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tionThe goal of our work is to 
onstru
t a Light-�eld [5℄ from an un
alibrated image streamwhi
h is taken with a hand{held 
amera. Fora realisti
 visualization many views all arounda s
ene have to be taken. Therefore, we needa stable method for 
alibrating espe
ially longimage sequen
es.Many investigations have been made tosolve the problem of 
amera 
alibration whenjust knowing proje
tions of s
ene points with�This work is partially funded by the German Re-sear
h Foundation (DFG) under grant number SFB603

unknown pose. Most approa
hes do a re
on-stru
tion from up to three su

essive imagesof the sequen
e and merge these re
onstru
-tions together by minimizing the total repro-je
tion error of the re
onstru
ted points (e.g.[1, 4℄). They do not treat all data uniformly,but they sequentially re
onstru
t new 
ameraposes with respe
t to those 
alibrated before.The whole re
onstru
tion depends on the 
al-ibration of the �rst 
ameras.For the 
ase of orthographi
 proje
tion, the�rst 
losed{form solution was given in [12℄.There, a measurement matrix is built fromproje
ted image points and the 
amera posi-tions as well as the s
ene points are re
on-stru
ted by a single fa
torization of this mea-surement matrix. Sturm and Triggs showedin [11℄ how to do a 
omparable solution forthe 
ase of perspe
tive proje
tion by buildingthe measurement matrix from image proje
-tions and the 
orresponding proje
tive depths.This method is very elegant as it re
overss
ene geometry and 
amera parameters for allimages in one single step. The disadvantageof the 
losed{form solution is that it supposesthat all s
ene points are visible throughout thewhole image sequen
e. For real sequen
es thisassumption does not hold.In this 
ontribution we fo
us on adaptingthe method [11℄ to sequen
es where points dis-appear and also new points appear. We ap-ply the fa
torization method to parts of thesequen
e and merge them together. Doingthis, we 
an bene�t from the advantages of



the 
losed{form solution and also we are ableto treat the problem of loosing points.In all these methods for re
overing stru
turefrom motion, in a �rst step the re
onstru
-tion is performed up to an unknown proje
tivetransformation. By applying self{
alibrationmethods, 
onstraints on the 
ameras 
an beintrodu
ed to get a re
onstru
tion up to anunknown similarity transformation. We applythe linear method [8℄ to do self{
alibration,whi
h is also needed to merge together thepartial solutions.This arti
le is stru
tured as follows. In se
-tion 2, we introdu
e some notations. Se
tion 3gives a short des
ription of the original fa
tor-ization method of Sturm and Triggs and se
-tion 4 shows brie
y how to do self{
alibrationwith the method [8℄. In se
tion 5 we showhow to apply these methods to real sequen
es.As in this step not all proje
ted points 
anbe 
onsidered, se
tion 6 shows how the addi-tional information given by these points 
anbe used. Se
tion 7 gives an evaluation of ourmethod by testing it on simulated data.2 NotationIn the following we presume some knowledgeof proje
tive geometry. An ex
ellent introdu
-tion 
an be found in [7℄ whi
h is fo
used onthe spe
ial requirements for image analysis.All ve
tors are denoted bold fa
e anddes
ribe homogeneous ve
tors if not statedotherwise. A 3{D s
ene point is de-noted by 4{ve
tor pk = (pk1; pk2; pk3; pk4)T
orresponding to the Eu
lidean 3{ve
tor(pk1=pk4; pk2=pk4; pk3=pk4)T , if the point is �-nite. Similar, a 2{D image 
oordinate ofthe proje
tion of pk into image number i isdenoted by a homogeneous 3{ve
tor qik =(qik1; qik2; qik3)T . This implies that if a ho-mogeneous ve
tor is s
aled by an arbitrarys
alar not being zero, it does not 
hange itsEu
lidean meaning.The proje
tion qik of pk is a
hieved by amultipli
ation with a 3� 4 proje
tion matrixP i: �ikqik = P ipk ; (1)

