Calibration of Hand-held Camera Sequences for Plenoptic Modeling

Abstract

In this contribution we focus on the calibration of
very long image sequences from a hand-held camera
that samples the viewing sphere of a scene. View
sphere sampling is important for plenoptic (image-
based) modeling approaches that try to capture the ap-
pearance of a scene by storing images from all possible
directions. The plenoptic approach is appealing since
it allows in principle fast scene rendering of scenes
with complex geometry and surface reflections, with-
out the need for an explicit geometrical scene model.
However, the acquired images have to be calibrated be-
fore plenoptic modeling can be used, and current ap-
proaches mostly use pre-calibrated acquisition systems.
This limits the generality of the approach.

We propose a way out by using an uncalibrated
hand-held camera only. The image sequence is ac-
quired by simply waving the camera around the scene
objects, creating a zigzag scan path over the viewing
sphere. We extend the sequential camera tracking of
an ezisting structure-from-motion approach to a si-
multaneous multi-viewpoint camera tracking. A mesh
of camera viewpoints is computed that approximates
the view sphere. The geometry and topology of the
viewpoint mesh is computed automatically from the
image sequence by weaving the sequential zigzag path
into a connected viewpoint mesh. The viewpoint mesh
is then used for view-dependent rendering. Novel views
are generated by piecewise mapping and interpolating
the new image from the nearest viewpoints according
to the viewpoint mesh. Local surface geometry can
further enhance the interpolation process. Extensive
experiments with ground truth data and hand-held se-
quences confirm the performance of our approach.

Keywords: Sequence tracking, Camera calibration,
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1 Introduction

There is an ongoing debate in the computer vi-
sion and graphics community between geometry-based

and image-based scene reconstruction and visualiza-
tion methods. Both methods aim at realistic cap-
ture and fast visualization of 3D scenes from image
sequences.

Image-based rendering approaches like plenoptic
modeling [12], lightfield rendering [11] and the lumi-
graph [7] have lately received a lot of attention, since
they can capture the appearance of a 3D scene from
images only, without the explicit use of 3D geome-
try. Thus one may be able to capture objects with
very complex geometry that can not be modeled oth-
erwise. Basically one caches all possible views of the
scene and retrieves them during view rendering.

Geometric 3D modeling approaches generate ex-
plicit 3D scene geometry and capture scene details
mostly on polygonal (triangular) surface meshes. A
limited set of camera views of the scene is sufficient
to reconstruct the 3D scene. Texture mapping adds
the necessary fidelity for photo-realistic rendering to
the object surface. Recently progress has been re-
ported on calibrating and reconstructing scenes from
general hand-held camera sequences with a Structure
from Motion approach [6, 13].

Somewhere in between both approaches is view-
dependent texture mapping. Here an approximate
geometrical model is combined with a set of view-
dependent texture maps that are selected during ren-
dering [3].

The problem common to all approaches is the need
to calibrate the camera sequence. Typically one uses
calibrated camera rigs mounted on a special acquisi-
tion device like a robot [11], or a dedicated calibration
pattern is used to facilitate calibration [7].

In the case of lightfield generation from a hand-held
camera, one typically generates very many (hundreds)
of images, but with a specific distribution of the cam-
era viewpoints. Since we want to capture the appear-
ance of the object from all sides, we will try to sample
the viewing sphere, thus generating a mesh of view
points. To fully exploit hand-held sequences, we will
also have to deviate from the restricted lightfield data



structure and adopt a more flexible rendering data
structure based on the viewpoint mesh.

In this contribution we tackle the problem of cam-
era calibration from very many images under special
consideration of dense viewsphere sampling. The nec-
essary camera calibration and local depth estimates
are obtained with a structure from motion approach.
We will first give a brief overview of existing image-
based rendering and geometric reconstruction tech-
niques. We will then focus on the calibration prob-
lem for plenoptic sequences. Finally we will describe
the image-based rendering approach that is adapted
to our calibration. Experiments on calibration, geo-
metric approximation and image-based rendering con-
clude this contribution.

