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Abstract

The computation of camera motion from imagemeasure-
ments is a parameter estimation problem. We show that for
the analysis of the problem’s sensitivity, the parametrization
must enjoy the property of fairness, which makes sensitiv-
ity results invariant to changes of coordinates. We prove
that Cartesian unit norm vectors and quaternions are fair
parametrizations of rotations and translations, respectively,
and that spherical coordinates and Euler angles are not. We
extend the Gauss-Markov theorem to implicit formulations
with constrained parameters, a necessary step in order to
take advantage of fair parametrizations. We show how esti-
mation problems whose sensitivity depends on a large num-
ber of parameters, such as coordinates of points in the scene,
can be partitioned into equivalence classes, with problems
in the same class exhibiting the same sensitivity.

1. Introduction

The estimation of camera motion from image measure-
ments is an important but delicate problem in computer
vision. A purely algebraic-geometric study that solves the
problem’s equations under the assumption of exact data is
conceptually important for the understanding of the exis-
tence of solutions, their number, and the characterization of
possible singularities. However, computer vision programs
always operate on noisy inputs. For an ill-posed problem
like camera motion estimation, in which small perturbations
of the input cause large errors in the output, handling noise
properly makes all the difference between success and fail-
ure.
As a consequence, the appropriate approach to the prob-

lem is statistical parameter estimation. In this framework, a
set of unknown parameters such as camera motion and the
3D positions of points in the scene are to be estimated from
a set of measurements such as image positions or veloci-

ties. The conditional probability (the observation model)
of the measurements given the parameters is assumed to
be known. Then, an effective and widely used estimation
method is Maximum Likelihood (ML), which estimates the
unknown parameters to have those values that maximize the
observation model.
However, exactly how sensitive the outputs are to noise

in the image measurements is still a poorly understood
problem. Several analysis efforts have appeared (see
[12, 5, 9, 16, 11, 14, 17] among many) , but a system-
atic study of the issue is still lacking. Given the importance
of the problem, as well as the vast literature on parame-
ter estimation and sensitivity analysis techniques, this may
seem surprising. In this paper, we show that certain rep-
resentational issues make the vision parameter estimation
problem somewhat nonstandard, while others can confuse
the interpretation of sensitivity results.
First, we show that the traditional formulation of a param-

eter estimation problem, inwhichmeasurements are explicit
functions of the unknown parameters, is often inconvenient
when posing the problem of camera motion estimation, or
when analyzing its sensitivity. To address this difficulty,
we provide extensions to the standard Gauss-Markov the-
orem for covariance propagation that allow analyzing the
sensitivity of implicit problems with constraints.
Second, we show that in vision, as well as in any other

problem, not all choices of parameters and observationmod-
els are equally goodwhen it comes to interpreting sensitivity
figures. To formalize this observation, we define the notion
of a fair parametrization, in order to tell good from bad
representations in this sense. We define fair parametriza-
tions for camera rotation and translation, and we illustrate
the problems that arise from unfairness.
Third, we show how to partition large classes of estima-

tion problems into equivalence classes, such that all prob-
lems in the same class exhibit the same sensitivity. This
makes it possible to report sensitivity figures concisely for
problemswith a large number of parameters. A case in point



is camera motion estimation, which generally depends on
the particular constellation of points in the scene.
In section 2 we define a general form of parameter esti-

mation problem in which measurements appear implicitly,
and the unknown parameters are subject to equality con-
straints. In section 3 we show the form thatMaximum Like-
lihood (ML) estimation takes for this class of problems, and
in section 4 we extend the Gauss-Markov theorem for co-
variance propagation to implicit estimation problems with
constraints. In section 5 we address fairness. Finally, in
section 6, we show how to reduce the analysis of problems
with very many parameters into a much smaller number of
problem classes, with all problems in any given class having
the same sensitivity. Throughout the paper, we illustrate
these concepts for the simple problem of camera translation
estimation.

