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omputer vision several views exist how to solve vision problems. The �rst general methodology was introdu
edby Marr; he proposed a data-driven and straightforward analysis strategy. Nowadays the 
on
ept of a
tive visionintrodu
ed by Aloimonos et al. be
omes more and more important. In 
ontrast to Marr's philosophy, a
tivevision implies a feedba
k loop whi
h 
onsists of sensors and a
tive 
omponents. In this paper we present a systemfor the identi�
ation of material faults under the surfa
e of a test obje
t. For that purpose the spe
imen is elasti
allydeformed, then the deformation is made visible using holographi
 interferometry, and �nally 
aw parameters areestimated using a model-based approa
h to analyze interferograms. This is an under
onstrained 
omputer visionproblem whi
h is regularized using a priori knowledge and an a
tive modi�
ation of the experimental setup. Moremathemati
ally, this vision task 
an be seen in the 
ontext of inverse problem theory. In this 
ontribution we des
ribethe system and point out how it is related to the methodologies named above. To illustrate the fun
tionality of thesystem, results are shown from non-destru
tive testing of satellite fuel tanks.Keywords: holographi
 non-destru
tive testing, interferogram analysis, parameter estimation, inverse problems,a
tive vision, image pro
essing 1. INTRODUCTIONThe problems in opti
al metrology are very similar to those of 
omputer vision. Both dis
iplines deal with image{likeinput and use image pro
essing te
hniques to derive a symboli
 des
ription of the image 
ontent or to re
onstru
tvarious quantities from the a
quired intensity distribution. Examples 
an be found in experimental shape andstress analysis (ESA) where geometri
al and me
hani
al quantities su
h as 
oordinates and displa
ements have to bederived from periodi
ally modulated intensity distributions or in holographi
 non-destru
tive testing (HNDT) wherethe observed fringe patterns must be analyzed with respe
t to the dete
tion of material faults. In this 
ontributionwe will des
ribe an a
tive approa
h for automati
 HNDT of satellite fuel tanks and show its relation to inverseproblem theory. The term "a
tive" means that the load of the spe
imen is 
hanged in a 
exible way depending onthe deformation behaviour and the kind of possible material faults.The well known paradigm of Marr\Computer vision is the development of pro
edures for the solution of the inverse task of the imageformation pro
ess"1des
ribes nothing else than the task to 
on
lude from the e�e
t to its 
ause. In holographi
 interferometry, theintensity I(i; j) at pixel lo
ation (i; j) is used to determine the 
ause, in that 
ase the displa
ement d(x; y; z) of therelated obje
t point (x; y; z). In other words, an inverse problem has to be solved. But what is an inverse problem?From the point of view of a mathemati
ian the 
on
ept of an inverse problem has a 
ertain degree of ambiguitywhi
h is well illustrated by a frequently quoted statement of J.B. Keller2:Further author information:E-mail: amerz�informatik.uni-erlangen.de, bfe�elanda.bias.uni-bremen.deWWW: ahttp://www5.informatik.uni-erlangen.de, bhttp://www.bias.uni-bremen.de



\We 
all two problems inverses of one another if the formulation of ea
h involves all or part of the solutionof the other. Often for histori
al reasons, one of the two problems has been studied extensively for sometime, while the other has never been studied and is not so well understood. In su
h 
ases, the former is
alled dire
t problem, while the latter is the inverse problem."Both problems are related by a kind of duality in the sense that one problem 
an be derived from the other byex
hanging the role of the data and that of the unknown: the data of one problem are the unknowns of the otherand vi
e versa. As a 
onsequen
e of this duality it may seem arbitrary to de
ide what is the dire
t and what is theinverse problem. For physi
ists and engineers, however, the situation is quite di�erent be
ause the two problemsare not on the same level:3 one of them, and pre
isely the one 
