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Abstract Tomasi and Kanade presented a strategy for the selectiofoaadb-
sequent tracking of points in sequences of gray—level imaghe strategy is
based on the notion of “interest” of a point and requires thatdisparity of a
point is small between any two images.

In this contribution we extend this principle to sequendesabor images in dif-
ferent color spaces. We compare the results to those cothpiitie the original
algorithm. The goal is to track as many points as possiblagdong as possible.
Using the trajectories of the points and the camera parameteD information
is reconstructed in our experimental setup. A pan/tilt mniunted to a linear
sledge is used. We describe how the zoom lens is calibratadioyple algorithm.
Keywords: color, motion, tracking, 3—-D, calibration

1 Introduction

Two basic questions must be answered when points are trackethge sequences:
how to select the features, and how to track them from franfietoe.

For the selection of point features, several methods arefiifimm literature. Well—
known examples are the “interest operator” in [3] and thegéedetector” from [6]. [8]
gives an overview over several techniques. To track poattfes, many methods exist
using the correlation between local windows. An overviewalso be found in [8]. The
solution described in [9] combines these two problems tq biebased on [2], where
a method for registering images for stereo matching is ppego

The applications of point tracking are manifold. In the daling we use this tech-
nique to recover depth from a static scene seen by a calibcateera moving on a lin-
ear sledge. We also show its application for an automatibregion of a multi-media
camera.

This article is structured as follows. Sect. 2 explains thigioal approach. In Sect. 3
the algorithm is extended to color images and tested for tifferdnt color spaces.
Sect. 4 shows how to restrict the search direction. Experisnare given in Sect. 5,
followed by two applications shown in Sect. 6. The paper emitls the conclusion in
Sect. 7.



2 Tracking Pointsin Gray Value Images

The basic idea in [9] is to select those points in the imageisece, which exhibit
features for stable tracking. Thereby the two questionslwhiere formerly posed in-
dependently, are now combined to one problem.

We formalize the problem using an image functiffx, y,¢) depending on the
positionx = (ac,y)T and on the time. If we look at a point at time and at po-
sition z and at the same point at time+ 7 and at positionz + d(z,y,t) (with
d(z,y,t) = (di(z,y,t),ds(x, y,t))T), we assume that the residual erece (f(z —
di(z,y,t),y—da(z,y,t),t)— f(z,y,t+7))? is minimal. We define within a Window
W(z,y) as

// (1 = di(w,y,1),v = do(@,y,1),1) = f(p,v,t + 7)) dpdv. (1)

(1.0) " EW(2,)

We denote the gradient at tinteand position(u, v) by g(p, v, t) = V. f(u, v, t) .
Using the gradient we approximate the intensity functiomByylor expansion:

Flu—di(z,y,t).v — do(@,y,1),1) & f(u,v,t) — (g v, 1) - d(z,y,1).

Using this approximation we can set the derivative to ze@m minimize the value
of e using Eqg. (1) with respect to the displaceméit, y, ¢) . This yields the following
equation:

Glop. 0w ,1) = e(w,.) = [ [ (FGont) = St +7)) gl vot) dpc

(@)

with a symmetri@ x 2—matrixG(z, y, t)

G(z,y,t) // g(u,v,t)(g(p, z/t)) dudv = <gll 912>
g12 g22

()T eW(z,y)

This set of linear equations can be solved uniquely. Thetisoldior the displacement
d(z,y,t) is an approximation of the real displacement. If we resantipdefunction
flz+di(z,y,t),y + da(z,y,t),t) inside of the windowV (z, y) using bi-linear in-
terpolation, we can iterate the algorithm and compute thpldcement with sub—pixel
accuracy. In [9], the minimal Eigenvalue of the ma#fiXz, y, t) is used as measure for
selecting points for tracking. It judges whether the textof the object at the consid-
ered location is strong enough to be distinguished fromadigoise, and whether the
point can be tracked in any direction. This defines an opeveltech judges points for
point tracking. We call itracing operatom the following. Results of this operator can
be seen in Figure 1



3 Tracking Pointsin Color Images

In [1] we extened the ideas presented in Sect. 2 to color isvadpch are represented
by vector-valued intensity function§z, y, t) and did experiments faRG B data. The
derivatives and equations for the tracking can be deriveshalogy to the scalar case.
In the following we use we use arbitrary color spaces.

The residual value for a displacement veat¢r, y, t) = (di (z,y,t), ds(z,y,t))"
inside a window/\/ (z, y) is defined for color vectors by:

// 1F Gt = da (2,9,1),0 — da (2, y,8), 1) — F vt + )P dpdv . (3)

(1) " EW(2,y)

The Taylor approximation for the color image case uses theblanJ (z,y, t) of
f(z,y,t) in the variables: andy.

