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Abstract Tomasi and Kanade presented a strategy for the selection andfor sub-
sequent tracking of points in sequences of gray–level images. The strategy is
based on the notion of “interest” of a point and requires thatthe disparity of a
point is small between any two images.
In this contribution we extend this principle to sequences of color images in dif-
ferent color spaces. We compare the results to those computed with the original
algorithm. The goal is to track as many points as possible foras long as possible.
Using the trajectories of the points and the camera parameters, 3–D information
is reconstructed in our experimental setup. A pan/tilt unitmounted to a linear
sledge is used. We describe how the zoom lens is calibrated bya simple algorithm.
Keywords: color, motion, tracking, 3–D, calibration

1 Introduction

Two basic questions must be answered when points are trackedin image sequences:
how to select the features, and how to track them from frame toframe.

For the selection of point features, several methods are known from literature. Well–
known examples are the “interest operator” in [3] and the “edge detector” from [6]. [8]
gives an overview over several techniques. To track point features, many methods exist
using the correlation between local windows. An overview can also be found in [8]. The
solution described in [9] combines these two problems to one; it is based on [2], where
a method for registering images for stereo matching is proposed.

The applications of point tracking are manifold. In the following we use this tech-
nique to recover depth from a static scene seen by a calibrated camera moving on a lin-
ear sledge. We also show its application for an automatic calibration of a multi–media
camera.

This article is structured as follows. Sect. 2 explains the original approach. In Sect. 3
the algorithm is extended to color images and tested for two different color spaces.
Sect. 4 shows how to restrict the search direction. Experiments are given in Sect. 5,
followed by two applications shown in Sect. 6. The paper endswith the conclusion in
Sect. 7.



2 Tracking Points in Gray Value Images

The basic idea in [9] is to select those points in the image sequence, which exhibit
features for stable tracking. Thereby the two questions which were formerly posed in-
dependently, are now combined to one problem.

We formalize the problem using an image functionf(x; y; t) depending on the
positionx = (x; y)T and on the timet. If we look at a point at timet and at po-
sition x and at the same point at timet + � and at positionx + d(x; y; t) (withd(x; y; t) = (d1(x; y; t); d2(x; y; t))T), we assume that the residual error� = (f(x �d1(x; y; t); y�d2(x; y; t); t)�f(x; y; t+�))2 is minimal. We define�within a WindowW(x; y) as� = ZZ(�;�)T2W(x;y)(f(�� d1(x; y; t); � � d2(x; y; t); t)� f(�; �; t+ �))2 d�d� : (1)

We denote the gradient at timet and position(�; �) by g(�; �; t) = r�;�f(�; �; t) .
Using the gradient we approximate the intensity function bya Taylor expansion:f(�� d1(x; y; t); � � d2(x; y; t); t) � f(�; �; t)� (g(�; �; t))T � d(x; y; t) :
Using this approximation we can set the derivative to zero and can minimize the value
of � using Eq. (1) with respect to the displacementd(x; y; t) . This yields the following
equation:G(x; y; t)d(x; y; t) = e(x; y; t) = ZZ(�;�)T2W(x;y)(f(�; �; t)� f(�; �; t+ �)) g(�; �; t) d�d�

(2)

with a symmetric2� 2–matrixG(x; y; t)G(x; y; t) = ZZ(�;�)T2W(x;y)g(�; �; t)(g(�; �; t))Td�d� = � g11 g12g12 g22� :
This set of linear equations can be solved uniquely. The solution for the displacementd(x; y; t) is an approximation of the real displacement. If we resamplethe functionf(x + d1(x; y; t); y + d2(x; y; t); t) inside of the windowW(x; y) using bi–linear in-
terpolation, we can iterate the algorithm and compute the displacement with sub–pixel
accuracy. In [9], the minimal Eigenvalue of the matrixG(x; y; t) is used as measure for
selecting points for tracking. It judges whether the texture of the object at the consid-
ered location is strong enough to be distinguished from signal noise, and whether the
point can be tracked in any direction. This defines an operator which judges points for
point tracking. We call ittracing operatorin the following. Results of this operator can
be seen in Figure 1



3 Tracking Points in Color Images

In [1] we extened the ideas presented in Sect. 2 to color images which are represented
by vector–valued intensity functionsf(x; y; t) and did experiments forRGB data. The
derivatives and equations for the tracking can be derived inanalogy to the scalar case.
In the following we use we use arbitrary color spaces.

