
A Geometric Approach to Light�eld CalibrationR. Koch1, B. Heigl2, M. Pollefeys1, L. Van Gool1, and H. Niemann21 Center for Processing of Speech and Images (PSI), K.U.Leuven, Belgium2 Lehrstuhl f�ur Mustererkennung, Universit�at Erlangen-N�urnberg, Germanyemail: Reinhard.Koch@esat.kuleuven.ac.be, heigl@informatik.uni-erlangen.deAbstract. Light�eld rendering allows fast visualization of complex scenesby view interpolation from images of densely spaced camera viewpoints.The light�eld data structure requires calibrated viewpoints, and ren-dering quality can be improved substantially when local scene depthis known for each viewpoint. In this contribution we propose to com-bine light�eld rendering with a geometry-based structure-from-motionapproach that computes camera calibration and local depth estimates.The advantage of the combined approach w.r.t. a pure geometric struc-ture recovery is that the estimated geometry need not be globally con-sistent but is updated locally depending on the rendering viewpoint. Weconcentrate on the viewpoint calibration that is computed directly fromthe image data by tracking image feature points. Ground-truth experi-ments on real light�eld sequences con�rm the quality of calibration.1 IntroductionThere is an ongoing debate in the computer vision and graphics communitybetween geometry-based and image-based scene reconstruction and visualizationmethods. Both methods aim at realistic and fast rendering of 3D scenes fromimage sequences.Geometric reconstruction approaches generate explicit 3D scene descriptionswith polygonal (triangular) surface meshes. A limited set of camera views ofthe scene is su�cient to reconstruct the 3D scene. Texture mapping adds thenecessary �delity for photo-realistic rendering to the object surface.Image-based rendering approaches like light�eld rendering [14] and the lu-migraph [6] have lately received a lot of attention, since they can capture theappearance of a 3D scene from images only, without the explicit use of 3D ge-ometry. Thus one may be able handle scenes with complex geometry and surfacere
ections that can not be modeled otherwise. Basically one caches all possibleviews of the scene and retrieves them during view rendering.Both approaches have their distinct advantages and weak points. In this con-tribution we discuss the combination of image-based rendering with a geometricstructure-from-motion approach to obtain light�elds from image sequences of afreely moving camera. The necessary camera calibration and local depth esti-mates are obtained with the structure-from-motion approach. We will �rst givea brief overview of image-based rendering and geometric reconstruction tech-niques. We will then focus on the calibration problem for light�eld acquisition



from hand-held camera sequences. Experiments on light�eld calibration and ge-ometric approximation conclude this contribution.2 Image-based renderingImage-based rendering techniques allow to capture a scene with a principallyunlimited geometric complexity, with complex lighting and specular surface re-
ections. The view rendering depends only on the e�ciency of data access andnot on the scene complexity, hence rendering in constant time is possible. Theprice to pay for this advantage is a very high amount of data and a tedious imageacquisition. In fact, one has to obtain the plenoptic function of the scene spacewith viewing rays in all possible positions, which is a 5-dimensional function.Perfect rendering is possible only if all viewing rays of a newly rendered viewintersect the focal centers of originally acquired views. Interpolation betweenviewpoints will cause a distortion that is dependent on the scene geometry aswell. The amount of views to be acquired is limited by the storage requirements,since a dense view sampling of a scene might easily generate Gigabytes of im-age data. Therefore one must try to compress the data e�ciently by removingthe inherent redundancy. Since the approach is strictly image-based, no view-point extrapolation is possible. Furthermore the geometry is encoded implicitlyin the data and there is no way to change geometric scene properties e.g. foranimations.Recently two equivalent realizations of the plenoptic function were proposedin form of the light�eld [14], and the lumigraph [6]. They handle the case when weobserve an object surface in free space, hence the plenoptic function is reducedto four dimensions (light rays are emitted from the 2-dimensional surface inall possible directions). The 4-D light�eld data structure employs a two-planeparameterization (see �g. 1). Each light ray passes through two parallel planeswith plane coordinates (s; t) and (u; v). Thus the ray is uniquely described bythe 4-tuple (u; v; s; t). The (s; t)-plane is the viewpoint plane in which all camerafocal points are placed on regular grid points. The (u; v)-plane is the focal planewhere all camera image planes are placed with regular pixel