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Abstract:

This contribution treats the problem of cam-
era calibration of extended image sequences
with the goal to generate lightfields. Our
method is mainly based on the factorization
method by Sturm and Triggs which provides
a closed—form solution if all projections of all
scene points into all cameras are known. We
extend the original method for extended im-
age sequences, especially when scene points
appear and disappear in the projections of
the sequence, which is natural when moving
a camera around an object. We apply the
original method on parts of the sequence and
merge the results together. As our experi-
ments show, in spite of these extension, our
method produces comparable results to the
original method.
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Abstract

This contribution treats the problem of cam-
era calibration of extended image sequences
with the goal to generate lightfields. Our
method is mainly based on the factorization
method by Sturm and Triggs which provides
a closed—form solution if all projections of all
scene points into all cameras are known. We
extend the original method for extended im-
age sequences, especially when scene points
appear and disappear in the projections of
the sequence, which is natural when moving
a camera around an object. We apply the
original method on parts of the sequence and
merge the results together. As our experi-
ments show, in spite of these extension, our
method produces comparable results to the
original method.

1 Introduction

The goal of our work is to construct a Light-
field [5] from an uncalibrated image stream
which is taken with a hand-held camera. For
a realistic visualization many views all around
a scene have to be taken. Therefore, we need
a stable method for calibrating especially long
image sequences.

Many investigations have been made to
solve the problem of camera calibration when
just knowing projections of scene points with
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unknown pose. Most approaches do a recon-
struction from up to three successive images
of the sequence and merge these reconstruc-
tions together by minimizing the total repro-
jection error of the reconstructed points (e.g.
[1, 4]). They do not treat all data uniformly,
but they sequentially reconstruct new camera
poses with respect to those calibrated before.
The whole reconstruction depends on the cal-
ibration of the first cameras.

For the case of orthographic projection, the
first closed—form solution was given in [12].
There, a measurement matrix is built from
projected image points and the camera posi-
tions as well as the scene points are recon-
structed by a single factorization of this mea-
surement matrix. Sturm and Triggs showed
in [11] how to do a comparable solution for
the case of perspective projection by building
the measurement matrix from image projec-
tions and the corresponding projective depths.
This method is very elegant as it recovers
scene geometry and camera parameters for all
images in one single step. The disadvantage
of the closed—form solution is that it supposes
that all scene points are visible throughout the
whole image sequence. For real sequences this
assumption does not hold.

In this contribution we focus on adapting
the method [11] to sequences where points dis-
appear and also new points appear. We ap-
ply the factorization method to parts of the
sequence and merge them together. Doing
this, we can benefit from the advantages of



the closed—form solution and also we are able
to treat the problem of loosing points.

In all these methods for recovering structure
from motion, in a first step the reconstruc-
tion is performed up to an unknown projective
transformation. By applying self-calibration
methods, constraints on the cameras can be
introduced to get a reconstruction up to an
unknown similarity transformation. We apply
the linear method [8] to do self-calibration,
which is also needed to merge together the
partial solutions.

This article is structured as follows. In sec-
tion 2, we introduce some notations. Section 3
gives a short description of the original factor-
ization method of Sturm and Triggs and sec-
tion 4 shows briefly how to do self—calibration
with the method [8]. In section 5 we show
how to apply these methods to real sequences.
As in this step not all projected points can
be considered, section 6 shows how the addi-
tional information given by these points can
be used. Section 7 gives an evaluation of our
method by testing it on simulated data.

2 Notation

In the following we presume some knowledge
of projective geometry. An excellent introduc-
tion can be found in [7] which is focused on
the special requirements for image analysis.

