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t In this 
ontribution we fo
us on plenopti
 s
ene modelingand rendering from long image sequen
es taken with a hand{held 
am-era. The image sequen
e is 
alibrated with a stru
ture{from{motion ap-proa
h that 
onsiders the spe
ial viewing geometry of plenopti
 s
enes.By applying a stereo mat
hing te
hnique, dense depth maps are re
ov-ered lo
ally for ea
h viewpoint.View{dependent rendering 
an be a

omplished by mapping all imagesonto a 
ommon plane of mean geometry and weighting them in depen-den
e on the a
tual position of a virtual 
amera. To improve a

ura
y,approximating planes are de�ned lo
ally in a hierar
hi
al re�nement pro-
ess. Their pose is 
al
ulated from the lo
al depth maps asso
iated withea
h view without requiring a 
onsistent global representation of s
enegeometry. Extensive experiments with ground truth data and hand{heldsequen
es 
on�rm performan
e and a

ura
y of our approa
h.Keywords: Stru
ture{from{Motion, Plenopti
 Modeling1 Introdu
tionIn this 
ontribution our goal is to 
reate a model from a s
ene to render newviews intera
tively. For this purpose two major 
on
epts are known in literature.The �rst one is the geometry{based 
on
ept. The s
ene geometry is re
onstru
tedfrom a stream of images and a single texture is synthesized whi
h is mapped ontothis geometry. For this approa
h, a limited set of 
amera views is suÆ
ient, butspe
ular e�e
ts 
an not be handled appropriately. The se
ond major 
on
eptis image{based rendering. This approa
h models the s
ene as a 
olle
tion ofviews all around the s
ene without an exa
t geometri
al representation [9℄. New(virtual) views are rendered from the re
orded ones by interpolation in real{time. Approximative geometri
al information optionally 
an be used to improvethe results [4℄.In this 
ontribution we 
on
entrate on the se
ond approa
h. Up to now, theknown s
ene representation has a �xed regular stru
ture. If the sour
e is animage stream taken with a hand{held 
amera, this regular stru
ture has to beresampled. Our goal is to use the re
orded images itself as s
ene representation



and to dire
tly render new views from them. Geometri
al information is 
on-sidered as far as it is known and as detailed as the time for rendering allows.The approa
h is designed su
h, that the operations 
onsist just of proje
tivemappings whi
h 
an eÆ
iently be performed by the graphi
s hardware.For ea
h of these s
ene modeling te
hniques the 
amera parameters for theoriginal views are supposed to be known. We retrieve them by applying knownstru
ture{from{motion te
hniques and adopting them to our spe
ial needs whi
hresult from the huge amount of images. Lo
al depth maps are 
al
ulated applyingstereo te
hniques on re
ti�ed image pairs.Se
tion 2 shows how to ta
kle this problem of 
amera 
alibration from imagesunder spe
ial 
onsideration of densely spa
ed view points. In se
tion 3 we ex-amine di�erent methods for rendering new views from this 
alibrated sequen
e.We show how previous works 
ompare to our approa
hes. In se
tion 4 the ex-periments show the results of 
amera 
alibration and rendering. We 
omparerendering results of di�erent methods.2 Stru
ture{From{MotionTo do a dense plenopti
 modeling as des
ribed below, we need many viewsfrom a s
ene from many dire
tions. For this, we 
an re
ord an extended imagesequen
e moving the 
amera in zigzag like manner. The 
amera 
an 
ross itsown moving path several times or at least gets 
lose to it. Known 
alibrationmethods usually only 
onsider the neighborhoods within the image stream anduse them for estimating the Fundmental matrix, see e.g. [2, 3, 5, 11℄. No linkingis done between views whose position is 
lose to ea
h other in 3{D spa
e butwhi
h have a large distan
e in the sequen
e.To deal with this problem, we therefore exploit the 2{D topology of the
amera view points to further stabilize the 
alibration. We pro
ess not onlythe next sequential image but sear
h for those images in the stream that arenearest in the topology to the 
urrent view point. This is done by estimatingall fundamental matri
es between image pairs and sele
ting the images withthe least mat
hing error. Typi
ally we 
an establish a reliable mat
hing to 3{4 neighboring images whi
h improves the 
alibration 
onsiderably. The sameapproa
h was applied for geometri
 s
ene modeling in a se
ond 
ontribution ofthis 
onferen
e [7℄ and details are des
ribed in [8℄.In se
tion 3 we will show how to use lo
al depth maps for improving renderingresults. Therefore dense 
orresponden
e maps are 
omputed for adja
ent imagepairs of the sequen
e [6℄. A disparity estimator based on dynami
 programmingis employed resulting in lo
al depth maps [1℄.3 Plenopti
 Modeling and RenderingWe use the 
alibrated 
ameras to 
reate a s
ene model for visualization. In[10℄ this is done by plenopti
 modeling. The appearan
e of a s
ene is des
ribed