2. Camera Motion Estimation

Suppose that several image measurements have been made,
and collected into an -dimensional vector . These mea-
surements could be for instance image coordinates of scene
points in several images, or image motion flow fields, and
they are alwaysnoisy. Let be the vector of noise values that
corrupt the measurements. While is of course unknown,
we assume that its statistical properties are given. From
these noisy measurements, we wish to estimate a vector
of unknown parameters, say, the camera rotation, transla-
tion, and possibly the coordinates of the points in the world.
A set of known projection equations relate unknowns to
the measurements that would be observed in the absence
of noise:

(1)

In the presence of noise there is generally a nonzero residual

(2)

where is the measurement error. In order to simplify
computation, or to eliminate some of the unknowns, the
unknowns are often shown by algebraic manipulation to

satisfy a set of equations in the absence of noise:

(3)

where are the measurements that would be observed in
the absence of noise. If , that is, if there are still
more constraints than unknowns, the new system (3) may
be sufficient to determine the unknowns . In the presence
of noise the residual is

(4)

In the special case , we obtain the stan-
dard residual (2) associated with the measurement model

in the form of equation (1). Since measurement and noise
appear explicitly in equations (1, 2) and implicitly in equa-
tions (3, 4), we call these pairs of equations the explicit and
implicit formulation, respectively.
Often the vector of unknown parameters is subject to

constraints of the form

(5)

2.1. Example

As an example running throughout this paper, consider
the simple problem of estimating the camera translation

from two perspective views in the absence of camera
rotation. Let , , denote the im-
age coordinates of points in the first view, measured in
focal lengths and from the principal point, and ,

, the corresponding image points in the second
view. The vectors and form the measurement vector
. Furthermore, let

and

If and are the point depths, that is, the optical axis com-
ponents of world point from the two centers of projection,
we have

(6)
which expresses the fact that the two projection rays and the
camera translation vector form a triangle.
Since the 3–D camera translation vector can be deter-

mined only up to scaling, it is often constrained to have unit
norm, so that

(7)
is a constraint of the form (5).
Equation (6) implies that the vectors , , are copla-

nar, the well-known epipolar constraint: [13, 4]:

(8)

in which the indeterminacy of the magnitude of is imme-
diately obvious. This equation, although weaker than (6), is
more convenient to work with, because it does not involve
the range terms and . With , equation (8) is an
example for the implicit formulation (3).

3. Implicit, Constrained ML Estimation

When the measurement equations are in their original
form (1), and when the noise is Gaussian with zero mean
and small covariance , the Maximum Likelihood (ML)
estimate of is the solution to the followingminimization
problem [3]:

argmin



where the residual was defined in equation (2). We now
extend this result to the implicit formulation (3, 4). If noise
is small enough that the function is approximately linear in
a neighborhood of that contains with high probability,
then the noise term that appears implicitly in (4) can be
replaced by an explicit equivalent,

(9)

where the covariances of and are related by

(10)

and is the Jacobian of with respect to its first argument
. Thus, equation (9) has the same form as (2), with

the residual playing the role of the measurements , the
projection function being replaced by , and the
noise term being replaced by the equivalent residual noise
term . We therefore have the following result.

Theorem 1 When the noise in (3, 4) is Gaussian with suf-
ficiently small covariance matrix , then the ML estimate
of is the solution to the followingminimization problem

[3]:
argmin (11)

where the covariance of the equivalent noise term is
given approximately by equation (10).

Of course, the minimization in theorem 1 is to be per-
formed subject to constraint (5).

3.1. Example, Continued

For the example of camera translation, the components
of the Jacobian are the partial derivatives of the residual
function in (8) with respect to the image measurements
and :

and (12)

where the subscripts 1, 2 denote vector components. With
points, the Jacobian is , with four nonzero

entries in each row.