All vectors are denoted bold face and
describe homogeneous vectors if not stated
otherwise. A 3-D scene point is de-
noted by d-vector py = (Pk1, k2, Pkss Pra)”
corresponding to the Euclidean 3-vector
(Pr1/Dra, Pr2/Pra, Drs/Pea) T, if the point is fi-
nite. Similar, a 2-D image coordinate of
the projection of p, into image number i is
denoted by a homogeneous 3-vector gq,;, =
(qikl,qikg,qikg)T. This implies that if a ho-
mogeneous vector is scaled by an arbitrary
scalar not being zero, it does not change its
Euclidean meaning.

The projection g, of p, is achieved by a
multiplication with a 3 x 4 projection matrix
PZ'Z

Airip = Pipy, (1)

with s = 1,....mand £ = 1,...,n. In a
Euclidean framework, P; can be factorized as
P; = K;R] (Is| —t;), with K; being an up-
per triangular calibration matrix and R;, t;
being a rotation matrix and a (Euclidean!)
translation vector transforming the world co-
ordinate system into the appropriate camera
coordinate system.

If a variable is marked with a prime (p'), it
describes an estimation for the true value. If a
variable is marked with a hat (p), it describes
a true value which is transformed projectively.
If both markes are present (p'), a variable de-
scribes a projectively transformed estimation
of the true value.

3 Factorization Method

In this section we give a brief description of
the factorization method of Sturm and Triggs
[11]. Their main idea is to build a measure-
ment matrix W and to solve the structure—
from—motion problem by performing a sin-
gle SVD (singular value decomposition, [9])
of W.

To build the measurement matrix, the so—
called projective depths A\, (see equation 1)
have to be known. We suppose that all vec-
tors g,;, p; are scaled such that the last com-
ponent is 1 and all Pj scaled such that their
last row has norm 1. In this case the projec-
tive depths correspond to the orthogonal dis-
tances from the focal plane of each camera.

To recover these projective depths from pro-
jections only, fundamental matrices F';; and
epipoles e;; between neighboring images 1, j
must be reconstructed. This can be achieved
by applying known estimation techniques as
described in [6]. In this contribution (follow-
ing Sturm and Triggs) we apply the linear
method of Hartley [3]. The projective depths
can be updated from frame i to frame j by
applying following equation:

(eij x q;,)(Fijq;)
l€eij % @i |?

The projective depths of the first view can be
chosen arbitrarily, e.g. A\ = 1.




Now all equations 1 for all scene points and
all their projections are combined to one single
matrix equation:

P,
P, .
W=| . |[(Ppy.--p,) Wwith (3)
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The estimation W' can be built knowing es-
timates for all projections of all scene points
into all images and their corresponding pro-
jective depths. Note that the scale of each p,
and the scale of each P; can be chosen arbi-
trarily if the )\;, change accordingly. There-
fore, to achieve a good numerical condition-
ing, each column ¢ of W' = [w'],. is rescaled
such that 33, w'? = 1 and each triplet of
rows (3i — 2,3i — 1,3i) is scaled such that
DY QU/QZ = 1.

An SVD is applied on W' resulting in the
factorization W' = U diag(oy,09,...,04) V.
As the rank of W in the noise—free case
is 4, we can, for the case having noise, re-
cover the best rank 4 approximation (in the
sense of least squares) by composing W =
U' diag(oy,09,03,04) V' with U’ being the
upper 3m x 4 sub-matrix of U and V' being
the upper 4 x n sub-matrix of V. Knowing
this factorization, estimates /ﬁi and pj can be
found:

=/ / =/ /
IT =UYX= and ¥ =XV (4)
with X = diag(\/a, @, \/OT;;, \/OTl) The

hats shall show that this representation is not
unique as for an arbitrary 4 x4 transformation
matrix T having rank 4 following equation
holds: (ﬁ; T)(T 'p,) = P . Dy, and similar
(ﬁ’T)(T_lfIf\l) —TI'®". Therefore the struc-
ture of the scene and the projection matrices
both can be reconstructed just up to an un-
known projective transformation T'. This re-

striction is common to all reconstruction tech-
niques if no additional knowledge on the prop-
erties of the cameras is available. To intro-
duce such restrictions on the camera parame-
ters, self—calibration methods can be applied
as described in the following section.