Flu—di(a,y,t),v —da(x,y,8).0) & Fu,v,t) = (T (v, 1) dlz,y,1). (@)
Inserting (4) into (3) and defininby(u, v, t) := f(u, v, t) — f(u, v, t + 7), we get:

/ (v, 8) — (T 1, v, )", , ) dpedo (5)
Eny

The optimal displacemeal(z, y, t) which minimizes the errar can be determined
by setting the gradient efwith respect tal(z, y, t) to zero:

// 2-1 (1, v, )(T (v, 1)) e, y, 1) —2J(uav,t)h(u,v,t)) dpdv =0

(z,y)

// (uy v, t)(J ,uz/t)) dudv d(z,y,t) = // (v, t)h(u, v, t)) dudy

;“/) EW(z (u,)T GW

G(%y,t) d(w,yi) = e(r,y,t)

J

(6)

As for scalar functions, this system of equations can beesblwniquely. Like in
the scalar case, the minimal Eigenvalue for the mat¥ix, y,t) defines the tracing
operator. An example is shown in Figure 1.

Even better results can be obtained, if the camera motiomasvk, as we show
next.

4 Tracking in Known Direction

If the camera motion is known, we can use a prediction fokkiracpoints. In the case
of translational motion, we can use the epipolar conssdinbwn from stereo vision.
This further extends the ideas of [9]:



Figurel. Comparison of the results of the tracing operator for a gi@yerimage (left) and a
colorimage (middle); the interest operator for trackinpcpoint features in horizontal direction

(right)

We denote the known displacement direction of a paint (z, y)T by r(z,y,1t)
and assume thatr(z,y,t)|| = 1. We now want to find the optimal displacement
d(z,y,t) = u(z,y,t) r(z,y,t) by simply determining:(z, y,t). The computation is
similar to the formulas given above; instead of the gradiemhow use the directional
derivative of the functiory in directionr(z, y, t).

Using the Taylor approximation

fla—ul@,y, )@y t)~ f@) —u@yt) (J(po,t) r@yt) (@)

and the error estimation

e= / / () — u (T (v, 1) (2, 0) | dado ®)
()" EW(2,y)

we obtain after differentiation with respecticand setting to zero:

If (Rl )" (T (v, ) (2, y, 1) dudy
()T eEW(z,y)

I

u(z,y,t) = ©)

(I (1, 1) (2, £)12 dudy
(u)TeW(2,y)

For this case, the tracing operator is defined as the valleeafénominator. Its value is
large for those points, which can be tracked well. Therefibiecase of the denominator
being zero does not matter. The same method also is ap@italgray value images.
Figure 1 shows, that with the restriction of motion direnti@ll inhomogeneities in
motion direction are locations for features which can bekied good.

5 Experiments

For the evaluation, we used an image sequence of an officevanvéent. Figure 2 shows
the tracked points for a sequence consisting of 32 singtadsawith 768x 576 pixels
each. The maximum displacement of corresponding points jExel between the first
and the last frame. In this example, 1000 features have baeked with window size
5x5 pixels.



Figure2. The best 1000 features selected in the first frame of the dolage sequence (left);
tracked features in last frame (right)

To evaluate the correctness of the tracking process, onsuresaan be how many
points get lost during tracking. The criterion floosinga point is, that the mean pixel
intensity difference within the window to the precedingnfrais more than 8 gray—
values (in the color case, the color value is converted tduhenanceY of XY Z
color space). Figure 3 shows the number of lost points in né@ece on the size of
a square window for different methods and different colacgs. It can be seen, that
the use of color decreases the number of lost points signific&8ut the application of
the (RG, BY, W B) color space is worse than the pla®@ B space; this is surprising
since the differences of color vectors in (3) use the Euafidlistance measure which
does not correspond directly to perceptual differenceB@B. The decrease of lost
points here is 37% in the case of a window siz8 &f 3. The following table shows the
computing times on an SGlXJor a window size ob x 5:

Computing times in seconds
task gray—level | color
computing gradients 1.2 3.6
feature selection 39.5 41.0
tracking points 0.4 1.0
total time (32 frames) 90.3 | 187.2

For the first frame, the gradients are computed and featueesetdected. For the other
31 frames, the gradients are computed and the points aiettalt can be seen that a
lot of time is required for computing gradients. Most timefediture selection is spent
for finding maxima after applying the tracing operator, segipg a minimal distance of
10 pixels between features. It is remarkable, that the tonérécking color features is
less than three times as long as for gray—value featuredifmke for feature selection
and point tracking increases linearly with the number ofefsxwithin the window.
Therefore it is a proper decision to choose a small window, sialor tracking, and the
RG B color space to get reliable results and fast computation.
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Figure3. Number of lost points for different methods; 1st: using thayglevel method; 2nd:
using the color method in theRG, BY, W B) color space; 3rd: using the color methodrt B.