2 Previous work

Plenoptic modeling describes the appearance of a
scene through all light rays (2-D) that are emitted
from every 3-D scene point, generating a 5D-radiance
function [12]. Recently two equivalent realizations of
the plenoptic function were proposed in form of the
lightfield [11], and the lumigraph [7]. They handle the
case when we observe an object surface in free space,
hence the plenoptic function is reduced to four dimen-
sions (light rays are emitted from the 2-dimensional
surface in all possible directions).

2.1 Lightfield data representation

The original 4-D lightfield data structure employs
a two-plane parameterization. Each light ray passes
through two parallel planes with plane coordinates
(s,t) and (u,v). Thus the ray is uniquely described
by the 4-tuple (u,v,s,t). The (s,t)-plane is the view-
point plane in which all camera focal points are placed
on regular gridpoints. The (u,v)-plane is the focal
plane where all camera image planes are placed with
regular pixel spacing. The optical axes of all cameras
are perpendicular to the planes. This data structure
covers one side of an object. For a full lightfield we
would need to construct six such data structures on a
cube around the object.

New views can be rendered from this data struc-
ture by placing a virtual camera on an arbitrary view
point and intersecting the viewing ray r with the two
planes at (s, t,u,v). The resulting radiance is a simple
radiance lookup for r. This, however, applies only if
the viewing ray passes through original camera view
points and pixel positions. For rays passing in between
the (s,t) and (u,v) grid coordinates an interpolation
is applied that will degrade the rendering quality de-
pending on the scene geometry. In fact, the light-
field contains an implicit geometrical assumption: The
scene geometry is planar and coincides with the focal

plane. Deviation of the scene geometry from the focal
plane causes image warping.
2.2 The Lumigraph

The discussion above reveals two major problems
when acquiring lightfields from real image sequences.
First, the need to calibrate the camera poses in or-
der to construct the viewpoint plane, and second the
estimation of local depth maps for view interpolation.

The original lumigraph approach [7] already tack-
les both problems. A calibration of the camera is ob-
tained by incorporating a background with a known
calibration pattern into the scene. The known specific
markers on the background are used to obtain camera
parameter and pose estimation [17]. They provide no
means to calibrate the images from image data only.
For depth integration the object geometry is approx-
imated by constructing a visual hull from the object
silhouettes. The hull approximates the global surface
geometry but can not deal with local concavities. Fur-
thermore, the silhouette approach is not feasible for
general scenes and viewing conditions since a specific
background is needed. This approach is therefore con-
fined to laboratory conditions and does not provide a
general solution for arbitrary scenes. If we want to
utilize the image-based approach for general viewing
conditions we identify two main needs:

e the need to directly obtain camera calibration
from the image data, and

e the need to estimate local depth for view interpo-
lation.

2.3 The structure-from-motion approach
to surface reconstruction

The problem of simultaneous camera calibration
and depth estimation from image sequences has been
addressed for quite some time in the computer vision
community. In the uncalibrated case all parameters,
camera pose and intrinsic calibration as well as the 3D
scene structure have to be estimated from the 2D im-
age sequence alone. Faugeras and Hartley first demon-
strated how to obtain uncalibrated projective recon-
structions from image sequences alone [4, 9]. Since
then, researchers tried to find ways to upgrade these
reconstructions to metric (i.e. Euclidean but unknown
scale, see [5, 16]).

Recently a method was described to obtain metric
reconstructions for fully uncalibrated sequences even
for changing camera parameters with methods of self-
calibration [13]. For dense structure recovery a stereo
matching technique was applied between image pairs
of the sequence to obtain a dense depth map for each



viewpoint. From this depth map a triangular surface
wire-frame is constructed and texture mapping from
the image is applied to obtain realistic surface mod-
els [10]. The approach allows metric surface recon-
struction in a 4-step approach:

1. projective calibration is obtained by robust track-
ing of salient feature points over the image se-
quence,

2. the metric structure of the scene and the cameras
is reconstructed through camera self-calibration,

3. dense depth maps for all view points are com-
puted from correspondences between adjacent im-
age pairs of the sequence,

4. a 3-D surface mesh approximates the geometry,
and surface texture is mapped onto it to enhance
the visual appearance.