with i = 1; : : : ; m and k = 1; : : : ; n. In aEu
lidean framework, P i 
an be fa
torized asP i =KiRTi (I3 j � ti), with Ki being an up-per triangular 
alibration matrix and Ri, tibeing a rotation matrix and a (Eu
lidean!)translation ve
tor transforming the world 
o-ordinate system into the appropriate 
amera
oordinate system.If a variable is marked with a prime (p0), itdes
ribes an estimation for the true value. If avariable is marked with a hat (bp), it des
ribesa true value whi
h is transformed proje
tively.If both markes are present (bp0), a variable de-s
ribes a proje
tively transformed estimationof the true value.3 Fa
torization MethodIn this se
tion we give a brief des
ription ofthe fa
torization method of Sturm and Triggs[11℄. Their main idea is to build a measure-ment matrix W and to solve the stru
ture{from{motion problem by performing a sin-gle SVD (singular value de
omposition, [9℄)ofW .To build the measurement matrix, the so{
alled proje
tive depths �ik (see equation 1)have to be known. We suppose that all ve
-tors qik, pk are s
aled su
h that the last 
om-ponent is 1 and all P k s
aled su
h that theirlast row has norm 1. In this 
ase the proje
-tive depths 
orrespond to the orthogonal dis-tan
es from the fo
al plane of ea
h 
amera.To re
over these proje
tive depths from pro-je
tions only, fundamental matri
es F ij andepipoles eij between neighboring images i; jmust be re
onstru
ted. This 
an be a
hievedby applying known estimation te
hniques asdes
ribed in [6℄. In this 
ontribution (follow-ing Sturm and Triggs) we apply the linearmethod of Hartley [3℄. The proje
tive depths
an be updated from frame i to frame j byapplying following equation:�ik = (eij � qik)(F ijqjk)keij � qikk2 �jk : (2)The proje
tive depths of the �rst view 
an be
hosen arbitrarily, e.g. �1k = 1.



Now all equations 1 for all s
ene points andall their proje
tions are 
ombined to one singlematrix equation:W = 0BBBB� P 1P 2...Pm 1CCCCA| {z }� (p1p2 : : :pn)| {z }	 with (3)
W = 0BBBB� �11q11 �12q12 : : : �1nq1n�21q21 �22q22 : : : �2nq2n... ... . . . ...�m1qm1 �m2qm2 : : : �mnqmn 1CCCCA :The estimation W 0 
an be built knowing es-timates for all proje
tions of all s
ene pointsinto all images and their 
orresponding pro-je
tive depths. Note that the s
ale of ea
h pkand the s
ale of ea
h P i 
an be 
hosen arbi-trarily if the �ik 
hange a

ordingly. There-fore, to a
hieve a good numeri
al 
ondition-ing, ea
h 
olumn 
 of W 0 = [w0℄r
 is res
aledsu
h that P3mr=1w02r
 = 1 and ea
h triplet ofrows (3i � 2; 3i � 1; 3i) is s
aled su
h thatPn
=1P3il=3i�2 w02
l = 1.An SVD is applied on W 0 resulting in thefa
torization W 0 = U diag(�1; �2; : : : ; �s)V .As the rank of W in the noise{free 
aseis 4, we 
an, for the 
ase having noise, re-
over the best rank 4 approximation (in thesense of least squares) by 
omposing W 00 =U 0 diag(�1; �2; �3; �4)V 0 with U 0 being theupper 3m� 4 sub{matrix of U and V 0 beingthe upper 4 � n sub{matrix of V . Knowingthis fa
torization, estimates 
P 0i and bp0k 
an befound:
�0 = U 0� = and 
	0 = �V 0 (4)with � = diag(p�1;p�2;p�3;p�4). Thehats shall show that this representation is notunique as for an arbitrary 4�4 transformationmatrix T having rank 4 following equationholds: (
P 0i T )(T�1bp0k) = 
P 00i bp00k, and similar(
�0T )(T�1
	0) = 
�00
	00. Therefore the stru
-ture of the s
ene and the proje
tion matri
esboth 
an be re
onstru
ted just up to an un-known proje
tive transformation T . This re-