Figured. First image of a test sequence with 32 single frames takenliogar moving camera
(left). The 2283 resulting 3—D points seen from two viewsddhé and right).

6 Application

In this section, we show two applications to point trackifpe first one is for recon-
structing 3—D points from image sequences taken duringtinetion. The second one
shows how to calibrate a zoom lens by tracking points whikngfing the focal length.

Inthe first application, a pan/tilt camerais moved by a lired@dge to recover depth.
The goal is, to determine the 3-D position of scene points.each point, the world
coordinates are denoted by the vedtey,, y.,, z.,)T. Only such points are selected to
be tracked which are local maxima of the tracing criteriogadied in Sect. 3.

Supposing the image plane always to be parallel to the malitegtion of the linear
sledge, the problem is similar to stereo vision supposirrglied optical axes and in-
tersecting image planes [5]. In contrast to stereo visiopLir case the correspondence
problem is not to be solved explicitly. The point correspameces result from tracking
during camera movement. The trajectories then can dirbetlysed to determine the
world coordinates.

We make the generalization of a camera with an arbitranntaten, given by pan
and tilt angle. This case is reduced to the above mentiorradiglaone by projecting all
viewing rays to the plane = 1. The camera coordinate system is chosen such that the
z—axis is orthogonal to and the-axis is parallel to the moving direction of the camera.
Then the camera coordinate system is chosen to be indepesfdée actual camera
orientation. Every viewing ray and its corresponding scpamt then is determined
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Figureb. Logarithmic local magnification and its linear approxinoati(left). Resulting function
of magnification relative to the minimal zoom position (righ

by the vector(z,, y,, 1)T corresponding to homogeneous coordinates. Viewing rays in
the direction of motion cannot be represented by this vedtois is no limitation to

the generality of the method, as the projection of the cpording scene points does
not change during motion and therefore no depth informatanmbe obtained at all.
To calculate the normalized coordinatgsandy,, the projection parameters must be
known. We use the calibration technique [10] to get them.

Because of epipolar constraints, thecoordinate is constant for all positions of the
linear sledge. Without loss of generality, we suppose thedvmoordinate system to
be equal to the camera coordinate system at the leftmogigosf the linear sledge.
The vector(z., 0, 0) then describes the translation of the world into the cameoadi-
nate system. The normalized image coordingtelepends linearly on the value by
z,(7.) = (74 — )/ 2,. Using this equation, the world coordinates, , y., z.,)* of
the tracked scene point can be estimated by linear regrefgioT his approximation
additionally gives a measure for the uncertainty of thegrétccan be used to eliminate
points whose trajectories are not linear and therefore tloaroespond to a single scene
point.

Figure 4 shows the result for the same image sequence astirbS€boe computing
time for this sequence is 167 seconds on an Sgii@luding the processes of tracking
and 3-D reconstruction.

Another application to point tracking is to determine thpeledence of focal length
on the setting of the motor of an automatic zoom lens. We catomposition of the
zoom lenszoom positionThe method [11] achieves this by calibrating the projectio
parameters for several zoom positions using a calibratittep and interpolating func-
tions for each parameter. The main practical problem ofgpjgroach is to segment the
calibration pattern for the whole domain. In our applicat[d], we only needed the
value of focal length. Therefore we developed a new simpléhatebased on tracking
points.

We record a sequence of images changing the zoom positiengt@/whole range.
For this sequence we track points, substituting disappganes by new ones. The lo-
cal magnification between two neighboring frames can bautatled by averaging the
magnification of connection lines of randomly chosen painsants. To compute the
magnification of a single zoom position relative to the miairane, all local magnifi-



cations between them have to be multiplied. Experiment&sthat this attempt is too
sensitive to outliers of local magnification. To avoid thise logarithms of the local
magnifications are approximated linearly (see Figure 5).I&€he function of the loga-
rithmic magnification then can be calculated by integratiregapproximated logarith-
mic local magnification. This trick reduces the influenceaafdl errors. After applying
the exponential function, we get the magnification relatovéhe minimal zoom posi-
tion. (see Figure 5, right). If the focal length of the minirraom position is known,
each focal length can be calculated by multiplying the cgreading relative magnifi-
cation.
It would also be possible to use point tracking for calibrgtthe minimal focal

length by analyzing point trajectories in image sequenraest from a slightly rotating
camera.

7 Conclusion

This article shows, that the method [9] for tracking poirdtfges in gray—value images
can be extended successfully for color images. It is verliigexperiments, that color
information increases the robustness of the tracking phage Considering the knowl-
edge of motion direction, more features can be selecteddoking. The use for depth
recovery and zoom lens calibration shows the applicatiodiféerent problems.

By applying resolution hierarchies, larger displacemeiifeatures between single
frames will be manageable in future.
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