4. Covariance of Constrained Parameters

The main focus of this paper is on understanding the
sensitivity of an estimation problem of the form illustrated
above to noise in the image measurements. When the prob-
lem is in the explicit form (1), the main tool for the prop-
agation of covariance from measurements to estimates
is the Gauss-Markov theorem [3]. The equation

(13)

is the perturbation version of equation (2), with the Ja-
cobian of . The Gauss-Markov theorem states that if
is corrupted by Gaussian noise with covariance matrix ,
then is also Gaussian, with covariance matrix

For small perturbations of the measurements , the Gauss-
Markov theorem yields performance bounds for any algo-
rithm used to find the solution to the ML problem (11).
These covariances are lower bounds, because they represent
the covariance that the best possible algorithm would ob-
tain. Notice that is the Jacobian of around the exact
parameter value . When this linearization is done around
uncertain estimates of , the bound above is still valid under
appropriate assumptions, and is known as the Cramer-Rao
lower bound (see [15] for interesting applications of this
bound to camera motion estimation).
In this section, we extend the Gauss-Markov theorem in

two ways, by allowing both for the implicit formulation (3,
4), and for equality constraints of the form (5). Our result
is consistent with [8] for the explicit case, but generalizes to
the implicit formulation and is proven more concisely. The
main result is as follows.

Theorem 2 In the estimation problemwith implicit residual
(4) and constraint (5), let and be the Jacobians of
the residual function with respect to its first and second
argument, respectively. Furthermore, let be the
Jacobian of , let be the singular value
decomposition (SVD) [6] of , and let be the matrix
formed by the last columns of . Then, for small,
Gaussian, zero-mean perturbations of the observations ,
the Maximum Likelihood estimate of is Gaussian with
covariance

(14)

To prove this, we differentiate the constraint equation (5)
to yield a linear constraint on the perturbation of :

where is the Jacobian of the constraint function . We
can therefore reduce the number of free variables by pro-
jecting onto the null space of . If is
the SVD of , this projection is [7]

(15)

where we defined the reduced parameter vector



and is the matrix formed by the last columns of .
Then, the perturbation version of equation (9), that
is,

subject to the constraints (5) can be replaced by the following
unconstrained system:

to which theorem 1 and the Gauss-Markov theorem can be
applied:

This can be transformed back to the reference frame of
through equation (15):

which yields the theorem upon using (10).
As should be expected, the covariance matrix of

the constrained estimate has rank at most , since
the perturbation is zero in directions orthogonal to the
constraint manifold.

4.1. Example, Continued

In our running example, the Jacobian is given in
equations (12). The Jacobian is found by differentiating
(8) to be

and differentiation of the constraint (7) yields

The constraint projection matrix is any orthogonal
matrix whose columns span the plane orthogonal to , that
is, the tangent plane to the unit sphere at . For instance,
with , we can pick

The reduced vector is

and the constrained perturbation is of the form

Finally, the covariance matrix of is seen from equation
(14) to have the form

Of course, for general values of , the rank degeneracy of
is usually less conspicuous, and is computed as stated

in theorem 2 .
For the special problem of camera translation we have

the following simplification of equation (14):

Corollary 1 For camera translation,

(16)

where denotes the pseudoinverse of .

Proof. From the epipolar constraint (8) and equations (12)
we see that translation is in the null space of . Since
the columns of are by construction orthogonal to , they
span both range and row space of the symmetric matrix

, from which the corollary results im-
mediately.

5. Fair Parametrizations

The results of the previous section allow great flexibility
in the choice of formulation for a given estimation prob-
lem, because they properly account for constraints and for
transformations of the noise covariance (see equation (10)).
However, when interpreting sensitivity values, expressed by
the covariancematrix , not all representations are equally
good. For instance, when plotting the sensitivity of camera
translation estimates as a function of direction of translation,
it is important to choose a parametrization of translation that
does not by itself bias the sensitivity values. In other words,
it is desirable to compute sensitivity figures that are inherent
to the problem itself, and do not dependon theparticular rep-
resentation. In this section, we formalize this requirement,
and introduce the notion of a fair parametrization:

Definition 1 A parametrization is fair if any rigid trans-
formation of space results in an orthogonal transformation
of .