through all light rays (2{D) that are emitted from every 3{D s
ene point, generat-ing a 5{D radian
e fun
tion. Re
ently two equivalent realizations of the plenopti
fun
tion were proposed in form of the light�eld [9℄, and the lumigraph [4℄. Theyhandle the 
ase when we observe an obje
t surfa
e within a transparent medium.Hen
e the plenopti
 fun
tion is redu
ed to four dimensions. The radian
e is rep-resented as a fun
tion of light rays passing through the s
ene.To 
reate su
h a plenopti
 model for real s
enes, a large number of views istaken. These views 
an be 
onsidered as a 
olle
tion of light rays with a

ording
olor values. They are dis
rete samples of the plenopti
 fun
tion. The light rayswhi
h are not represented have to be interpolated from re
orded ones 
onsideringadditional information on physi
al restri
tions.Often, real obje
ts are supposed to be Lambertian, meaning that one pointof the obje
t has the same radian
e value in all possible dire
tions. This impliesthat two viewing rays have the same 
olor value, if they interse
t at a surfa
epoint. If spe
ular e�e
ts o

ur, this is not true any more. Two viewing raysthen have similar 
olor values, if their dire
tion is similar and if their point ofinterse
tion is near the real s
ene point whi
h originates their 
olor value. Torender a new view we suppose to have a virtual 
amera looking into the s
ene.We determine those viewing rays whi
h are nearest in the upper sense to thoseof this 
amera. The nearer a ray is to a given ray, the greater is its support tothe 
olor value.3.1 Regular Grid RepresentationsThe original 4{D light�eld [9℄ data stru
ture employs a two{plane parameteri-zation. Ea
h light ray passes through two parallel planes with plane 
oordinates(s; t) and (u; v) (see �gure 1). Thus the ray is uniquely des
ribed by the 4{tuple (u; v; s; t). The (s; t){plane is the viewpoint plane in whi
h all 
amera fo
alpoints are pla
ed on regular grid points. The 
ameras are 
onstru
ted su
h, thatthe (u; v){plane is their 
ommon image plane and that their opti
al axes areperpendi
ular to it.From the two{plane parameterization new views 
an be rendered by pla
inga virtual 
amera on an arbitrary viewing position with arbitrary parameters (e.g.fo
al length) and interse
ting ea
h viewing ray with the two planes at (s; t; u; v).The resulting radian
e is a look{up into the regular grid. For rays passing inbetween the (s; t) and (u; v) grid 
oordinates an interpolation is applied thatwill degrade the rendering quality depending on the s
ene geometry. In fa
t,the light�eld 
ontains an impli
it geometri
al assumption: The s
ene geometryis planar and 
oin
ides with the fo
al plane (�gure 2). Deviation of the s
enegeometry from the fo
al plane 
auses image warping. Figure 2 shows that theradian
e of the viewing ray r is interpolated from radian
e values li�1 and liof neighboring 
amera viewpoints, depending on the geometri
al deviation fromthe fo
al plane.Linear interpolation between the viewpoints in (s; t) and (u; v) introdu
es ablurred image with ghosting artifa
ts. In reality we will always have to 
hoose
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Figure2. Viewpoint interpolation be-tween si and si�1.between high density of stored viewing rays with high data volume and high�delity, or low density with poor image quality.If we have a sequen
e of images taken with a hand{held 
amera, in generalthe 
amera positions are not pla
ed at the grid points of the viewpoint plane.In [4℄ a method is shown for resampling this regular two plane parameterizationfrom real images re
orded from arbitrary positions (rebinning). The requiredregular stru
ture is resampled and gaps are �lled by applying a multi{resolutionapproa
h, 
onsidering depth 
orre
tions. The disadvantage of this rebinning stepis that the interpolated regular stru
ture already 
ontains in
onsisten
ies andghosting artifa
ts be
ause of errors in the s
antily approximated geometry. Torender views, a depth 
orre
ted look{up is performed. During this step, the e�e
tof ghosting artifa
ts is repeated, so dupli
ate ghosting e�e
ts o