3 Calibration of viewpoint meshes

In this contribution we propose to extend the se-
quential structure-from-motion approach to the cali-
bration of the viewpoint sphere. Plenoptic modeling
amounts to a dense sampling of the viewing sphere
that surrounds the object. One can interpret the dif-
ferent camera viewpoints as samples of a generalized
surface which we will call the viewpoint surface. It
can be approximated as a triangular viewpoint mesh
with camera positions as nodes. In the specific case of
lightfields this viewing surface is simply a plane and
the sampling is the regular camera grid. If a pro-
grammable robot with a camera arm is at hand, one
can easily program all desired views and record a cal-
ibrated image sequence. For sequences from a hand-
held videocamera however we obtain a general sur-
face with possible complex geometry and non-uniform
sampling. To generate the viewpoints with a simple
video camera, one might want to sweep the camera
around the object, thus creating a zig-zag scanning
path on the viewing surface. The problem that arises
here is that typically very long image sequences of sev-
eral hundreds of views have to be processed. If we
process the images strictly in sequential order as they
come from the video stream, then images have to be
tracked one by one. One can think of walking along
the path of camera viewpoints given by the recording
frame index. This may cause error accumulation in
viewpoint tracking, because object features are typi-
cally seen only in a few images and will be lost after
some frames due to occlusion and mismatching. Tt
would therefore be highly desirable to detect the pres-
ence of a previously tracked but lost feature and to tie
it to the new image.

The case of disappearing and reappearing features
is very common in viewpoint surface scanning. Since
we sweep the camera in a zigzag path over the view-
point surface, we will generate rows and columns of
an irregular mesh of viewpoints. Even if the view-
points are far apart in the sequence frame index they
may be geometrically close on the viewpoint surface.
We should therefore exploit the proximity of camera
viewpoints irrespectively of their frame index.

3.1 Viewpoint mesh weaving

In this section we will develop the multi-viewpoint
tracking algorithm that allows to actually weave the
viewpoint sequence into a connected viewpoint mesh.

Image pair matching. The basic tool for the view-
point tracking is the two-view matcher. Image in-
tensity features are detected with the Harris corner
detector[8] and have to be matched between the two
images I, I}, of the view points P;, P,. Here we rely on
a robust computation of the Fundamental matrix Fj
with the RANSAC (RANdom SAmpling Consensus)
method [15]. A minimum set of 7 features correspon-
dences is picked from a large list of potential image
matches to compute a specific F. For this particular
F' the support is computed from the other potential
matches. This procedure is repeated randomly to ob-
tain the most likely Fj;, with best support in feature
correspondence.

The next step after establishment of F' is the com-
putation of the 3 x 4 camera projection matrices P;
and P,. The fundamental matrix alone does not suf-
fice to fully compute the projection matrices. In a
bootstrap step for the first two images we follow the
approach by Beardsley et al. [1]. Since the camera
calibration matrix K is unknown a priori we assume
a approximate K to start with. The first camera is
then set to Py = K[I|0] to coincide with the world
coordinate system, and the second camera P; can be
derived from the epipole e and F' as

P = K [[eloF +ea”lre] with e, = [ 5 3 A

P, is defined up to a global scale r and the unknown
plane 7i,¢, encoded in a” (see also [14]). Thus we can
only obtain a projective reconstruction. The vector
a” should be chosen such that the left 3 x 3 matrix
of P; best approximates an orthonormal rotation ma-
trix. The scale r is set such that the baseline length
between the first two cameras is unity. K and o will
be determined later during camera self-calibration.