To illustrate, let be a set of parameters, and let be the
same parameters after the underlying Cartesian reference
system has been rigidly changed. Then, is fair if the
Jacobian



between and is an orthogonal matrix, i.e., if
, the identity matrix, for all possible rigid trans-

formations of coordinates.
The rationale for this definition is that the results of the

analysis of the sensitivity of an algorithm ought not to de-
pend on the choice of coordinates. That fairness is sufficient
to guarantee this independence is a consequence of the fol-
lowing result.

Theorem 3 If the vector of parameters in anML estimation
problem is fair, then the singular values of the Jacobian
of with respect to are not changed by rigid changes of
coordinates.

This is easily proven as follows. Let be
the singular value decomposition of . Then, the chain
rule for differentiation yields

that is, or

Thus, the SVD of the transformed Jacobian is

which has the same singular value matrix as (and,
incidentally, the same left singular vectors).
The Jacobian matrix governs propagation of errors

from measurements to unknowns, and its singular values
are the essential sensitivity figures. As a consequence, fair-
ness makes sensitivity figures invariant with respect to rigid
changes of coordinates. It allows to study the intrinsicprop-
erties of the given estimation problem independently on the
chosen reference coordinate system. More specifically, we
recall [1] that transformations with orthogonal Jacobians
are called isometries in differential geometry. Isometries
preserve areas and angles. In statistics, areas (and vol-
umes) are associated to overall sensitivity figures, and an-
gles to correlations between parameter components. Fair
parametrizations transform isometrically under rigid coor-
dinate changes, so they make sensitivity figures invariant.
Of course, fair parametrizations are good also because

of their numerical properties, since singularities affect the
convergence of optimization algorithms. However, in this
paper we emphasize the importance of fairness in under-
standing the sensitivity of a problem independently of its
representation.

5.1. Fair Parametrizations for Camera Motion

A popular choice of parametrization for camera motion
is to use a three-dimensional vector for translation and an

orthogonal matrix for rotation. The unit-norm constraint on
translation reduces its degrees of freedom to two; likewise,
the six orthogonality constraints on a rotation matrix
reduce its degrees of freedom to three. Two types of choices
are usually made for the representation of these constrained
quantities:

Redundant: the constraint is listed explicitly next to the
redundant coordinates of the unconstrained quantity:

for translation, and for rotation.

Minimal: a number of variables equal to the number of
degrees of freedom are used. For instance, transla-
tion can be represented by spherical coordinates, and
rotation by Euler angles.

Minimal, one-to-one representations necessarily exhibit
singularities, because the sphere of unit vectors and the space
of rotations cannot be placed in one-to-one correspondence
with or . An intimately related problem is that these
representations are not fair. To illustrate, consider for in-
stance representing translation in spherical coordinates,

Then, a rotation of the reference frame from to ,
where is some rotation matrix, changes
the parameters from to

The Jacobian of this transformation is easily checked
to be far from orthogonal, except for isolated special cases.
Thus, spherical coordinates are not a fair representation

for unit-norm translations. As a consequence, sensitivity
figures depend on the choice of coordinates, an unfortunate
state of affairs: what appears for instance to be a very sen-
sitive set of parameter values may just be a consequence of
the parametrization, and not of the problem itself.
On the other hand, we have the following result.

Theorem 4 Cartesian coordinates, subject to the constraint
of unit norm, are a fair parametrization of translation.

To prove this, notice that translations of the reference sys-
tem do not change the direction of translation of the camera,
and rotations quite obviously rotate the translation vector
itself, so the transformation has an orthogonal Jacobian.
The unit norm constraint is not changed by rigid changes of
coordinates.