stri
tion is 
ommon to all re
onstru
tion te
h-niques if no additional knowledge on the prop-erties of the 
ameras is available. To intro-du
e su
h restri
tions on the 
amera parame-ters, self{
alibration methods 
an be appliedas des
ribed in the following se
tion.4 Self{CalibrationAs we have seen in the previous se
tion, s
enere
onstru
tion 
an be done just up to an un-known proje
tive transformation T . The goalof self{
alibration is to re
over an estimationfor matrix T 0 whi
h maps the re
onstru
teds
ene points to estimations of the real s
enepoints: p0k = T 0�1bp0k � pk and a

ordinglyP 0i = 
P 0iT 0 � P i. This 
an be performed onlyby imposing some restri
tions on the 
ameraparameters.In [14℄ the 
on
ept of the absolute quadri
 isintrodu
ed for doing self{
alibration. The ab-solute quadri
 is des
ribed by the 4�4 matrix
 =  I3�3 00T 0 !. We restri
t to an algebrai
des
ription and omit here the geometri
 inter-pretation of this 
on
ept as it is insubstantialfor performing self{
alibration. It is obviousthat following equation holds:P i
P Ti = �K iKTi ; (5)where Ki denotes the upper triangular 
ali-bration matrix. Suppose that the true s
enepoints and 
amera matri
es are transformedby T . Then we see from Eq. 5 that 
 istransformed to b
 = T
T T . If T is a sim-ilarity transformation (meaning that T = �R t0T 1 ! with R being a rotation matrix),the absolute quadri
 is invariant, thereforeb
 = 
. But in our 
ase, T is an arbitrary pro-je
tive transformation, and in general b
 6= 
.In [8℄ a linear method is presented to re
overan estimate b
0 uniquely for a given set ofproje
tion matri
es, if all 
alibration matri
eshave the form Ki = 0B� fi 0 00 fi 00 0 1 1CA. When



the image skew, the prin
ipal point, and theaspe
t ratio is known, this 
an be a
hieved bytransforming the measured image 
oordinatesso that the prin
ipal point is (0; 0), the as-pe
t ratio is 1, and the skew is 0. The onlyunknown 
amera parameter then is the fo
allength. The idea is to transform 
P 01 to be(I3�3 0):(I3�3 0) = 
P 01  
P 010T 1 !�1| {z }T n : (6)All other proje
tion matri
es are transformeda

ordingly by multiplying 
�0 with T n. (For
onsisten
y, 
	0 is pre{multiplied with T�1n .)In the noise{free 
ase, following equationholds:Ai = �0B� f 2i 0 00 f 2i 00 0 1 1CA = 
P i b

P Ti : (7)We see that these four equations have to besatis�ed: Ai11 = Ai22; Ai12 = Ai13 = Ai23 = 0.Therefore having m frames, we get 4(m � 1)equations for estimating the symmetri
 abso-lute quadri
 b
0, whi
h is parameterized bythe 10 elements of its upper triangular sub{matrix. The fo
al length of ea
h 
amera then
an be 
al
ulated fromAi. From b
0, the planeat in�nity 
an be retrieved as the nullspa
e ofb
0 (e.g. using SVD), and is denoted by therow{ve
tor p01. Supposing the 
amera 
oor-dinate system to 
oin
ide with the world 
o-ordinate system, we know that the unknownmatrix T 0 must transform (I3�3 0) to (K 01 0).We also know that p01 must be transformedto the standard plane at in�nity (0 0 0 1). Ap-plying these restri
tions, the matrix T 0 is de-termined uniquely:T 0 =  K 01 0��p01 �K 01 1 ! ; (8)with �p01 being the 3{ve
tor 
onsisting of the�rst three 
omponents of p01 divided by itsfourth 
omponent. The s
ale of the last rowof T 
an be 
hosen freely. This is equal tos
aling the whole s
ene with a unique fa
torwhi
h remains unknown.