Once we have obtained the projection matrices we
can triangulate the corresponding image features to



obtain the corresponding projective 3D object fea-
tures. The object points are determined such that
their reprojection error in the images is minimized. In
addition we compute the point uncertainty covariance
to keep track of measurement uncertainties. The 3D
object points serve as the memory for consistent cam-
era tracking, and it is desirable to track the projection
of the 3D points through as many images as possible.

Sequential camera tracking. Each new view of
the sequence is used to refine the initial reconstruction
and to determine the camera viewpoint. Here we rely
on the fact that two adjacent frames of the sequence
are taken from nearby view points, hence many object
features will be visible in both views. The procedure
for adding a new frame is much like the bootstrap
phase. Robust matching of F; ;11 between the current
and the next frame of the sequence relates the 2D im-
age features between views I; and I; ;1. Since we have
also the 2D/3D relationship between image and ob-
ject features for view I;, we can transfer the object
features to view I;11 as well. We can therefore think
of the 3D features as self-induced calibration pattern
and directly solve for the camera projection matrix
from the known 2D/3D correspondence in view I;;q
with a robust (RANSAC) computation of Py 1. In a
last step we update the existing 3D structure by min-
imizing the resulting feature reprojection error in all
images. A Kalman filter is applied for each 3D point
and its position and covariance are updated accord-
ingly. Unreliable features and outliers are removed,
and newly found features are added.

3.2 Viewpoint mesh tracking

The sequential approach as described above yields
good results for the tracking of short sequences. New
features are added in each image and the existing fea-
tures are tracked throughout the sequence. Due to
scene occlusions and inevitable measurement outliers,
however, the features may be lost or wrongly initial-
ized, leading to erroneous estimates and ultimately
tracking failure. So far several strategies have been
developed to avoid this situation. Recently Fitzgib-
bon et al. [6] addressed this problem with a hierar-
chical matching scheme that matches pairs, triplets,
short subsequences and finally full sequences. How-
ever, they track along the linear camera path only and
do not consider the extended relationship in a mesh
of viewpoints. By exploiting the topology of the cam-
era viewpoint distribution on the viewpoint surface we
can extend the sequential tracking to a simultaneous
matching of neighboring viewpoints. The viewpoint
mesh is described by the node geometry (camera view-

points) and the topology (which viewpoints are con-
nected as nearest neighbors). Initially both topology
and geometry are unknown and have to be retrieved.
Fortunately, a special topology (sequential connectiv-
ity) is given by the frame index of the camera record-
ing. This will serve as bootstrap to the recovery of the
viewpoint surface.

Look-ahead and backtracking. Our goal is to re-
cover topology and geometry of the viewpoint surface.
We start sequentially with Single-stepping through the
camera sequence as described above. This procedure
computes the geometry of the camera from the con-
nectivity with the previous viewpoint. To establish
the connectivity to all nearest viewpoints we have now
two possibilities: Look-ahead and backtracking. For
look-ahead one tries to compute image relationships
between the current frame and all future frames. Ef-
fectively this amounts to a full search between all pos-
sible image pairs. A reduced forward search would try
to find the first best fit only. Still it will produce a
large computational overhead.

For backtracking the situation is more fortunate,
since for previous cameras we have already computed
the geometry. It is therefore easy to compute the geo-
metrical distance between the current and all previous
cameras and to find the nearest viewpoints. Of course
one has to account for the non-uniform viewpoint dis-
tribution and to select only viewpoints that give ad-
ditional information. We have adopted a scheme to
divide the viewing surface into angular sectors around
the current viewpoint and to select the nearest cam-
eras that are most evenly distributed around the cur-
rent position. The search strategy is visualized in
fig. 1. The camera produces a path whose positions
have been tracked up to viewpoint ¢ — 1 already, re-
sulting in a mesh of viewpoints (filled dots). The new
viewpoint i is estimated from those viewpoints that
are inside the shaded part of the sphere. The cut-
out section avoids unnecessary evaluation of nearby

i A
; :  camera path
S ! backtracking
i o look-ahead
28 SR N .
D search range
1 2 3 ...viewpgints —e tracked viewpoint

viewpoint surface s

Figure 1: Search strategy to connect the current with
previous viewpoints.