For rotations, it is easy to check that minimal one-to-one
representations cannot be fair, since rotations of the under-
lying reference system will move the singularity of this rep-
resentation to different places. Finding a fair representation
for rotations is less trivial.

Definition 2 The quaternion representation

of a rotation about axis (a unit vector) by an angle is
given by

Notice [10] that each rotation has exactly two representa-
tions, and , and that this is a constrained representation,
because .

Theorem 5 Quaternions are a fair representation of rota-
tions.

To prove this, notice that the angle of rotation is invariant
under changes of coordinates, while the axis of rotation is
a contravariant vector: if the reference system changes by
, then the representation of the axis of rotation changes by
. Thus, is changed into

which is an orthogonal transformation.
The same conclusion, and for the same reasons, can be

drawn for so-called angle-axis representations of rotation
[2], in which the axis of rotation and the amount of rotation
in radians are given separately. A more compact, and still
fair representation is tomultiply axis and angle together into
a single vector . This is a minimal representation (three
degrees of freedom), but is not one-to-one,since the same ro-
tation can be represented by infinitely many vectors, whose
magnitudes differ by . Of course, which representation
to use depends on the application.

5.2. Example, Continued

Figure 1 shows two sensitivity plots for our running ex-
ample of camera translation. The scenario is exactly the
same in both figures: a relatively tight cloud of ten points is
placed at about five focal lengths away from the camera, and
about two focal lengths off the optical axis to the right, in
the direction of the camera’s axis. The camera translates
by one focal length in varying directions. The circle on the
ground plane of the plots in figure 1 represents the hemi-
sphere of forward-moving camera translations. For each

translation, the plots show the maximum singular value of
(left plot) or (right), where is the estimate of the

direction of translation represented in constrained Carte-
sian coordinates, while is the estimate of the direction of
translation represented in spherical coordinates. Both co-
variance matrices and are computed according to
equation (14), except that for spherical coordinates there is
no constraint, so the projectionmatrix becomes the
identity matrix.

Fig. 1. Sensitivity of the most sensitive com-
ponent of camera translation as a function of
the direction of motion. The maximum value
on the rim of both plots is of the amount
of translation (translation amount is one fo-
cal length) . Image noise was set to be i.i.d.,
Gaussian, and isotropic, with a standard de-
viation of of the camera’s focal length.

The plot on the right of figure 1, for the spherical repre-
sentation of translation, had to be truncated in themiddle, as
emphasized by the circular hole in the middle of the contour
plot. This is because the spherical representation has a sin-
gularity along the optical axis (forward motion), where the
declination angle is zero, and the azimuth is therefore
undefined. At the singularity, sensitivity goes to infinity.
However, there is nothing particularly bad about forward

motion. In fact, as the fair plot on the left of figure 1 shows,
forward motion is close to optimal, as the minimum sen-
sitivity is reached for a motion approximately toward the
point cloud. The problem with the plot on the right is that
spherical coordinates are an unfair representation of transla-
tion: sensitivity is in the representation, not in the problem
itself. Although both plots are correct, the one on the right
is misleading, because it mixes the intrinsic sensitivity of
the estimation problemwith the sensitivity caused by a poor
parametrization. Notice that also the minimum moves to a
different position between the two plots, as a result of the
unfair representation on the right.
If the underlying reference frame is changed by a rigid

transformation, the plot on the left will be merely shifted.
The plot on the right will change in more complex ways,



essentially superimposing the fixed singularity of the repre-
sentation with the changing distribution of sensitivity peaks
and valleys that are inherent to the problem. The plot on the
left speaks about the sensitivity of the problem; the one on
the right conveys a mixed message. Of course, a singularity
is a particularly dramatic example of unfairness, because
it introduces infinite sensitivities. However, any amount
of unfairness will lead to misleading plots that are hard to
interpret and can lead to false conclusions.

