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AbstractIn the ontribution we present the omparison of di�erent histogram distane measuresand olor spaes applied to objet loalization. In partiular we examine the EarthMover's Distane whih has not yet been ompared to other measures in the area of objetloalization. The evaluation is based on more than 80,000 experiments. Furthermore, wepropose an extension to Normalized RG olor spae and an eÆient sanning algorithmfor loalization.
1 Introduction

Localizing an object in a scene is a common task in computer vision. Color as a cue for
solving this problem was presented by Swain and Ballard in [Swa91]. There it was shown
that the distributions of color information, i.e. color histograms, can be used to solve the
object localization problem.

In order to localize the object in the scene, we try to find that sub–image of the scene
image, which has the smallest distance from the object image. The distances in sense of
histograms are concerned.

We examined several histogram distance measures and color spaces in which we eval-
uated the histograms. We restricted our experiments to finding objects in the office scenery,
whose sizes were known a priori from manual segmentation.1

This contribution is organized as follows; in Section 2 we introduce color histograms. In
Section 3 we briefly describe the color spaces that were used in the experiments. Distance
measures for histograms are discussed in Section 4. Section 5 describes how we applied
histograms to object localization in real–world scenes. Section 6 describes the conducted
experiments and presents the results. In Section 7 we summarize our contribution.

2 Color Histograms

There is no straightforward solution for the best color image feature representation. Adaptive
histograms are said to describe the color information best. At the same time they need time–
expensive clustering algorithms. [Rub98] used them for database image retrieval, i.e. an
area well suited for off-line computations of histograms.

The requirements for the localization of objects differ from those of image retrieval. Sev-
eral thousand histogram computations and their comparisons have to be performed on-line

0This work was carried out during a visit to the University Erlangen-Nürnberg, supported by the
Socrates/Erasmus student program grant.

1In experiments published in [Ahl98], it was shown that the size can be estimated automatically from 3D
information. [Vin98] proposed focused color intersection, where the objects can be localized without knowing
their size in the scene.



for a single standard scene. That is why we took advantage of full histograms with uniform
binning which can be quickly computed.

However, there are some drawbacks of this strategy. Uniform histograms do not accom-
modate the actual distribution of color information. E.g. for fine quantization many bins are
empty or of no importance.

We assume that a close–up view of an object is given in the image f = [f ij℄i=1:::M;j=1;:::N
where f ij is a color pixel, i.e. f ij = (rij; gij; bij)T. This object is to be found in the scene f 0.
We compute histograms S for the scene and T for the objectS = [Sl℄l=1:::L T = [Tl℄l=1:::L (1)

where the number of bins L depends of the chosen quantization and the color space. Theh function maps a color pixel to the index in the histogram, e.g. for a RGB histogram with4�4�4 bins (L = 64) and for color components in the range from 0 to 255 we might choose:h : ( IR3 ! f1; : : : Lgf ij = (rij; gij; bij)T ! drij=64e � 16 + dgij=64e � 4 + dbij=64e (2)

The elements of the histogram T are defined as:Tl = 1NM ���n(i; j)jh(f ij) = l; i = 1 : : :M; j = 1; : : : No��� (3)

The elements of S are defined analogously.

3 Color Spaces

The histograms of color images can be computed in arbitrary color space. We decided to
carry out our experiments using the following spaces:

RGB - the standard color space representing the red, green, blue components; r; g; b 2[0; 1℄.
(Normalized) RG - eliminates intensity from the standard RGB model. Its components are

defined as: (r0; g0) =  rr + g + b; gr + g + b! (4)

HSI - the classical hue-saturation-intensity space. There is no unique conversion algorithm
between RGB and HSI. We chose the one presented in [Fol92], because of its com-
putational simplicity in comparison with algorithms presented in other sources.

YUV - color space family used in analog television transmission. Following the ITU (In-
ternational Telecomunication Union) R-601 Recommendation , we used the YCbCr
standard.2

CIElab - device-independent color space standard, which was derived from psychophysical
experiments, describing all possible colors. Its vital property is that the geometric
distance measured in it corresponds to the perceived differences between colors. We
use the ITU R-601 Recommendation (with D65 white illuminant).