ur.3.2 Representation with Re
orded ImagesOur goal is to over
ome these problems des
ribed in the last se
tion by relaxingthe restri
tions imposed by the regular light�eld stru
ture and to render viewsdire
tly from the 
alibrated sequen
e of re
orded images with use of lo
al depthmaps. Without loosing performan
e we dire
tly map the original images ontoone or more planes viewed by a virtual 
amera.2{D Mapping. The following approa
hes will use this formalism to map im-ages onto planes and vi
e versa. We de�ne a lo
al 
oordinate system on Agiving one point a0 on the plane and two ve
tors a1 and a2 spanning theplane. So ea
h point p of the plane 
an be des
ribed by the 
oordinates xA,yA: p = (a1;a2;a0) (xA; yA; 1)T. The point p is perspe
tively proje
ted into a
amera whi
h is represented by the 3� 3 matrixM =KRT and the proje
tion
enter 
. Matrix R is the orthonormal rotation matrix and K is an upper tri-angular 
alibration matrix. The resulting image 
oordinates x, y are determined
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ene geometry
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ene geometry Api
virtual image plane

xAxixV
virtual view point

Figure3. Drawing triangles of neighboring proje
ted 
amera 
enters and approximat-ing s
ene geometry by one plane for the whole s
ene, for one 
amera triple or by severalplanes for one 
amera triple.by �(x; y; 1)T =Mp�M
. Inserting upper equation for p results in�0�xy11A =M (a1;a2;a0 � 
)0�xAyA1 1A :The value � is an unknown s
ale fa
tor. Ea
h mapping between a lo
al plane
oordinate system and a 
amera 
an be des
ribed by a single 3 � 3 matrixB =M(a1;a2;a0 � 
).Mapping via global plane. In a �rst approa
h, we approximate the s
enegeometry by a single plane A by minimizing the least square error. We map allgiven 
amera images onto A and view it plane through a virtual 
amera. This
an be a
hieved by dire
tly mapping the 
oordinates xi, yi of image i into thevirtual 
amera 
oordinates (xV ; yV ; 1)T = BVB�1i (xi; yi; 1)T. Therefore, we 
anperform a dire
t look{up into the originally re
orded images and determine theradian
e by interpolating the re
orded neighboring pixel values. This te
hniqueis similar to the light�eld approa
h [9℄ whi
h impli
itly assumes the uv{plane asthe plane of geometry.Therefore, to 
onstru
t a spe
i�
 view, we have to interpolate between neigh-boring views. Those views give the most support to the 
olor value of a parti
-ular pixel whose proje
tion 
enter is 
lose to the viewing ray of this pixel. Thisis equivalent to the fa
t that those views give the most support to a spe
i�edpixel whose proje
ted 
amera 
enters are 
lose to its image 
oordinate. We re-stri
t the support to the nearest three 
ameras (see �gure 3). We proje
t all
amera 
enters into the virtual image and perform a 2{D triangulation. Then



the neighboring 
ameras of a pixel are determined by the 
orners of the trianglewhi
h this pixel belongs to. Ea
h triangle is drawn as a sum of three triangles.For ea
h 
amera we look up the 
olor values in the original image like des
ribedabove and multiply them with weight 1 at the 
orresponding 
orner and withweight 0 at both other like. In between, the weights are interpolated linearlysimilar to Gouraud{Shading. Within the triangle, the sum of weights is 1 atea
h point. The total image is built as a mosai
 of these triangles. Althoughthis te
hnique assumes a very sparse approximation of geometry, the renderingresults just show small ghosting artifa
ts (see se
tion 4).Mapping via lo
al planes. The results 
an be further improved by 
onsider-ing lo
al depth maps. Spending more time for ea
h view, we 
an 
al
ulate theapproximating plane of geometry for ea
h triangle in dependen
e on the a
tualview. This improves the a