4 Self—Calibration

As we have seen in the previous section, scene
reconstruction can be done just up to an un-
known projective transformation T". The goal
of self-calibration is to recover an estimation
for matrix T' which maps the reconstructed
scene points to estimations of the real scene
points: pk =T~ 1p/,g p;. and accordingly
P = P.T' ~ P;. This can be performed only
by imposing some restrictions on the camera
parameters.

In [14] the concept of the absolute quadric is
introduced for doing self—calibration. The ab-
solute quadric is described by the 4 x 4 matrix

I3><3 0
=107 o
description and omit here the geometric inter-
pretation of this concept as it is insubstantial
for performing self-calibration. It is obvious
that following equation holds:

. We restrict to an algebraic

POP] = K K] . 5)
where K; denotes the upper triangular cali-
bration matrix. Suppose that the true scene
points and camera matrices are transformed
by T. Then we see from Eq. 5 that € is
transformed to Q@ = TQT”. If T is a sim-
ilarity transformation (meaning that T =

cR t

0" 1
the absolute quadric is invariant, therefore
Q = Q. But in our case, T' is an arbitrary pro-
jective transformation, and in general Q #+ Q.
In [8] a linear method is presented to recover

with R being a rotation matrix),

an estimate € uniquely for a given set of
projection matrices, if all calibration matrices

fi 00
have the form K; = 0 f; O When
0 0 1



the image skew, the principal point, and the
aspect ratio is known, this can be achieved by
transforming the measured image coordinates
so that the principal point is (0,0), the as-
pect ratio is 1, and the skew is 0. The only
unknown camera parameter then is the focal
length. The idea is to transform /1311 to be

(I3430):

o\ -1

na0) =P () ©

—-—
T.

All other projection matrices are transformed
accordingly by multiplying I with T,. (For
consistency, T s pre-multiplied with T,%.)
In the noise—free case, following equation
holds:

fio0 0 .
0 0 1

We see that these four equations have to be
satisfied: Aill = A1227 AﬂQ = Ail3 = AiZ3 =0.
Therefore having m frames, we get 4(m — 1)
equations for estimating the symmetric abso-
lute quadric ﬁl, which is parameterized by
the 10 elements of its upper triangular sub—
matrix. The focal length of each camera then
can be calculated from A;. From fll, the plane
at infinity can be retrieved as the nullspace of
Q' (e.g. using SVD), and is denoted by the
row-vector pl._. Supposing the camera coor-
dinate system to coincide with the world co-
ordinate system, we know that the unknown
matrix 7" must transform (I3430) to (K} 0).
We also know that p/_  must be transformed
to the standard plane at infinity (0001). Ap-
plying these restrictions, the matrix T" is de-
termined uniquely:

K’ 0
T — ( . -1K’1 1 > , (8)

with p/_ being the 3-vector consisting of the
first three components of pl  divided by its
fourth component. The scale of the last row
of T' can be chosen freely. This is equal to
scaling the whole scene with a unique factor
which remains unknown.

