing. The exact inter-
relation of these prosodic attributes and prosodic events is very
complex. Thus, our approach is to find features that describe the
attributes as exactly but also as compactly as possible. These fea-
tures are then used as basis for classification.

3.1. Feature extraction intervals

In order to decide at some point of an utterance if a prosodic event
occurred or not, some context is necessary. In preliminary exper-
iments a context of two words to each side of the current word
proved to be sufficient; larger contexts did not improve classifi-
cation results. In our classification experiments each component
of a feature vector is determined over some interval; e.g. the re-
gression coefficient of the energy contour is used as a feature and
computed over several intervals ������� �	� (time interval from the be-
ginning of word 
 to the end of word � ). Intervals that we use
are e.g. ���
����� ����� or ������� ��� . At the end of the word ”not” in the
utterance shown in Figure 2 the interval ���
����� ����� e.g. denotes the
time interval from the beginning of the word ”Of” to the end of
the word ”course”.
Prosodic processing in VERBMOBIL is performed on WHGs (see
Figure 1). Begin and end time of each edge are given by the
word recognizer. Word sub-units intervals (e.g. phonemes in-
tervals), however, can not be produced by the word recognizers
in VERBMOBIL. The best matching sequence of acoustic mod-
els, that would allow to determine phoneme intervals, is hidden
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Figure 3: Example of features used to describe a pitch contour.

in temporary back-pointer tables. If a phoneme segmentation has
to be computed (e.g. in order to perform a normalization on the
phoneme level; see below) a subsequent processing step has to
align acoustic models for phoneme units with the speech signal
and thus determine phoneme intervals. This processing step is ex-
pensive in terms of memory requirement and computation time.

3.2. Different kind of features

As mentioned above, prosodic events are perceived based on
the perception of the prosodic attributes speaking-rate, loudness,
pitch, and pausing. The features that we extract from the speech
signal describe the acoustic correlates of these attributes, i.e.
energy and fundamental frequency (F0) contour, duration and
pauses.

The pause features are easily extracted: These are simply the du-
ration of filled pauses (e.g. ”uhm”, ”uh”, . . . ) and silent pauses.
Energy and pitch features are based on the short term energy and
F0 contour, respectively. Duration features should capture vari-
ations in speaking-rate and are based on the duration of speech
units. A normalization of energy, duration, and pitch features can
be performed in order to take phone intrinsic variations into ac-
count.

Features describing contours
As mentioned above, energy and F0 features are based on the
short-term energy and F0 contour, respectively. Some of the fea-
tures that are used to describe a pitch contour in a specific interval
are shown in Figure 3. Additionally, we use the mean and the me-
dian as features (not shown in the figure).

Normalization
Variations of speaking-rate or loudness have different effects on
individual phonemes. Plosives are e.g. much less affected by
changes in speaking-rate than vowels. The variablity of the du-
ration of a phoneme in a syllable depends also on the position of
that syllable in the word. The position of the word accent also has
some effect on the variability. These considerations have led to
the normalization that is described in the following paragraphs.

Duration normalization on the phoneme level
In order to model local speaking-rate variations we use mea-
sures that are based on the work of Wightman [13]. First,
we are interested in capturing how much faster or slower an

utterance was produced compared to the “average speaker”.
For a training database, we compute for each phoneme its
mean duration ����������������� ��� � and standard deviation � ���������!�"��� �#��� .
� ���������!�"��� �#��� constitutes the duration of unit $ spoken by the “av-

erage speaker”. The ratio
�%�&����������� ��� �'�(�)+*�,�-/.!02143#)65 measures how much faster

or slower $ was produced. The average of this ratio over an in-
terval � is our measure 7 ���������!�"��� , which is defined in Equation 1.
Note that in the Equations 1 and 2 7 is stated more generally: the
feature parameter 8 can be replaced not only by 9:$<;�= �?>A@&B but
also e.g. by C+BDC+;&EGF .

The value 7 ���������!�"��� is used to scale the mean duration
�D���������!�"��� �#��� and the standard deviation � ���������!�"��� �#��� of a speech
unit $ . The product 7 ���&��� ���"���<H �JI2� ��������������� ��� � can be interpreted
as the mean duration of the speech unit $ if uttered with speaking-
rate 7 ���������!�"���<H �JI . This interpretation is justified by the experi-
ments of Wightman in [13]. He showed that the mean and the
standard deviation of speech-sound categories depend linearly on
the speaking-rate.