ura
y further as the approximation is not done forthe whole s
ene but just for that part of the image whi
h is seen through thea
tual triangle. The depth values are given as fun
tions zi of the 
oordinatesin the re
orded images zi((xi; yi; 1)T). They des
ribe the distan
e of a pointperpendi
ular to the image plane. Using this depth fun
tion, we 
al
ulate the3{D 
oordinates of those s
ene points whi
h have the same 2{D image 
oori-nates in the virtual view as the proje
ted 
amera 
enters of the real views.The 3{D point pi whi
h 
orresponds to the real 
amera i 
an be 
al
ulated aspi = zi(M idi)di+
i, where di = n(
i�
V ). The fun
tion n s
ales the given 3{D ve
tor su
h, that its third 
omponent equals one. We 
an interpret the pointspi as the interse
tion of the line 
V 
i with the s
ene geometry. Knowing the 3{D
oordinates of triangle 
orners, we 
an de�ne a plane through them and applythe same rendering te
hnique as des
ribed above.Re�nement. Finally, if the triangles ex
eed a given size, they 
an be subdividedinto four sub{triangles by splitting the three sides into two parts, ea
h. Forea
h of these sub{triangles, a separate approximative plane is 
al
ulated in theabove manner. We determine the midpoint of the side and use the same look{upmethod as used for radian
e values to �nd the 
orresponding depth. After that,we re
onstru
t the 3{D point and proje
t it into the virtual 
amera resultingin a point near the side of the triangle. Of 
ourse, further subdivision 
an bedone in the same manner to improve a

ura
y. Espe
ially, if just few triangles
ontribute to a single virtual view, this subdivision is really ne
essary. It shouldbe done in a resolution a

ording to performan
e demands and to the 
omplexityof geometry.4 ExperimentsWe have shown how to 
alibrate an image sequen
e whi
h is taken with a hand{held 
amera, and how to use these 
alibrated images to render new virtual viewsfrom the s
ene. In this se
tion, experiments show the di�eren
es and propertiesof the approa
hes.



Figure4. Left: one image of the original sequen
e. Middle: Calibration result. Cam-eras are shown as pyramids and their topologi
al mesh is drawn with lines. Right:Re
onstru
ted s
ene view using one plane per image triple.
Figure5. Details of rendered images showing the di�eren
es between the approa
hes:one global plane of geometry (left), one lo
al plane for ea
h image triple (middle) andre�nement of lo
al planes (right).We have tested our approa
hes with an un
alibrated sequen
e of 187 imagesshowing an oÆ
e s
ene. Figure 4 (left) shows one parti
ular image. A digital
onsumer video 
amera was swept freely over a 
luttered s
ene on a desk, 
ov-ering a viewing surfa
e of about 1 m2. Figure 4 (middle) shows the 
alibrationresult. In another experiment with ground{truth data we improved the 
alibra-tion a

ura
y of 2.31% of the mean obje
t distan
e to 1.41% by extending thestandard stru
ture{from{motion te
hnique by s
anning the viewpoint surfa
e asdes
ribed in se
tion 2. A detailed dis
ussion of the re
onstru
tion a

ura
y 
anbe found in [8℄.One result of a re
onstru
ted view is shown in �gure 4 (right). Figure 5shows details for the di�erent methods. In the 
ase of one global plane (leftimage), the re
onstru
tion is sharp where the approximating plane interse
ts thea
tual s
ene geometry. The re
onstru
tion is blurred where the s
ene geometrydiverges from this plane. In the 
ase of lo
al planes (middle image), at the 
ornersof the triangles, the re
onstru
tion is almost sharp, be
ause there the s
enegeometry is 
onsidered dire
tly. Within a triangle, ghosting artifa
ts o

ur where



the s
ene geometry diverges from the parti
ular lo
al plane. If these trianglesare subdivided (right image) these artifa
ts are redu
ed further.5 Further Work and Con
lusionsIn this 
ontribution, we have shown how to use images taken by a hand{held
amera whi
h is moved around a s
ene to dire
tly render views without 
on-stru
ting a regular grid representation for the plenopti
 fun
tion as it is knownfrom literature. The quality of rendered images 
an be varied by adjusting theresolution of the 
onsidered s
ene geometry.Up to now, our approa
hes are 
al
ulated in software. But they are designedsu
h, that using alpha blending and texture mapping fa
ilities of graphi
s hard-ware, rendering will be done in real{time.A
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