2Description can be found at http://www.well.om/user/rld/vidpage/olor faq.html



In our experiments we also use following chromaticity-only versions of the presented
compound spaces:

H - consisting only of hue component of the HSI space,

UV - YUV model with luminance (Y) component removed,

AB - consisting only of CIElab chrominance components (a and b).

Apart from RGB, all other spaces do not cover the whole range of uniform binning space.
We considered the normalized rg color space which covers only half of the area being
binned. To make up for this problem, the binning strategy can be altered. The other solution
is to transform the color space so that it covers the whole uniformly binned space. We found
and propose the appropriate transformation for that space:r00 = ( r0 + g0 : if r0 � b02r0 : otherwise

(5) g00 = ( 2g0 : if r0 � b0r0 + g0 : otherwise
(6)

The resulting space, after applying the described transformations, is presented in Fig. 2.
We included the modified RG space now called RG2 in the experiments.

4 Distance Measures

To be able to compare the histograms we need distance measures. In the following we
present those which we chose to use in our experiments.

Histogram Intersection - a classical measure proposed in [Swa91]. It is computationally
inexpensive generalization of geometric L1 Minkowski’s distance defined by:\(S;T ) = LXl=1minfSl; Tlg (7)

Sum of Squared Differences (SSD) - defined by:SSD(S;T ) = LXl=1(Tl � Sl)2 (8)

Chi–square Test - statistical method. There are a few different versions of that measure
in the literature [Puz98, Sch97, Pre88] We decided to use the following definition:�2(S;T ) = LXl=1 (Sl � Tl)2Tl (9)

It was shown that using this definition, the best results were obtained with respect to
noise, blur, and image plane rotation [Sch97].

Earth Mover’s Distance (EMD) - Innovative measure presented in [Rub98] which repre-
sents the minimal transportation cost of one histogram to another.

EMD(S;T ) = minF PL�=1PL�=1 F��D��PL�=1PL�=1 F�� (10)



EMD makes use of the ground distance Dij, that is the distance between two his-
togram bins Si and Tj; we chose the geometric distance between colors in particular
color space for that task.

Computation of EMD involves the solution of the transportation problem, where a ma-
trix F = [F�;� ℄1;:::;L;1;:::;L represents the flow from bin S� to T� . The flow cannot be
negative (0 � F�;�) and is further constrained by:LX�=1F�� = T� LX�=1F�� = S� LX�=1 LX�=1F�� = 1 : (11)

It makes EMD the most computationally expensive among exploited measures. It
can be implemented by means of linear programming methods, such as the simplex
algorithm.3

5 Object Localization

In order to localize the object we performed an exhaustive search for the minimal distance
between the object and the sub–image of the same size in the scene, where the distance
between the histograms were concerned. This requires that the histogram of the estimated
object size is computed at many locations in the scene image.

We exploited the lower bounds estimation algorithms to reduce the number of time-
consuming distance measure computations. These algorithms are permitted to cancel his-
togram comparison when some threshold of difference is exceeded [Vin98, Rub98]. The
lower bounds can be efficiently computed and they do not sacrifice accuracy of the results.
We used the Active Search method [Vin98] for histogram intersection and the distance
between centroids of histograms for EMD [Rub98].

Additionally we reduced the run–time for the local histograms computations at the hy-
pothesized object location in the scene. Histograms of neighboring sub–images are highly
correlated because of their relatively large common part. We reused previously computed
histograms of the neighborhood by adding new pixels and subtracting those which no longer
belonged to the sub–image.

For efficient histogram computation, we used a scan
path that is shown in Fig. 1 which minimizes the number of
required computations. This strategy resulted in a compu-
tational complexity which was independent of the histogram
size.
In addition to the best match, four other possible object lo-
cations were estimated in the scene for each object. For
that purpose, an interest map was computed with the size
of the scene image. Each entry in this map represent the

--

++

Fig. 1: Scan path.

distance between the object histogram and the histogram of a sub–image around the given
location in the scene image. Local maxima in this interest map represent possible object
locations. Fig. 3 shows a scene in which the object 11 was localized. The interest map for
a full search using the SSD distance measure is shown in Fig. 4. Fig. 5 shows the result of
active search using histogram intersection.