5 Appli
ation to Real Im-age Sequen
esThe main disadvantage of the fa
torizationmethod (se
tion 3) is that all s
ene pointsmust be visible throughout the whole se-quen
e. In the analysis of real image se-quen
es, this restri
tion is not pra
ti
able, be-
ause s
ene parts appear and disappear in de-penden
e on the a
tual viewpoint and alsothere is no tra
king algorithm whi
h guaran-tees not to loose any s
ene points althoughthey are visible. Hen
e we have to modify thealgorithm to apply it to real environments.Fa
torization of windows. During tra
k-ing point features in extended image se-quen
es (for example, using the method [10℄),it is usual to sele
t a given number of pointfeatures (e.g. 1000) and to tra
k them as longas possible. If in a parti
ular frame featuresare lost, new features are sele
ted to 
ompletethe number of tra
ked features. Thereforethe fa
torization method 
annot be appliedto the whole sequen
e. We 
an inspe
t \win-dows" of frames where enough features 
ouldbe tra
ked 
ompletely. On the one hand, thesize of ea
h window should not be too small,as the re
onstru
tion error redu
es with in-
reasing number of frames (
ompare to theresults in [11℄). On the other hand, the win-dow should not be too large, as the numberof points whi
h 
ould be tra
ked throughoutthe whole window de
reases and therefore there
onstru
tion is more sensitive to errors inthe traje
tory 
orresponding to a single s
enepoint. The windows 
an be 
hosen to be a
omplete partitioning of the frames or they
an be 
hosen to overlap. In the latter 
ase,also the 
amera 
enters of the overlappingframes 
an be mat
hed to ea
h other. Thisis reasonable espe
ially then, when the s
eneis 
ompa
t and the 
ameras move around thes
ene with a large distan
e. Whi
h 
hoi
e per-forms best, depends on the parti
ular situa-tion. Let 
	v denote the matrix of the trans-formed s
ene points for window number v, a
-
ording to the notation used in equation 3.Iv denotes the set of 
orresponding indi
es



of s
ene points whi
h are used for this re
on-stru
tion in window.Merging windows. If we have 
al
ulateda proje
tive re
onstru
tion for ea
h window,we must link these re
onstru
tions to ea
hother. As ea
h re
onstru
tion is done up toan unknown proje
tive transformation, therealso exists an unknown transformation T vwbetween two windows v and w whi
h mapsthe transformed s
ene points of window v tothe 
orresponding s
ene points of window w.Therefore these s
ene points must be visiblein both windows. Let Ivw = Iv \ Iw denotethe set of indi
es of s
ene points whi
h are vis-ible in both windows v and w. Formally, forea
h s
ene point with an index k 2 Ivw, thematrix T vw should satisfy the equation� wbpk = T vw v bpk ; (9)where v bpk denotes the s
ene point k in the v{th window. It is a 
olumn ve
tor of 
	v. If theve
tors wbpk and v bpk are normalized su
h thattheir last 
omponent is 1, the s
ale � and thefourth 
omponent of the ve
tor equation 9 
anbe eliminated. Therefore ea
h 
orresponden
eof estimated s
ene points leads to three rowsof a matrix:wbp0Tk 0T 0T � v bp0k1 wbp0Tk0T wbp0Tk 0T � v bp0k2 wbp0Tk0T 0T wbp0Tk � v bp0k3 wbp0Tk :The approximative nullspa
e of this matrix
an be solved using SVD and des
ribes theve
tor being the 
on
atenation of the 
olumnve
tors of T 0vw.In the noise{free 
ase, this merging pro
e-dure works. But having errors in the re
on-stru
tion, the result is numeri
ally not stable,be
ause there are minimized distan
es withina proje
tively transformed s
ene. As tiny dis-tan
es may be
ome huge after a proje
tivetransformation and vi
e versa, the parti
u-lar distan
es don't have a meaningful sense.Hen
e we have to minimize these distan
eswithin an Eu
lidean framework; we have toapply the self{
alibration before merging.In general, it is enough to do the self{
alibration for re
onstru
tion of the �rst win-dow and to 
al
ulate the transformation from