5 Application to Real Im-
age Sequences

The main disadvantage of the factorization
method (section 3) is that all scene points
must be visible throughout the whole se-
quence. In the analysis of real image se-
quences, this restriction is not practicable, be-
cause scene parts appear and disappear in de-
pendence on the actual viewpoint and also
there is no tracking algorithm which guaran-
tees not to loose any scene points although
they are visible. Hence we have to modify the
algorithm to apply it to real environments.
Factorization of windows. During track-
ing point features in extended image se-
quences (for example, using the method [10]),
it is usual to select a given number of point
features (e.g. 1000) and to track them as long
as possible. If in a particular frame features
are lost, new features are selected to complete
the number of tracked features. Therefore
the factorization method cannot be applied
to the whole sequence. We can inspect “win-
dows” of frames where enough features could
be tracked completely. On the one hand, the
size of each window should not be too small,
as the reconstruction error reduces with in-
creasing number of frames (compare to the
results in [11]). On the other hand, the win-
dow should not be too large, as the number
of points which could be tracked throughout
the whole window decreases and therefore the
reconstruction is more sensitive to errors in
the trajectory corresponding to a single scene
point. The windows can be chosen to be a
complete partitioning of the frames or they
can be chosen to overlap. In the latter case,
also the camera centers of the overlapping
frames can be matched to each other. This
is reasonable especially then, when the scene
is compact and the cameras move around the
scene with a large distance. Which choice per-
forms best, depends on the particular situa-
tion. Let ¥, denote the matrix of the trans-
formed scene points for window number v, ac-
cording to the notation used in equation 3.
Z, denotes the set of corresponding indices



of scene points which are used for this recon-
struction in window.
Merging windows. If we have calculated
a projective reconstruction for each window,
we must link these reconstructions to each
other. As each reconstruction is done up to
an unknown projective transformation, there
also exists an unknown transformation T,
between two windows v and w which maps
the transformed scene points of window v to
the corresponding scene points of window w.
Therefore these scene points must be visible
in both windows. Let Z,, = Z, N Z, denote
the set of indices of scene points which are vis-
ible in both windows v and w. Formally, for
each scene point with an index k € Z,,, the
matrix T, should satisfy the equation
1Y wﬁk = va vﬁk s (9)
where “p, denotes the scene point & in the v—
th window. It is a column vector of ¥,. If the
vectors “p, and "p, are normalized such that
their last component is 1, the scale p and the
fourth component of the vector equation 9 can
be eliminated. Therefore each correspondence

of estimated scene points leads to three rows
of a matrix:

~T T T o] ~T
“pr O 0 — "D Dy
T wtT T v walT
0 D, 0 . — P pl%
T T w ! v w!
0 0 Py —"Dis "Dy

The approximative nullspace of this matrix
can be solved using SVD and describes the
vector being the concatenation of the column
vectors of T',,,.

In the noise-free case, this merging proce-
dure works. But having errors in the recon-
struction, the result is numerically not stable,
because there are minimized distances within
a projectively transformed scene. As tiny dis-
tances may become huge after a projective
transformation and vice versa, the particu-
lar distances don’t have a meaningful sense.
Hence we have to minimize these distances
within an Euclidean framework; we have to
apply the self-calibration before merging.

In general, it is enough to do the self-
calibration for reconstruction of the first win-
dow and to calculate the transformation from

each window to the previous one. With this
procedure the FEuclidean framework is up-
dated from one window to the next. But if
there are small errors in the self—calibration of
the first frame, the whole reconstruction will
depend on this error. A final self—calibration
step may be applied to improve the results.
Post—processing. The approach de-
scribed above retrieves each camera matrix
P’ up to an unknown scale factor p. As P
can be represented by K, R, and t having
fixed scales, we have to determine p to convert
P’ to this representation: P’ — P'/p. For
each projection matrix P’, we can determine
the oriented optical axis @' = (P3; P}, Pj3)
which is a Fuclidean directional vector and
is collinear with the third row of matrix R.
Therefore we know that [|p|| = ||@'|]. The
optical center ¢ can be determined uniquely
from P’. As the reconstructed points must lie
in front of the camera, the scalar product of
the directional vector a’ with the vector pj —¢'
should be positive for any visible scene point
number k. To achieve this, we can determine

p = sgn(a’ (p, — t')[la’].