spacing. The opticalaxes of all cameras are perpendicular to the planes. This data structure coversone side of an object. For a full light�eld we would need to construct six suchdata structures on a cube around the object.New views can be rendered from this data structure by placing a virtualcamera on an arbitrary viewpoint and intersecting the viewing ray r with thetwo planes at (s; t; u; v). The resulting radiance is a simple radiance lookup forr. This, however, applies only if the viewing ray passes through original cameraviewpoints and pixel positions. For rays passing in between the (s; t) and (u; v)grid coordinates an interpolation is applied that will degrade the rendering qual-ity depending on the scene geometry. In fact, the light�eld contains an implicitgeometrical assumption: The scene geometry is planar and coincides with thefocal plane. Deviation of the scene geometry from the focal plane causes imagewarping. If depth information for each view is available, a speci�c geometricalwarping can compensate the image distortion. Heidrich et al. [8] introduce a
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Fig. 1. Left: 4-D light�eld data structure with (s; t) viewpoint plane and (u; v) focalplane. Center: Rendering of novel views by interpolation of viewing ray r betweenthe grid coordinates in the (s; u) slice. The radiance is interpolated from the objectradiance at positions l(si; u) and l(si�1; u). Image distortion occurs if the object surfacedeviates from the focal plane. Right: Tracking path for camera calibration along the(s; t)-viewing grid. Measurements are performed sequentially from image 1 to 49.warping-based re�nement from a depth-compensated light�eld to synthesize in-termediate views. They construct a dense light�eld from a sparse set of ray-tracedsynthetic images. This approach allows interactive visualization of complex ray-traced scenes that is split into the initial o�-line ray-tracing of few images and theonline re�nement for light�eld rendering. The problem is facilitated by the factthat calibration and depth estimation is obsolete since we deal with syntheticscenes. The ray-tracer delivers all necessary depth information as side product ofthe rendering. The discussion above reveals two major problems when acquiringlight�elds from real image sequences:{ the need to directly obtain camera calibration from the image data, and{ the need to estimate local depth for view interpolation.The original lumigraph approach [6] already tackles both problems. A cali-bration of the camera is obtained by incorporating a background with a knowncalibration pattern into the scene. The known speci�c markers on the backgroundare used to obtain camera parameters and pose estimation [19]. It provides nomeans to calibrate the images from image data only. For depth integration theobject geometry is approximated by constructing a visual hull from the objectsilhouettes. The hull approximates the global surface geometry but can not dealwith local concavities. Furthermore, the silhouette approach is not feasible forgeneral scenes and viewing conditions since a speci�c background is needed. Thisapproach is therefore con�ned to laboratory conditions and does not provide ageneral solution for arbitrary scenes.3 Camera calibration and geometric reconstructionThe problem of simultaneous camera calibration and depth estimation from im-age sequences (structure-from-motion, SFM) has been addressed for quite sometime in the computer vision community. In the case of known intrinsic cameraparameters, the camera pose as well as the scene structure can be estimated



from correspondences in the 2D image sequence up to an unknown scale factor.Longuet{Higgins [15] �rst demonstrated how to obtain structure and camerapose from eight point correspondences in one image pair. The uniqueness of thisexternal calibration was proven in [18]. It exploits the basic relationship betweenimage correspondences of a rigid scene, the Essential matrix E. The approachhas been extended in several works, e.g. [10, 4] to an arbitrary number of pointcorrespondences and views using non-linear optimization methods. Faugeras [5]and Hartley [7] later demonstrated that a projective reconstruction is possiblefrom image matches alone even if the camera is totally uncalibrated.A 3D scene reconstruction system using structure-from-motion was proposedby Beardsley et al. [1] who obtained projective calibration and sparse 3D struc-ture by robustly tracking salient feature points throughout an image sequence.We have extended their method to obtain metric reconstructions (Euclidean re-construction up to global scale) for fully uncalibrated sequences with methodsof self-calibration [16]. For dense structure recovery a stereo matching techniquewas applied between image pairs of the sequence to obtain a dense depth mapfor each viewpoint. From this depth map a triangular surface wire-frame is con-structed and texture mapping