3We used the Y. Rubner’s code for EMD found athttp://robotis.stanford.edu/ rubner/emd/default.htm.



6 Experiments

We selected 17 objects as a data set for our experiments. The acquisition procedure con-
sisted of the following steps:� taking a picture of the object on a black background with some other objects in the

scene,� taking a picture of the same scene but with the object of interest removed,� subtracting those images, then applying the median filter and thresholding it in order
to obtain the mask,� computing the bounding box of a mask of the object,� finally, applying the AND operator to the mask and the first image mentioned to extract
the object.

The result of this automatic procedure are images which are clamped to the mask bound-
ary as shown in Fig. 6.

Next, we took images of 9 office scenes, each under four different illumination condi-
tions. Each scene contained each of the object from the data set. To simulate the spectral
illumination changes, we used daylight, bulb lamps and neon lamps. In one scene, we used
a black cloth as a relatively homogeneous background.

We conducted localization for every color space, distance measure and histogram quan-
tization combination. For Histogram Intersection, SSD and �2, the histograms with 6, 12,
16 and 32 quanta along each axis were used. In case of EMD we assumed an upper
limit of a total of 100 bins, because of its high computational cost. It gave us 4 quanta for
three-dimensional spaces (RGB, YUV, CIElab, HSI) and 4, 6, 8, and 10 quanta for other
ones.

We examined the results in three series: under constant lighting, under varying illumi-
nation conditions, and on a black background under variable illumination. In Table 1 we
present the rates of successful localization for each of the test objects. Plots of the overall
rates obtained for color spaces using respective distance measures are shown in Fig. 7.4

4Additional figures can be found on the accompanying CD–ROM.

Obj. Exp. found 1 2
1 4737 40.08% 25.64% 5.65%
2 4729 46.56% 30.53% 7.46%
3 4720 15.72% 7.41% 3.05%
4 4711 50.37% 28.06% 9.17%
5 4728 8.79% 2.41% 1.90%
6 4719 20.87% 8.58% 3.36%
7 4724 21.25% 9.39% 3.25%
8 4716 26.78% 12.53% 4.26%

Obj. Exp. found 1 2
9 4594 50.28% 37.61% 4.65%
10 4697 34.46% 15.90% 6.77%
11 4597 32.67% 13.26% 8.15%
12 4701 46.05% 20.71% 10.21%
13 4599 19.15% 10.02% 3.30%
14 4703 24.21% 10.73% 4.27%
15 4568 46.71% 27.49% 8.12%
16 4699 8.17% 2.95% 1.57%
17 4696 60.43% 44.01% 7.21%

Table 1: Results for the individual objects. First column shows the total number of experi-
ments. Second column; the total localization rate. The other columns; the rates for the first
and second hypotheses.



7 Conclusions

For Histogram Intersection and the AB color space using 12 quanta, we observed a strong
local maximum of the localization rate. This configuration gave the best overall results for
variable illumination.

The combination of bin–by–bin distance measures (Histogram Intersection, SSD and �2)
with the AB color space gave outstanding results. Furthermore, the changes in illumination
did not considerably deteriorate the localization rates using AB color space.

Curiously, the proposed RG2 model outperformed the other color spaces in localizing
objects using the EMD measure.

The 2–D spaces were as good or better then their 3–D equivalents at localizing objects
in real–world scenes (on an arbitrary background). Nevertheless, 3–D spaces performed
better on a black background; for Histogram Intersection, recognition rates up to 89% could
be realized.

Searching through the image can be dramatically accelerated by applying the lower
bound estimations to distance measures. Those methods gave a great performance gain;
on average only 13% of all the distances had to be computed.

Naturally, objects were localized better if their sizes in the scene were larger. The evalu-
ation showed, however, that even for small objects satisfactory rates were achieved.

This contribution is an excerpt from the diploma thesis. For details seehttp://www.olimp.om.pl/krzyho.
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Fig. 2: Normalized RG (left) and RG2 space (right)

Fig. 3: Exemplary test scene Fig. 4: Interest map for object
11 using SSD measure

Fig. 5: Interest map for object
11 using Histogram Intersec-
tion with Active Search
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Fig. 6: Data set of the test objects
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