6. Equivalent Scenarios

The form of equation (3) emphasizes the relationship
between ideal measurements and unknowns . How-
ever, various other parameters appear in most estimation
problems. For instance, in the camera translation example,
different sensitivity measures result from different distribu-
tions of the feature points in space. It would therefore seem
that the validity of any sensitivity analysis of the problem is
limited to the particular constellation of points under study.
Fortunately, this is not so. For every value of camera

translation , point constellations can be grouped into equiv-
alence classes, such that two constellations lead to exactly
the same sensitivity. Intuitively, this is because the position
of the points affects sensitivity only through the matrix

as computed through equation (14). In this section, we
first show how each of the points in a given constellation
can be moved without altering the sensitivity of the trans-
lation estimate to image noise. This is a weak result, but
intuitivelyappealing. Then, we give a stronger characteriza-
tion of equivalence classes, by showing that each class has a
representative with just two world points. This allowsmuch
more concise and meaningful reports of sensitivity results
for problems with many parameters.
In the appendix we prove the following preliminary re-

sult.

Lemma 1

where is the unit vector orthogonal to the epipolar plane
of , and is the angle between and the optical axis.

We can therefore conclude as follows.

Theorem 6 If image noise is Gaussian, small, zero-mean,
i.i.d., and isotropic, then the covariance of the ML esti-
mate of camera translation does not change if the points
in the world are moved within their epipolar planes and
without changing their depths.

To prove this, consider a fixed value of translation . If
the world points are moved as stated in the theorem, neither
(and therefore ) nor , change. From the lemma,

it follows that the product then remains
constant, and so does , becauseof corollary 1, and because
under the hypotheses of the theorem the covariance of
image noise is proportional to the identity matrix.
Given a particularmotion and an image point , define

the equivalence line of that point to be the intersection of
its epipolar plane with the constant-depth plane
through the world point. Then, point clouds that differ only
by moving any of their points along their equivalence lines
produce the same sensitivity in the translation estimate .
These point clouds therefore belong to the same sensitivity
equivalence class. This result implies in particular that the
field of view is a poor predictor of the quality of camera
translation estimates, because it can be changed at will,
without affecting sensitivity, by moving the world points
along their equivalence lines.
However, two point clouds that differ other than by shifts

along equivalence lines can still yield the same sensitivity.
The following result gives a stronger characterization of
equivalence classes:

Theorem 7 Given any camera translation and any cloud
of points in the world, let

(17)

be the SVD of the rank-2 covariance matrix . Then any
two world points on the epipolar planes with normals

and

and at depths

,

(recall that is the third component of , and wasdefined
in lemma 1) yield a camera translation estimation problem
with exactly the same covariance .

Proof. We saw in the proof of corollary 1 that has rank
2. From the same corollary, and equation (17), we know
that

By comparing this equation with the expression in Lemma
1, and noting that , we obtain the
desired result.



7. Conclusion

In this paper, we have developed general tools for the
sensitivity analysis of ML estimation problems. The im-
plicit formulation with constraints lends itself well to the
type of problems that arise in various computer vision prob-
lems, and we have used the simple problem of estimating
camera translation as an illustration. Our generalization of
the Gauss-Markov theorem allows analyzing the sensitivity
of these problems to small perturbations of the image mea-
surements, and our notion of a fair parametrization leads
to sensitivity figures that are independent of the reference
system chosen for the analysis. Our results on equivalence
classes for sensitivity greatly simplify the task of reporting
sensitivity figures for a large family of scenarios. The pro-
posed techniques are general, and are likely to be applicable
to more complex problems than camera translation.
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A. Proof of Lemma 1

From the expressions for and derived in sections
3 and 4, we easily obtain

where the subscript denotes the first and second com-
ponent of a vector. We can eliminate by equation (6).
Since for any vector , we obtain

and

so we can conclude as promised.