from the image is applied to obtain realistic surfacemodels [11]. To summarize, we obtain a metric scene reconstruction in a 3-stepapproach:1. Camera pose calibration is obtained by robust tracking of salient featurepoints over the image sequence,2. local dense depth maps for all viewpoints are computed from correspon-dences between adjacent image pairs of the sequence,3. a global 3-D surface mesh approximates the geometry, and surface textureis mapped onto it to enhance the visual appearance.3.1 Combining Light�eld rendering and SFMIf we compare light�eld rendering and SFM, we see a considerable overlap. Bothapproaches require a good camera calibration and the estimation of local depthmaps from the image data. For a geometric reconstruction we then need tocombine all local depth estimates into a globally consistent surface model witha unique surface texture. This may be di�cult to obtain for complex geometriesand re
ectivities. It would be better to compute depth maps only and to switchthe geometry and surface texture depending on the current rendering viewpoint.And this is precisely what the light�eld approach can do once calibration anddepth maps are given [8]. We therefore propose to combine the �rst two steps ofour structure-from-motion approach with light�eld rendering.The calibration is facilitated for the light�eld approach since we use denselyspaced viewpoints where the adjacent images are rather similar. The cameraviewpoints are tracked sequentially (along the 1-D viewing path that the cam-era takes). However, for a light�eld we are obtaining a 2-D viewing surface withthe camera viewpoints as nodes of this grid in the s; t-plane. With a movingcamera we can scan this viewing surface row by row in a sequential fashion (see



also Fig. 1, right). The camera poses are estimated by tracking salient image fea-tures throughout the sequence. Salient image feature points are matched usingrobust (RANSAC) techniques for that purpose. At �rst feature correspondencesare found by extracting intensity corners in di�erent images and matching themusing a robust corner matcher [17]. In conjunction with the corner matching arestricted calibration of the setup is calculated. This allows to eliminate matcheswhich are inconsistent with the calibration. The matching is started on the �rsttwo images of the sequence. The calibration of these views de�nes a metriccoordinate system in which the projection matrices of the other views are re-trieved one by one. A depth triangulation of the corresponding image matcheswill give a 3D estimate of salient scene points. In subsequent views we utilizethis 3D estimate to predict correspondences and to verify them throughout thesequence. The estimated 3D feature points also de�ne a coarse estimate of 3Dscene structure. The intrinsic camera parameters were calibrated o�ine [19] andthe approach of [16] has been modi�ed to estimate the camera poses only. Thisallows robust metric reconstruction from any camera motion.Once we have retrieved the metric calibration of the cameras we can use imagecorrespondence techniques to estimate scene depth. For dense correspondencematching a disparity estimator based on the dynamic programming scheme ofCox et al. [2] is employed. It operates on recti�ed image pairs where the epipolarlines coincide with image scan lines. The recti�cation is easily obtained for eachpair of adjacent viewpoints by projective mapping of the image planes ontostandard parallel stereo geometry. The matcher searches at each pixel in oneimage for maximum normalized cross correlation in the other image by shiftinga small measurement window (kernel size 5x5 or 7x7) along the correspondingscan line. The algorithm employs an extended neighborhood relationship and apyramidal estimation scheme to reliably deal with very large disparity ranges [3].It was further extended to multi-viewpoint depth analysis [11]. This allows toobtain locally consistent dense depth estimates for each viewpoint.4 Experimental ResultsIn order to test the approach we used a calibrated robot arm for image acqui-sition. This allows us to obtain ground truth information for the camera pose.The intrinsic parameters were estimated o�-line before the experiments.The camera is mounted on the arm of a robot of type SCORBOT-ER VII.The position of its picker arm is known from the angles of the 5 axes and thedimensions of the arm. Optical calibration methods have to be applied to de-termine the relative position of the camera to the picker arm. This is done bythe hand/eye{calibration method of [20]. The main problem is to determine theposition along the optical axis of the camera. The repetition error of the robot is0.2 mm and 0.03 degrees, respectively. Because of the limited size of the robot,we are restricted to scenes with maximum size of about 100 mm in diameter. Fortesting we used a scene with planar motion (compliant to the viewpoint plane)and a scene with spherical motion.