The difference 9:$<;&= �K>L@�B H $MIONP7 �%�&����������� H �JI2�D��������������� ��� � is neg-
ative if 9:$<;&= �?>L@�B H $MI is smaller than the scaled mean duration
7 �%�&����������� H �JI2�D���������!�"��� �#��� of the speech unit $ . A negative dif-
ference indicates faster speech; a positive difference indicates
slower speech. This difference could be used to detect strong de-
viations from the scaled mean duration; the disadvantage is that
the deviation depends on the speech-sound category. If we divide
the difference by the scaled standard deviation of the duration
7 �%�&�����������<H �JI?� �%�&�����������<H $ I we get a measure that is normalized
w.r.t. speech-sound dependent variation. In Equation 2 Q&R H2SUT �JI
is defined as the average of that fraction in an interval S (inter-
val � is used as “reference”). With this approach it is possible
to distinguish between phonemes in accented and not accented
syllables, and between phonemes that are in word initial, word
final, word-internal syllables or one-syllable words. This can be
achieved simply by using such units $ in the Equations 1 and 2.

7 R H �JIWV X
Y
Z �

[
�:\4]

8 H $MI
� R ��� � (1)

Q R H2S^T �JIWV X
Y
Z S

[
�G\4_

8 H $MI`NP7 R H �JI2� R �����
7 R H �JI?� R ����� (2)

We include 7 ���&��� ���"��� H �JI and Q ��������������� H2S^T �JI in our feature vector
as global speaking rate and normalized local speaking rate.

In our first experiments (see Section 4.1), a time alignment of the
phoneme sequence was performed and 7 �%�&����������� H �JI was com-
puted according to Equation 1 (with 8aXb9:$<;&= �?>L@�B , � being
some interval and

Z � denoting the number of units $ in the in-
terval � ). The units $ were phonemes in this case.

Duration normalization on the word level
A major disadvantage of the normalization described in last para-
graph is the necessity to determine the phoneme segments during
classification. In our feature extraction module the computation
of the phoneme segments requires 92% of the total computation
time and 64% of the total memory needed. Therefore, one would
prefer to normalize on the word level and thus avoid the time
alignment. Equations 1 and 2 are applicable to word intervals, as
well. But for most words c there is not enough training data to
get reliable estimates for the � ���������!�"��� �#d � and � ���������!�"��� �#d � .
Equation 2 can be interpreted as a transformation of a fea-



ture 8 H $MI with mean 7 R H �JI2� R ��� � and standard deviation
7 R H �JI?� R � � � to a feature with mean 0 and standard deviation 1. If
we assume that the 8 H $MI are independent random variables then
� �R �#��� � � � �R ����� � X � �R �#������� R �#�	��� (see e.g. [5]). Thus, we can
compute the mean � R �#d � and the standard deviation � R ��d � for
a word cbX H�
 � T�
 � T�

��T������ T�
 � I with phonemes 
 � as shown
in Equations 3 and 4 as long as 8 H c IPX 8 H�
 � I � 8 H�
 � I �
����� 8 H�
 � I .

� R ��d � X
�[
��� �

� R � � . � (3)

� R ��d � X
�
� �R � ��� ��� R � ��������� � � R � � 1 � X ���� �[

��� �
� �R � � . � (4)

In case of 8 X 9:$<;�= �?>A@&B this means that if we assume the du-
rations of the phonemes are independent random variables then
the word duration statistics can be deduced from the phoneme
duration statistics. Thus, if during recognition a normalization
on the word level has to be performed according to Equations 1
and 2 then either word duration statistics � R ��d � and � R ��d � can
be used if reliable estimates exist or the estimates can be deduced
according to Equations 3 and 4.

This normalization on the word level can be performed without
time alignment of the phoneme sequence. Such a time-alignment
is only necessary to compute the word and phoneme duration
statistics. This can be done offline, so that precomputed tables
can be used during recognition. Thus a very significant reduction
of memory requirement and computation time can be achieved
(see Section 4).

Energy features
In order to describe the short-term energy contour we used only
a subset of the features that are shown in Figure 3 because not all
of them provide useful information (e.g. onset and offset). Fur-
thermore, we included normalized energy in our feature vector;
the same normalization as described in the last paragraph can be
applied here, i.e. 8bX C+BDC6;6EGF has to be used in Equations 1
and 2. As in the case of duration, we included 7�� � � ���� H �JI and
� � � � �!�" H2SUT �JI in our feature vector.

4. EXPERIMENTS AND RESULTS

In this section we describe the experiments that we performed in
order to

1. investigate if the methods developed on the German sub-
corpus of the VERBMOBIL data are suited for English and
Japanese, as well,

2. compare the normalization based on phoneme segments
with the normalization on the word level,

3. determine the reduction in memory requirement and com-
putation time.