6 Considering All Points

Up to now we have reconstructed all projec-
tion matrices and the 3-D position of some
scene points. But there remain points which
are visible in fewer frames than the window
lengths and therefore have not been consid-
ered yet. Knowing all projection matrices, we
are able to reconstruct these scene points. We
can again formulate this request as a linear
optimization problem. Knowing the projec-
tion q;; = (qir1, Qik2, Girs)” of the scene point
number £ in the image ¢, following equation
holds:

(I M EX IR

where 1,; denotes the j—th row—vector of ma-
trix P;. The scale of g, has to be chosen such
that its third component is 1. Writing this
equation for each estimated projection of an
unknown scene point and concatenating the
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Figure 1: Example for a simulated test config-
uration. The arrows show the camera centers
with their viewing directions; the points in the
middle show the scene points. Note the small
displacements of neighboring cameras.

left matrix of upper equation, we get a ma-
trix whose nullspace describes the coordinates
of the searched scene point p). The approxi-
mative nullspace again can be determined by
applying SVD.

Another way to consider the remaining
points is to complete the measurement ma-
trix during each factorization step. As we
have estimated the fundamental matrices be-
tween succeeding frames, we can predict their
projections from three succeeding views us-
ing the method [2]. For this approach, many
degenerate and nearly degenerate cases ex-
ist. E.g. the projection centers of three views
must not be collinear, or the corresponding
scene point must not lie on the plane built by
the three projection centers. Therefore, the
better way is to estimate the trifocal tensor
(e.g. by method [13]) and to use that for pre-
diction.

As small errors in the measured image co-
ordinates as well as in the estimated funda-
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Figure 2: Simulated visibilities

mental matrices or trifocal tensors affect the
predictions, this method of completing the
measurement matrix should just be applied
to fill small gaps. Otherwise, the reconstruc-
tion will depend too much on these erroneous
estimated predictions.

7 Experiments

Simulation of camera movement and
scene points. The scene points have been
chosen to be randomly distributed in a cube
with an edge length of 200. The camera
moves around the center of the cube with a
radius of 500. Its position as well as its ori-
entation is perturbed randomly to avoid de-
generacies of self-calibration (see section 4).
This perturbation is also natural for sequences
taken with a hand-held camera. The focal
lengths have been chosen randomly in the
range 800...1200. Figure 1 shows an exam-
ple configuration. The scene points have been
projected into each camera. To each projec-
tion, an error has been added with a uniform
distribution within the range —r...7r. We call
r the noise level.

Simulation of visibility. To simulate the
visibility of each point, we made the assump-
tion that the probability p for loosing a point
in a frame is constant. Then we get a ge-
ometric distribution for the length ¢ of the
visibility for each point. Following equation
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Figure 3: 2-D mean absolute pixel error of
reprojections. These results were obtained for
a window size of 20 frames with 5 overlapping
frames between neighboring windows.

is used to create this distribution out from a
uniform distribution within the range 0...1:
t(z) = log(1 — x)/log(1 — p). We also made
the assumption that a fixed number of points
must be seen in each frame (in our example
400). This means that for each lost point a
new one is introduced. Figure 2 shows an ex-
ample of the simulated visibility in the case of
p = 0.1.

Reprojection error. One measure for the
evaluation of errors is the distance between
the projections of the reconstructed points
into the reconstructed cameras and the origi-
nal projections. Figure 3 shows the mean ab-
solute error in the reprojections measured in
pixels. Tt can be seen that for each recon-
structed camera, the reprojected image coor-
dinates of those points which are visible in
this camera have an error in the magnitude of
the noise (dotted curve). If even those points
are projected into a particular camera which
are just visible in other cameras, the error in-
creases (solid curve). This increasing error is
caused by errors during merging together the
reconstructions of neighboring windows.

3-D error of the reconstruction. An-
other accuracy measure is the 3—D error of the
reconstructed points. Since the reconstruc-
tion is done just up to an unknown similar-
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Figure 4: Mean absolute 3-D error for the
same configuration in figure 3. It describes
the mean difference between the true scene
points and their corresponding reconstructed
points after a specified transformation.

ity transformation, we have to determine that
transformation which minimizes the 3—D error
between the transformed reconstructed points
and the true scene points.