cameras i — 1,7 — 2,.... The cut-out section is always
oriented along the connection between the viewpoints
i —1 and i¢. The radius of the search sphere is adapted
to the distance between the last two viewpoints.
Once we have found the local topology to the near-
est view points we can update our current position by
additional matching. In fact, each connecting edge of
our viewpoint mesh allows the computation of F' be-
tween the viewpoints. More important, since we are
now matching with images way back in the sequence,
we can couple the 3D structure much more effectively
to image matches. A match that was lost during se-
quential tracking still lives in the previous images and
will now be revived by the matching. Thus, a 3D fea-
ture lives typically much longer and is seen in more
images than with simple sequential tracking. In addi-
tion to the revival of old features we obtain a much
more stable estimate for the single viewpoint as well.
Each image is now matched with (typically 3-4) im-
ages in different spatial directions with reduces the
risk of critical or degenerate situations. The risk of
feature loss due to occlusion is also minimized since a
feature is checked in several images simultaneously.

4 Rendering from the viewpoint mesh

The previous section described how to acquire a cal-
ibrated viewpoint mesh. Now, virtual camera views
are to be reconstructed from the set of calibrated
views. The lumigraph approach [7] gives one solu-
tion to this problem. The regular grid structure of the
lumigraph is synthesized from arbitrary views using
approximated geometry which is reconstructed with
a structure—from-silhouette technique. This so—called
rebinning step also fills gaps by applying a multires-
olution approach. Because of interpolating this reg-
ular structure from the original data, information is
lost and blurring effects occur. The reconstruction of
views is done by a look—up in this regular structure,
considering depth corrections.

To prevent the disadvantages of the rebinning step,
our goal is to render views from the originally recorded
images directly. In the simplest way this is achieved by
projecting all images onto a common plane of “mean
geometry” by a 2D projective mapping. Having a full
triangulation of the viewpoint surface, we project this
mesh into the virtual camera. For each triangle of the
mesh, only the views that span the triangle are con-
tributing to the color values inside. Each triangle acts
as a window through which the three corresponding
mapped textures are seen in the virtual camera. The
textures are overlapped by applying alpha blending
with barycentric weights depending on the distance
to the corresponding triangle corner. As the whole

mapping procedure is a 2D projective mapping, it can
be done in real time using the texture mapping and
alpha blending facilities of graphics hardware.
4.1 Combining images and geometry

The rendering approach can be refined using more
detailed geometric information. Depending on the vir-
tual camera position, a plane of mean geometry can
be assigned adaptively to each image triplet which
forms a triangle. Adaptive to the size of each trian-
gle and the complexity of geometry, further subdivi-
sion of each triangle may improve the accuracy of the
reconstruction. For this use of geometry, local cor-
respondence maps or depth maps are sufficient, so no
consistent 3D-model needs to be created, which would
require the registration of different views. Ultimately
this approach will result in a system that can handle
geometric as well as image-based representations si-
multaneously by exploiting viewpoint-adaptive depth
and texture maps.

5 Experimental results on camera cal-
ibration

To evaluate our approach, we recorded a test se-
quence with known ground truth from a calibrated
robot arm. The camera is mounted on the arm of a
robot of type SCORBOT-ER VII. The position of its
gripper arm is known from the angles of the 5 axes
and the dimensions of the arm. Optical calibration
methods were applied to determine the eye-hand cal-
ibration of the camera w.r.t. the gripper arm. We
achieve a mean absolute positioning error of 4.22 mm
or 0.17 degrees, respectively [2]. The repetition error
of the robot is 0.2 mm and 0.03 degrees, respectively.
Because of the limited size of the robot, we are re-
stricted to scenes with maximal size of about 100 mm
in diameter.

For the ground truth experiment the robot sampled
a 8 x 8 spherical viewing grid with a radius of 230 mm.
The viewing positions enclosed a maximum angle of
45 degrees which gives an extension of the spherical
viewpoint surface patch of 180x180 mm?. The scene
consists of a cactus and some metallic parts on a piece

Figure 2: Image 1 and 64 of the 8x8 original camera
images of the sphere sequence.