As mentioned in Section 2, labeled data sets for phrase accents,
phrase boundaries, sentence mood, irregular boundaries, emo-
tion, and syntactic-prosodic boundaries exist. In this paper we
restrict ourselfs to phrase accents and phrase boundaries. Fur-
thermore we do not distinguish all four accent labels and all four
boundary labels in our classification experiments, but map these
labels to classes as shown in Table 1.

Acoustic-prosodic boundary labels

label class description
B3 B prosodic clause boundary
B2 # B prosodic phrase boundary
B9 # B irregular boundary,

usually hesitation lengthening
B0 # B every other word boundary

Acoustic-prosodic accent labels

label class description
PA A most prominent (primary) accent

within prosodic clause
NA A all other accented words

carrying secondary accent
EK A emphatic or contrastive accent
UA # A unaccented words

Table 1: Description of acoustic-prosodic boundary and accent
labels.

German English Japanese
data set GER ENG JAP
dialogs 33 37 31
minutes $ 112 $ 38 $ 80

Table 2: Data sets used in the classification experiments.

The VERBMOBIL corpus momentarily consists of 30 CDROM
with high quality speech recordings. Only a small subset of the
CDROMs has yet been prosodically labeled. While the data sets
GER and ENG have been labeled by trained personnel, the data
set JAP has been labeled by students in an effort to obtain some
data for the experiments that are described below.

4.1. Classification with old feature set

With the experiments described here we wanted to determine the
applicability of the methods that we developed on German data
to other languages. Therefore, we performed classification ex-
periments on the data sets given in Table 2. (1.) We split each
data sets in training and test sets. (2.) A time-alignment of the
words and the phoneme sequence of each word was performed.
(3.) Features were extracted. (4.) MLPs were trained and tested.

As described in in Section 3.2, a time-alignment of the phoneme
sequence was performed in order to be able to normalize on
the phoneme level. For English and German a word recog-
nizer trained on VERBMOBIL data was available. For Japanese
we mapped the Japanese phoneme set to the German phonemes.
Then we build a recognizer for Japanese mora (word sub-units;
see [11]). The acoustic models of the mora units were constructed
from the German acoustic models for the phonemes of that mora.

Features were extracted as described in Section 3. A normal-
ization was performed on the phoneme level. A context of two
words to each side of the current word was used. Since the time
alignment of the phoneme sequence allows also to determine syl-
lable and syllable nuclei intervals, we included features for these
intervals in our feature vector. Thus, we ended up with a set of
276 features for English and German. For Japanese we had only
170 features because instead of word and syllable intervals we



German English Japanese
��� ��� ��� ��� ��� ���

Boundaries 84.0 85.6 84.0 86.0 86.1 93.4
Accents 80.9 81.2 77.0 75.0 61.0 73.2

Table 3: Classification results with features using normalization
on the phoneme level, i.e. with time alignment of the phoneme
sequence.

German English
��� ��� ��� ���

Boundaries 84.7 86.0 89.0 88.5
Accents 81.0 81.7 81.4 81.0

Table 4: Classification results with features computed using a
normalization on the word level (without time alignment of the
phoneme sequence).

only had mora intervals.

The classification results are shown in Table 3.
���

and
���

denote absolute and average recognition rate, respectively.
���

is the fraction of correctly classified patterns of all patterns.
���

is the average of the recognition rates for each class.

4.2. Classification with new feature set

The classification results presented in Section 4.1 indicate that we
can use our approach for the classification of prosodic events in
German, English and Japanese. In a multi-lingual dialog system
like VERBMOBIL we are faced with several problems, though:
The feature extraction that was used in the experiments described
in Section 4.1 requires a time alignment of the phoneme se-
quence. Thus, acoustic models for each language have to be
part of the component that extracts features. This requires a large
amount of memory. Furthermore, Equations 1 and 2 show that the
quality of the normalized duration and energy features depends
very much on the quality of the time alignment. This means on
the one hand, that the acoustic models have to be accurate enough
to yield a good alignment. On the other hand, this means that the
classification performance is likely to drop if this requirement is
not met, i.e., these features are not very robust.

As a consequence, we developed the normalization on the word
level as described in Section 3.2. These features are more robust:
As long as the word recognition performs well, the normalization
is accurate. With a feature set that uses this normalization we per-
formed classification experiments. In this case no phoneme seg-
ments were available, and therefore, only word intervals could be
used. Thus, our feature set consisted only of 105 word based fea-
tures. The results for English and German are shown in Table 4.