Figure 4 shows the absolute 3-D errors in
units of the simulated 3-D structure after
that optimal similarity transformation (solid
curve). The errors after transforming with
an optimal projective transformation are less.
This indicates a projective skew in the recon-
struction. By applying a non-linear refine-
ment of the self—calibration step, this skew
should be reduced. If the optimal projec-
tive error is determined separately within each
window, the 3-D error is even less. As in the
2-D case, this again indicates errors during
the merging step.

Choice of the number of overlapping
frames. As described in section 5, neigh-
boring windows may be chosen to overlap by
some frames to increase stability. Figure 5
shows the 3-D error after the optimal sim-
ilarity transformation in dependence on the
number of overlapping frames. It can be seen
that a significant improvement can be noticed
just for higher noise levels.
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Figure 5: Error in dependence on the number
of overlapping frames for different noise levels.

8 Conclusion

In this contribution we have shown how to
apply the factorization method of Sturm and
Triggs to real image sequences. We have seen
that it is necessary to merge together par-
tial solutions within a Euclidean framework
which can be recovered by applying a self-
calibration method. The experiments show
that our method performs well, but improve-
ments could be achieved by enhancing the
merging step.

Acknowledgements. We would like to
thank Marc Pollefeys from ESAT-PSI of the
K. U. Leuven for giving us hints how to per-
form the self-calibration step.

References

[1] P. A. Beardsley, P. H. S. Torr, and A. Zis-
serman. 3D model aquisition from ex-
tended image sequences. In Proceedings
ECCYV, pages 683-695, 1996.

[2] O. Faugeras and L. Robert. What can
two images tell us about a third one?
Technical report, INRIA, Sophia Antipo-
lis, 1993. technical report.

3] R. I. Hartley. In defense of the eight—
point algorithm. PAMI, 19(6):580-593,
1997.

[4]

[10]

[11]

[12]

[13]

[14]

R. Koch, M. Pollefeys, and Luc Van
Gool. Multi viewpoint stereo from uncal-
ibrated video sequences. In Proceedings
ECCV, pages 55-71. Springer, 1998.

M. Levoy and P. Hanrahan. Light field
rendering. In Proceedings SIGGRAPH,
pages 31-45, 1996.

Q.-T. Luong, R. Deriche, and
O. Faugeras. On determining the
fundamental matrix: Analysis of differ-
ent methods and experimental results.
Technical report, INRIA, Sophia An-
tipolis, 1993. technical report.

R. Mohr and B. Triggs. Projective geom-
etry for image analysis. In Int. Symp.
Photogrammetry and Remote Sensing,
July 1996. Tutorial.

M. Pollefeys, R. Koch, and L. Van Gool.
Self-calibration and metric reconstruc-
tion in spite of varying and unknown in-
ternal camera parameters. In Proceedings
ICCV, pages 90-95, Bombay, 1998.

W. H. Press, B. P. Flannery, S. A.
Teukolsky, and W. T. Vetterling. Numer-
ical Recipes in C — The Art of Scientific
Computing. Cambridge University Press,
New York, 1990.

J. Shi and C. Tomasi. Good features to
track. In Proceedings CVPR, pages 593
600. IEEE Computer Society Press, June
1994.

P. Sturm and B. Triggs. A factorization
based algorithm for multi-image projec-
tive structure from motion. In Pro-
ceedings ECCV, pages 709-720. Springer,
1996.

C. Tomasi and T. Kanade. Shape and
motion from image streams under or-
thography: a factorization method. In-
ternational Journal of Computer Vision,
9(2):137-153, 1992.

P. H. S. Torr and A. Zisserman. Robust
parameterization and computation of the
trifocal tensor. Image and Vision Com-
puting, 15:591-605, 1997.

B. Triggs. Autocalibration and the ab-
solute quadric. In Proceedings CVPR,
pages 609-614, June 1997.