Fig. 2. Planar motion on a 7�7 viewpoint grid. Left: One of the input images. Middle:Corresponding dense depth map (color coded: dark=near,light=far, black=unde�ned).Right: 3D surface model and calibrated camera grid. The little pyramids symbolize theestimated camera poses.Planar motion: To show the applicability for natural scenes, we chose a smallcactus together with two mirrors. This scene has a non-trivial geometry withocclusions, spikes, re
ections, etc., see �g. 2. In the planar case, we controlledthe robot so that the center of projection moved within a planar 7� 7 grid, theoptical axis always intersecting one central point in the middle of the scene. Thegrid had spacing between the views of 13.3�16.6 mm. The orthogonal distanceof the grid to the central point was 200 mm. This setup allows ground truthcomparison of the camera calibration method. During calibration we tracked thecamera positions sequentially row by row, moving like a snake from image 1 to49 over all views (see �g. 1,right). We did not consider the connectivity betweenthe rows which would additionally stabilize the tracking. The calibrated sequenceallows to reconstruct dense depth maps for each viewpoint. From the depth mapwe obtain local geometry for image warping. Results of the 3D surface modelingare shown in �g. 2.A quantitative evaluation of the camera calibration can be computed if wecompare the length of the estimated displacements between adjacent camerapositions (the baseline) with the baseline as given by the robot. Since the SFMalgorithm generates only metric estimates (arbitrary scale for the baseline be-tween the �rst two cameras) we scaled the estimates to the known robot baselineof 13.3 mm between the �rst two cameras. We could then measure all baselinesbetween adjacent cameras.The result is summarized in table 4. We have to distinguish between thestatistics of row and column displacements. Since the camera moved sequentiallyrow by row (see �g. 1,right), only the camera positions along the rows wereestimated directly. The adjacency between columns was not exploited whichcauses an increased column baseline error. Still, the column statistics show a verygood agreement with the expected value and no signi�cant error accumulationwas noticed. These �gures document the stability and accuracy of the proposedcalibration method. The overall performance of the calibration is within therange of the robot arm accuracy.Spherical motion The proposed system can work with any camera motion andis not con�ned to planar viewing planes. To test this we performed a sphericalrobot motion. In the spherical case the robot sampled a 8 � 8 spherical grid



Table 1. Statistical distribution of the baseline length between camera positions.Displacement ground truth robot measured baselines standard repeatabilityStatistics baseline[mm] mean [mm] deviation [mm] of robot [mm]rows 13.30 12.65 0.478 0.2columns 16.60 16.99 0.931 0.2with a radius of 230 mm. The viewing positions enclosed a maximum angleof 45 degrees. The results of the camera calibration and geometric estimationare shown in �g. 3. The estimated camera positions are equally spaced on theviewing sphere and the geometry shows quite some detail.
Fig. 3. Spherical motion. Left: One of the input images. Center: Dense depth map ofscene. Right: 3D surface model and calibrated camera grid of spherical scene.5 Conclusions and Further WorkWe have employed a geometric structure-from-motion approach for light�eldcalibration and local depth estimation which can be used to improve light�eldrendering. Image acquisition as well as rendering quality will pro�t from thisintegration. Most notably, we were able to generate light�elds from image se-quences of freely moving cameras.We are currently working to further integrate both approaches. The ongo-ing research has delivered additional results which we could not include herebut would like to refer to. The inherent two-dimensional relationship betweenlight�eld images has been exploited, resulting in a robust calibration of a 2Dviewpoint mesh over all views [12] and improved depth reconstruction from theviewpoint mesh [13]. The image-based rendering approach has been adapted toincorporate local depth estimates and to render images from irregular viewpointmeshes of hand-held camera sequences [9].AcknowledgmentsWe gratefully acknowledge �nancial support from the Belgian project IUAP 04/24'IMechS', and the German Science Foundation DFG SFB-603,C2.
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