ea
h window to the previous one. With thispro
edure the Eu
lidean framework is up-dated from one window to the next. But ifthere are small errors in the self{
alibration ofthe �rst frame, the whole re
onstru
tion willdepend on this error. A �nal self{
alibrationstep may be applied to improve the results.Post{pro
essing. The approa
h de-s
ribed above retrieves ea
h 
amera matrixP 0 up to an unknown s
ale fa
tor �. As P
an be represented by K, R, and t having�xed s
ales, we have to determine � to 
onvertP 0 to this representation: P 0 ! P 0=�. Forea
h proje
tion matrix P 0, we 
an determinethe oriented opti
al axis a0 = (P 031 P 032 P 033)whi
h is a Eu
lidean dire
tional ve
tor andis 
ollinear with the third row of matrix R.Therefore we know that k�k = ka0k. Theopti
al 
enter t0 
an be determined uniquelyfrom P 0. As the re
onstru
ted points must liein front of the 
amera, the s
alar produ
t ofthe dire
tional ve
tor a0 with the ve
tor p0k�t0should be positive for any visible s
ene pointnumber k. To a
hieve this, we 
an determine� = sgn(a0T (p0k � t0))ka0k.6 Considering All PointsUp to now we have re
onstru
ted all proje
-tion matri
es and the 3{D position of somes
ene points. But there remain points whi
hare visible in fewer frames than the windowlengths and therefore have not been 
onsid-ered yet. Knowing all proje
tion matri
es, weare able to re
onstru
t these s
ene points. We
an again formulate this request as a linearoptimization problem. Knowing the proje
-tion qik = (qik1; qik2; qik3)T of the s
ene pointnumber k in the image i, following equationholds:  qik1qik2! i3 �   i1 i2!!pk = 0 ; (10)where  ij denotes the j{th row{ve
tor of ma-trix P i. The s
ale of qik has to be 
hosen su
hthat its third 
omponent is 1. Writing thisequation for ea
h estimated proje
tion of anunknown s
ene point and 
on
atenating the
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Figure 1: Example for a simulated test 
on�g-uration. The arrows show the 
amera 
enterswith their viewing dire
tions; the points in themiddle show the s
ene points. Note the smalldispla
ements of neighboring 
ameras.left matrix of upper equation, we get a ma-trix whose nullspa
e des
ribes the 
oordinatesof the sear
hed s
ene point p0k. The approxi-mative nullspa
e again 
an be determined byapplying SVD.Another way to 
onsider the remainingpoints is to 
omplete the measurement ma-trix during ea
h fa
torization step. As wehave estimated the fundamental matri
es be-tween su