Figure 3: Left: Camera track and view points for se-
quential tracking. Right: Camera topology mesh and
view points for viewpoint mesh weaving. The cam-
eras are visualized as pyramids, the black dots display
some of the tracked 3D points.

———

200 H
500 -

400 -

10001 1 eool

800 -
1500 -
1000 -
20001 4

1200+

2500 | | 14001

1600 -

3000
1800

3500 2000+

10 20 30 40 50 60 10 20 30 40 50 60

Figure 4: Distribution of tracked 3D points (vertical)
over the images (horizontal). Left: Sequential track-
ing. Right: viewpoint mesh weaving. Please note the
specific 2D pattern in the right graph that indicates
how a tracked point is lost and found back throughout
the sequence.

of rough white wallpaper. Two of the original images
are shown in fig. 2. Please note the occlusions and the
reflections and illumination changes in the images.
We compared the viewpoint mesh weaving algo-
rithm with the sequential tracking and with ground
truth data. Fig. 3 shows the camera path and connec-
tivity for the sequential tracking (left) and viewpoint
weaving (right). Weaving generates the topological
network that tightly connects all neighboring views.
On average each node was linked to 3.4 connections.
The graph in fig. 4 illustrates very clearly the sur-
vival of 3D points. A single point may be tracked
throughout the sequence but is lost occasionally due
to occlusion. However as the camera passes near to a
previous position in the next sweep it is revived and

Table 1: Statistics for camera tracking over 64 images.

Algorithm: sequential | viewpoint

tracking weaving
# Pts 3791 2169
# Im/Pts(ave.) 4.8 9.1
# Im/Pts(max.) 28 48
# Pts/Im(ave.) 286 306
# Min Pts 1495 458

hence tracked again. This results in fewer 3D points
(# Pts) which are tracked in more images (# Im/Pts).
Some statistics of the tracking are summarized in ta-
ble 1. A minimum amount of 3 images is required
before a feature is kept as 3D point. For viewpoint
weaving, 3D points are usually tracked in the double
amount of images as compared to sequential tracking,
and the average number of image matches (#Pts/Im)
is increased. Important is also that the number of
points that are tracked in 3 images only (# Min Pts)
drops sharply. These points are usually unreliable and
should be discarded.

A quantitative evaluation of the tracking was per-
formed by comparing the estimated metric camera
pose with the known Euclidean robot positions. We
anticipate two types of errors: 1) a stochastic mea-
surement noise on the camera position, and 2) a sys-
tematic error due to a remaining projective skew from
imperfect self-calibration. For comparison we trans-
form the measured metric camera positions into the
Euclidean robot coordinate frame. With a projective
transformation we can eliminate the skew and esti-
mate the measurement error. We estimated the pro-
jective transform from the 64 corresponding camera
positions and computed the residual distance error.
The distance error was normalized to relative depth
by the mean surface distance of 250 mm. The mean
residual error dropped from 1.1% for sequential track-
ing to 0.58% for viewpoint weaving (see table2). The
position repeatability error of the robot itself is 0.08%.

If we assume that no projective skew is present then
a similarity transform will suffice to map the coordi-

Table 2: Ground truth comparison of 3D camera posi-
tional error between the 64 estimated and the known
robot positions [in % of the mean object distance of
250 mm].