While the recognition results on German data improved only
slightly, the improvement for English data is significant. This
can be explained with the amount of training data used to train
the recognizers. While the German recognizer has been trained
with approximately 30 hours of speech, the English recognizer
was trained with only 8 hours of speech.

The new feature set is a sub-set of the old feature set. The only
difference is the word-based instead of the phoneme-based nor-

Computation time Memory requirement
old features new features old features new features

216 min 17 min 73 MByte 26 MByte

Table 5: Computation time and memory requirement of the old
and new feature extraction methods on 112 min of speech

malization. Despite of that, we get an improvement rather than
a degradation of performance with the new feature set. An ex-
planation for that might be that the word based normalization is
more robust than the phoneme based normalization, whereas the
syllable and syllable nuclei features in the old feature set provide
no additional information.

4.3. Efficiency

As a last experiment we measured the computation time and the
memory requirement during feature extraction on the data set
GER, using

1. 95 old features that require a time alignment of the phoneme
sequence, and

2. 95 new features that do normalization on the word level and
therefore do not need a time alignment.

The set of 95 features is the sub-set of word-based features that
is currently used in the VERBMOBIL system. We chose this sub-
set as basis for the experiment in order to get comparable results.
Feature extraction with normalization on the phoneme level does
not require significantly more computation time or memory if 276
features instead of the 95 features are used. The requirements are
dominated by the time alignment. The experiment was performed
on the same computer under the same conditions (no load except
for the feature extraction process). The result is shown in Table 5.

5. MULTI-LINGUAL ARCHITECTURE

During the development of the three mono-lingual modules used
for classification in Section 4 the task of integrating these three
different modules in the VERBMOBIL system became increas-
ingly difficult. Due to the large number of system parameters
which are controlled via parameter files error prone replication
was necessary. As a result, we started to develop an architecture
for a multi-lingual module for prosodic processing. The structure
is shown in Figure 4. The structure is very simple:

� A control module controls the global behavior of the
prosody component of the VERBMOBIL system. Further-
more the language dependent behavior can be configured
here.

� Communication in VERBMOBIL is event driven. Depending
on which data pool first indicates incoming data, the han-
dler for that particular data pool is called. Each data pool
is connected to a word recognition component for one lan-
guage. Thus, the control module selects the corresponding
language dependent lexicon, phoneme set, and word dura-
tion and energy statistics (needed for the normalization as
described in Section 3.2). The WHG is transmitted to the
WHG component along with the language dependent data.

� The WHG component then traverses the WHG. At each
node the feature extraction component is called.
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Figure 4: Architecture of the multi-lingual module for prosodic
processing.

� The feature extraction component needs energy and dura-
tion statistics, words hypotheses and word intervals from the
WHG (see Section 3). The result is a feature vector which
is passed to the classification component.

� The classification component classifies the feature vector
using language dependent classifier information. Here we
usually use MLPs sometimes in combination with language
models (LM). The classification result is handed back to the
WHG component.

� The WHG component annotates the WHG correspondingly.
� After all edges of the WHG have been processed the an-

notated WHG is delivered to the output data pool for the
correct language.

The structure of the multi-lingual module has several advantages.
It can be easily extended. In order to add a new language only a
few changes to the configuration file have to be made; i.e. the
language dependent parameter files like lexicon, phoneme set,
duration statistics and classifier parameters have to be set. Fur-
thermore, the memory requirement of the multi-lingual module
(171 MByte) is far smaller than the sum of the memory needed
for three modules (291 MByte).

6. CONCLUSION

In this paper we have shown that the methods to classify prosodic
events that we developed on German speech data is also well
suited for other languages. Due to efficiency problems caused by
the feature extraction with phoneme-based normalization a new
set of features was proposed that avoids these problems. With this
new set of features we achieved a speed-up of the feature extrac-
tion component by more than a factor of 12, while the memory
requirement could be reduced by almost a factor of three. The
new features proved to be more robust, and thus, led to significant
improvements for English phrase boundary and accent classifica-
tion.

An architecture for a multi-lingual module for prosodic process-
ing was described and the advantages of this architecture were
discussed. Currently, a module with that architecture is integrated
in the VERBMOBIL system. The memory requirement of a multi-
lingual module compared to three single mono-lingual modules
(with the new feature set) is further reduced by 41%. In combi-
nation with the reduced size of the feature extraction component
an overall reduction of more than 75% was achieved.
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