The residual value for a displacement vectord(x; y; t) = (d1(x; y; t); d2(x; y; t))T
inside a windowW(x; y) is defined for color vectors by:� = ZZ(�;�)T2W(x;y)kf(�� d1(x; y; t); � � d2(x; y; t); t)� f(�; �; t+ �)k2 d�d� : (3)

The Taylor approximation for the color image case uses the JacobianJ(x; y; t) off(x; y; t) in the variablesx andy.f (�� d1(x; y; t); � � d2(x; y; t); t) � f(�; �; t)� (J(�; �; t))Td(x; y; t) : (4)

Inserting (4) into (3) and definingh(�; �; t) := f(�; �; t)� f(�; �; t+ �), we get:� = ZZ(�;�)T2W(x;y)kh(�; �; t)� (J(�; �; t))Td(x; y; t)k2 d�d� : (5)

The optimal displacementd(x; y; t) which minimizes the error� can be determined
by setting the gradient of� with respect tod(x; y; t) to zero:ZZ(�;�)T2W(x;y)�2J(�; �; t)(J(�; �; t))Td(x; y; t)� 2J(�; �; t)h(�; �; t)� d�d� = 0ZZ(�;�)T2W(x;y)J(�; �; t)(J(�; �; t))T d�d�| {z } d(x; y; t) = ZZ(�;�)T2W(x;y)J(�; �; t)h(�; �; t)) d�d�| {z }G(x; y; t) d(x; y; t) = e(x; y; t)

(6)

As for scalar functions, this system of equations can be solved uniquely. Like in
the scalar case, the minimal Eigenvalue for the matrixG(x; y; t) defines the tracing
operator. An example is shown in Figure 1.

Even better results can be obtained, if the camera motion is known, as we show
next.

4 Tracking in Known Direction

If the camera motion is known, we can use a prediction for tracking points. In the case
of translational motion, we can use the epipolar constraints known from stereo vision.
This further extends the ideas of [9]:



Figure1. Comparison of the results of the tracing operator for a gray value image (left) and a
color image (middle); the interest operator for tracking color point features in horizontal direction
(right)

We denote the known displacement direction of a pointx = (x; y)T by r(x; y; t)
and assume thatkr(x; y; t)k = 1. We now want to find the optimal displacementd(x; y; t) = u(x; y; t) r(x; y; t) by simply determiningu(x; y; t). The computation is
similar to the formulas given above; instead of the gradientwe now use the directional
derivative of the functionf in directionr(x; y; t).
Using the Taylor approximationf (x� u(x; y; t) r(x; y; t)) � f(x)� u(x; y; t) (J(�; �; t))Tr(x; y; t) (7)

and the error estimation� = ZZ(�;�)T2W(x;y)kh(�; �) � u (J(�; �; t))Tr(x; y; t)k2 d�d� (8)

we obtain after differentiation with respect tou and setting to zero:u(x; y; t) = RR(�;�)T2W(x;y)(h(�; �))T(J(�; �; t))Tr(x; y; t) d�d�RR(�;�)T2W(x;y)k(J(�; �; t))Tr(x; y; t)k2 d�d� : (9)

For this case, the tracing operator is defined as the value of the denominator. Its value is
large for those points, which can be tracked well. Therefore, the case of the denominator
being zero does not matter. The same method also is applicable to gray value images.
Figure 1 shows, that with the restriction of motion direction, all inhomogeneities in
motion direction are locations for features which can be tracked good.

5 Experiments

For the evaluation, we used an image sequence of an office environment. Figure 2 shows
the tracked points for a sequence consisting of 32 single frames with 768� 576 pixels
each. The maximum displacement of corresponding points is 55 pixel between the first
and the last frame. In this example, 1000 features have been tracked with window size
5�5 pixels.



Figure2. The best 1000 features selected in the first frame of the colorimage sequence (left);
tracked features in last frame (right)

To evaluate the correctness of the tracking process, one measure can be how many
points get lost during tracking. The criterion forloosinga point is, that the mean pixel
intensity difference within the window to the preceding frame is more than 8 gray–
values (in the color case, the color value is converted to theluminanceY of XY Z
color space). Figure 3 shows the number of lost points in dependence on the size of
a square window for different methods and different color spaces. It can be seen, that
the use of color decreases the number of lost points significantly. But the application of
the(RG;BY;WB) color space is worse than the plainRGB space; this is surprising
since the differences of color vectors in (3) use the Euclidian distance measure which
does not correspond directly to perceptual differences inRGB. The decrease of lost
points here is 37% in the case of a window size of3� 3. The following table shows the
computing times on an SGI O2 for a window size of5� 5:

Computing times in seconds
task gray–level color
computing gradients 1.2 3.6
feature selection 39.5 41.0
tracking points 0.4 1.0
total time (32 frames) 90.3 187.2

For the first frame, the gradients are computed and features are selected. For the other
31 frames, the gradients are computed and the points are tracked. It can be seen that a
lot of time is required for computing gradients. Most time offeature selection is spent
for finding maxima after applying the tracing operator, supposing a minimal distance of
10 pixels between features. It is remarkable, that the time for tracking color features is
less than three times as long as for gray–value features. Thetimes for feature selection
and point tracking increases linearly with the number of pixels within the window.
Therefore it is a proper decision to choose a small window size, color tracking, and theRGB color space to get reliable results and fast computation.
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Figure3. Number of lost points for different methods; 1st: using the gray–level method; 2nd:
using the color method in the(RG;BY;WB) color space; 3rd: using the color method inRGB.