eeding frames, we 
an predi
t theirproje
tions from three su

eeding views us-ing the method [2℄. For this approa
h, manydegenerate and nearly degenerate 
ases ex-ist. E.g. the proje
tion 
enters of three viewsmust not be 
ollinear, or the 
orrespondings
ene point must not lie on the plane built bythe three proje
tion 
enters. Therefore, thebetter way is to estimate the trifo
al tensor(e.g. by method [13℄) and to use that for pre-di
tion.As small errors in the measured image 
o-ordinates as well as in the estimated funda-
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4000 Figure 2: Simulated visibilitiesmental matri
es or trifo
al tensors a�e
t thepredi
tions, this method of 
ompleting themeasurement matrix should just be appliedto �ll small gaps. Otherwise, the re
onstru
-tion will depend too mu
h on these erroneousestimated predi
tions.7 ExperimentsSimulation of 
amera movement ands
ene points. The s
ene points have been
hosen to be randomly distributed in a 
ubewith an edge length of 200. The 
ameramoves around the 
enter of the 
ube with aradius of 500. Its position as well as its ori-entation is perturbed randomly to avoid de-genera
ies of self{
alibration (see se
tion 4).This perturbation is also natural for sequen
estaken with a hand{held 
amera. The fo
allengths have been 
hosen randomly in therange 800 : : : 1200. Figure 1 shows an exam-ple 
on�guration. The s
ene points have beenproje
ted into ea
h 
amera. To ea
h proje
-tion, an error has been added with a uniformdistribution within the range �r : : : r. We 
allr the noise level.Simulation of visibility. To simulate thevisibility of ea
h point, we made the assump-tion that the probability p for loosing a pointin a frame is 
onstant. Then we get a ge-ometri
 distribution for the length t of thevisibility for ea
h point. Following equation
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Figure 3: 2{D mean absolute pixel error ofreproje
tions. These results were obtained fora window size of 20 frames with 5 overlappingframes between neighboring windows.is used to 
reate this distribution out from auniform distribution within the range 0 : : : 1:t(x) = log(1 � x)= log(1 � p). We also madethe assumption that a �xed number of pointsmust be seen in ea
h frame (in our example400). This means that for ea
h lost point anew one is introdu
ed. Figure 2 shows an ex-ample of the simulated visibility in the 
ase ofp = 0:1.Reproje
tion error. One measure for theevaluation of errors is the distan
e betweenthe proje
tions of the re
onstru
ted pointsinto the re
onstru
ted 
ameras and the origi-nal proje
tions. Figure 3 shows the mean ab-solute error in the reproje
tions measured inpixels. It 
an be seen that for ea
h re
on-stru
ted 
amera, the reproje
ted image 
oor-dinates of those points whi
h are visible inthis 
amera have an error in the magnitude ofthe noise (dotted 
urve). If even those pointsare proje
ted into a parti
ular 
amera whi
hare just visible in other 
ameras, the error in-
reases (solid 
urve). This in
reasing error is
aused by errors during merging together there
onstru
tions of neighboring windows.3{D error of the re
onstru
tion. An-other a

ura
y measure is the 3{D error of there
onstru
ted points. Sin
e the re
onstru
-tion is done just up to an unknown similar-
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Figure 4: Mean absolute 3{D error for thesame 
on�guration in �gure 3. It des
ribesthe mean di�eren
e between the true s
enepoints and their 
orresponding re
onstru
tedpoints after a spe
i�ed transformation.ity transformation, we have to determine thattransformation whi
h minimizes the 3{D errorbetween the transformed re
onstru
ted pointsand the true s
ene points.Figure 4 shows the absolute 3{D errors inunits of the simulated 3{D stru
ture afterthat optimal similarity transformation (solid
urve). The errors after transforming withan optimal proje
tive transformation are less.This indi
ates a proje
tive skew in the re
on-stru
tion. By applying a non{linear re�ne-ment of the self{
alibration step, this skewshould be redu
ed. If the optimal proje
-tive error is determined separately within ea
hwindow, the 3{D error is even less. As in the2{D 
ase, this again indi
ates errors duringthe merging step.Choi
e of the number of overlappingframes. As des
ribed in se
tion 5, neigh-boring windows may be 
hosen to overlap bysome frames to in
rease stability. Figure 5shows the 3{D error after the optimal sim-ilarity transformation in dependen
e on thenumber of overlapping frames. It 
an be seenthat a signi�
ant improvement 
an be noti
edjust for higher noise levels.
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Figure 5: Error in dependen
e on the numberof overlapping frames for di�erent noise levels.8 Con
lusionIn this 
ontribution we have shown how toapply the fa
torization method of Sturm andTriggs to real image sequen
es. We have seenthat it is ne
essary to merge together par-tial solutions within a Eu
lidean frameworkwhi
h 
an be re
overed by applying a self{
alibration method. The experiments showthat our method performs well, but improve-ments 
ould be a
hieved by enhan
ing themerging step.A
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