Camera position projective similarity

Tracking Error[%] | mean | dev | mean | dev
sequential 1.08 | 0.69 | 2.31 | 1.08
2D viewpoints 0.57 | 0.37 | 1.41 | 0.61
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Figure 5: Top: Two images from hand-held office se-
quence. Bottom left: Distribution of 3D feature points
(7014 points, vertical) over the image sequence (187
images, horizontal). Bottom right: Viewpoint mesh

(in blue) with cameras as pyramids and 3D points
(black).

nate sets onto each other. A systematic skew how-
ever will increase the residual error. To test for skew
we computed the similarity transform from the corre-
sponding data sets and evaluated the residual error.
Here the mean error increased with a factor of about
2.4 to 1.4% which still is very good for pose and struc-
ture estimation from fully uncalibrated sequences.
5.1 Hand-held office sequence

We tested our approach with an uncalibrated hand-
held sequence. A digital consumer video camera (Sony
DCR-TRV900 with progressive scan) was swept freely
over a cluttered scene on a desk, covering a viewing
surface of about 1 m?. The resulting video stream was
then digitized on an SGI O2 by simply grabbing 187
frames at more or less constant intervals. No care
was taken to manually stabilize the camera sweep.
Fig. 5(top) displays two images of the sequence. The
camera viewpoints are tracked and the viewpoint mesh
topology is constructed with the viewpoint mesh weav-
ing. Fig. 5(bottom) shows the statistics of the tracked
3D feature points (left) and the resulting camera view-
point mesh with 3D points (right). The point distri-
bution (left) shows the characteristic weaving struc-
ture when points are lost and found back throughout

Figure 6: 3D surface model of office scene rendered
with shading (left) and surface texture (right).

the sequence. The camera tracking illustrates nicely
the zigzag scan of the hand movement as the camera
scanned the scene. The viewpoint mesh is irregular
due to the arbitrary hand movements. On the bottom
half one can see the the reconstructed 3D scene points.

The statistical evaluation gives an impressive
account on the tracking abilities. The camera
was tracked over 187 images with at average 452
matches/image. A total of 7014 points were gener-
ated and matched on the average in 12 images each.
A single 3D point was even tracked over 181 images,
with image matches in 95 images.

5.1.1 Scene reconstruction and viewpoint
mesh rendering

From the calibrated sequence we can compute any ge-
ometric or image based scene representation. As an
example we show in fig. 6 a geometric surface model
of the scene with approximate local scene geometry
that was generated by dense surface matching. Even
fine details like the keyboard keys are modeled.

Some results of the proposed image-based render-

Figure 7: Left: novel scene view rendered far away
from the viewpoint mesh. The red lines indicate the
projection of the viewpoint mesh into the novel view.
Right: Two closeup views from different viewing di-
rections. Please note the changing surface reflection
on the object surface.



ing from the viewpoint mesh are shown in Fig. 7.
These views were rendered without local geometry.
Only a mean plane was fitted through the scene
which causes interpolation shadowing artifacts. In the
closeup views (right) a detail was viewed from differ-
ent directions. The changing surface reflections are
rendered correctly due to the view-dependent imag-
ing. This shows the potential of the method. We
expect to achieve very realistic scene reconstructions
in combining the view-dependent rendering with the
local geometry estimates.

6 Further Work and Conclusions

We have proposed a camera calibration algorithm
for geometric and plenoptic modeling from uncali-
brated hand-held image sequences. During image ac-
quisition the camera is swept over the scene to sam-
ple the viewing sphere around an object. The new
algorithm considers the two-dimensional topology of
the viewpoints and weaves a viewpoint mesh with
high accuracy and robustness. It significantly im-
proves the existing sequential structure-from-motion
approach and allows to fully calibrate hand-held cam-
era sequences that are targeted towards plenoptic
modeling. The calibrated viewpoint mesh was used
for the reconstruction of geometric surface models and
for image-based rendering, which even allows to render
reflecting surfaces.

Currently we are concentrating to fully integrate
calibration, geometrical reconstruction, and image-
based rendering. The calibration delivers the view-
point mesh as basic data structure, which can be in-
terpreted as a generalized viewpoint plane in a light-
field data structure. The reconstructed surface geom-
etry will likewise generalize the lightfield focal plane.
We are currently able to render novel views from the
viewpoint mesh, but so far no local geometry has been
used to improve the view interpolation. The synergy
of camera sequence tracking, local geometric interpo-
lation and image-based rendering will allow very re-
alistig scene representations from hand-held camera
sequences.
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