Figure4. First image of a test sequence with 32 single frames taken by alinear moving camera
(left). The 2283 resulting 3–D points seen from two views (middle and right).

6 Application

In this section, we show two applications to point tracking.The first one is for recon-
structing 3–D points from image sequences taken during linear motion. The second one
shows how to calibrate a zoom lens by tracking points while changing the focal length.

In the first application, a pan/tilt camera is moved by a linear sledge to recover depth.
The goal is, to determine the 3–D position of scene points. For each point, the world
coordinates are denoted by the vector(xw; yw; zw)T . Only such points are selected to
be tracked which are local maxima of the tracing criterion described in Sect. 3.

Supposing the image plane always to be parallel to the movingdirection of the linear
sledge, the problem is similar to stereo vision supposing parallel optical axes and in-
tersecting image planes [5]. In contrast to stereo vision, in our case the correspondence
problem is not to be solved explicitly. The point correspondences result from tracking
during camera movement. The trajectories then can directlybe used to determine the
world coordinates.

We make the generalization of a camera with an arbitrary orientation, given by pan
and tilt angle. This case is reduced to the above mentioned parallel one by projecting all
viewing rays to the planez = 1. The camera coordinate system is chosen such that thez–axis is orthogonal to and thex–axis is parallel to the moving direction of the camera.
Then the camera coordinate system is chosen to be independent of the actual camera
orientation. Every viewing ray and its corresponding scenepoint then is determined
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Figure5. Logarithmic local magnification and its linear approximation (left). Resulting function
of magnification relative to the minimal zoom position (right).

by the vector(xp; yp; 1)T corresponding to homogeneous coordinates. Viewing rays in
the direction of motion cannot be represented by this vector. This is no limitation to
the generality of the method, as the projection of the corresponding scene points does
not change during motion and therefore no depth informationcan be obtained at all.
To calculate the normalized coordinatesxp andyp, the projection parameters must be
known. We use the calibration technique [10] to get them.

Because of epipolar constraints, theyp coordinate is constant for all positions of the
linear sledge. Without loss of generality, we suppose the world coordinate system to
be equal to the camera coordinate system at the leftmost position of the linear sledge.
The vector(x
; 0; 0) then describes the translation of the world into the camera coordi-
nate system. The normalized image coordinatexp depends linearly on the valuex
 byxp(x
) = (xw � x
)=zw. Using this equation, the world coordinates(xw; yw; zw)T of
the tracked scene point can be estimated by linear regression [7]. This approximation
additionally gives a measure for the uncertainty of the trace. It can be used to eliminate
points whose trajectories are not linear and therefore do not correspond to a single scene
point.

Figure 4 shows the result for the same image sequence as in Sect. 5. The computing
time for this sequence is 167 seconds on an SGI O2, including the processes of tracking
and 3–D reconstruction.

Another application to point tracking is to determine the dependence of focal length
on the setting of the motor of an automatic zoom lens. We call motor position of the
zoom lenszoom position. The method [11] achieves this by calibrating the projection
parameters for several zoom positions using a calibration pattern and interpolating func-
tions for each parameter. The main practical problem of thisapproach is to segment the
calibration pattern for the whole domain. In our application [4], we only needed the
value of focal length. Therefore we developed a new simple method based on tracking
points.

We record a sequence of images changing the zoom positions over the whole range.
For this sequence we track points, substituting disappearing ones by new ones. The lo-
cal magnification between two neighboring frames can be calculated by averaging the
magnification of connection lines of randomly chosen pairs of points. To compute the
magnification of a single zoom position relative to the minimal one, all local magnifi-



cations between them have to be multiplied. Experiments show, that this attempt is too
sensitive to outliers of local magnification. To avoid this,the logarithms of the local
magnifications are approximated linearly (see Figure 5, left). The function of the loga-
rithmic magnification then can be calculated by integratingthe approximated logarith-
mic local magnification. This trick reduces the influence of local errors. After applying
the exponential function, we get the magnification relativeto the minimal zoom posi-
tion. (see Figure 5, right). If the focal length of the minimal zoom position is known,
each focal length can be calculated by multiplying the corresponding relative magnifi-
cation.

It would also be possible to use point tracking for calibrating the minimal focal
length by analyzing point trajectories in image sequences taken from a slightly rotating
camera.

7 Conclusion

This article shows, that the method [9] for tracking point features in gray–value images
can be extended successfully for color images. It is verifiedby experiments, that color
information increases the robustness of the tracking procedure. Considering the knowl-
edge of motion direction, more features can be selected for tracking. The use for depth
recovery and zoom lens calibration shows the application for different problems.

By applying resolution hierarchies, larger displacementsof features between single
frames will be manageable in future.
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