alled the dire
t problem, is 
onsidered to be morefundamental than the other and, for this reason is also better investigated. Consequently the histori
al reasonsmentioned by KELLER are basi
ally physi
al reasons. Pro
esses with a well-de�ned 
ausality su
h as the pro
ess ofimage formation are 
alled dire
t problems. Dire
t problems need information about all quantities whi
h in
uen
e theunknown e�e
t. Moreover, the internal stru
ture of 
ausality, all initial and boundary 
onditions and all geometri
aldetails have to be formulated mathemati
ally.4 Initial and boundary value problems whi
h are usually expressed byordinary and partial di�erential equations, are typi
al examples.One example is Kir
hhoff's formulation of the di�ra
tion problem: the dire
t problem 
onsists in the 
omputa-tion of the s
attered waves from the knowledge of the sour
es and obsta
les. Su
h dire
t problems have some ex
ellentproperties whi
h make them so attra
tive for physi
ists: If reality and mathemati
al des
ription �t suÆ
iently well,the dire
t problem is expe
ted to be uniquely solvable. Further on it is in general stable. That means, small 
hangesof the initial or boundary 
onditions 
ause also small e�e
ts only (in 
ontrast to 
haoti
 pro
esses). Unfortunately,numerous problems in physi
s and engineering deal with unknown but non-observable values. If the 
ausal 
onne
-tions are investigated ba
kwards we 
ome to the 
on
ept of inverse problems. Based on indire
t measurements, i.e.the observation of e�e
ts 
aused by the quantity we are looking for, one 
an try to identify the missing parameters.Su
h identi�
ation problems are well known in opti
al metrology. For instan
e the re
ognition and interpretation ofsubsurfa
e 
aws using HNDT5,6 and the re
onstru
tion of phase distributions7 from the observed intensity values arequite 
ommon. However, inverse problems have usually some undesirable properties: they are in general ill{posed,ambiguous, and unstable. The 
on
ept of well-posedness was introdu
ed by Hadamard8 into the mathemati
alliterature. He de�ned a Cau
hy problem of partial di�erential equations as well-posed, if for all Cau
hy data thereis a uniquely determined solution depending 
ontinuously on the data; otherwise the problem is ill{posed.In mathemati
al notation, an operator equation F (x) = yis de�ned as well-posed with a linear operator F 2 $(X ;Y ) in Bana
h spa
es X and Y if the following threeHadamard 
onditions are satis�ed:81. F (x) = y has a solution x 2 X for all y 2 Y (existen
e),2. This solution x is determined uniquely (uniqueness),3. The solution x depends 
ontinuously on the data y, i.e. the 
onvergen
e jjyn�yjj ! 0 of a sequen
e yn = F (xn)implies the 
onvergen
e jjxn � xjj ! 0 of 
orresponding solutions (stability).If at least one of the above 
onditions is violated, then the operator equation is 
alled ill-posed. Simply spo-ken ill-posedness means that we have not enough information to solve the problem uniquely. For the solution ofinverse/ill-posed problems it is important to apply a maximum amount of a-priori knowledge or predi
tions aboutthe physi
al quantities to be determined and we always have to answer the question if the measured data 
ontainenough information to determine the unknown quantity uniquely. In 
ase where the data y result from the integra-tion of unknown 
omponents, thus this results in smoothing. The dire
t problem is also a problem dire
ted towardsa loss of information: its solution de�nes a transition from a physi
al quantity with a 
ertain information 
ontentto another quantity with a smaller information 
ontent. This implies that the solution is mu
h smoother than the
orresponding obje
t. For example, the s
attered wave due to an obsta
le is smooth even if the obsta
le is rough.3Consequently, the information about any single 
omponent is lost and very di�erent 
auses may give almost the



same e�e
t after integration. A well{known example for spe
ialists in HNDT is the ambiguous relation betweenan observed fringe pattern (the e�e
t) on the surfa
e and its 
orresponding 
ause (one or several subsurfa
e 
aws)under the surfa
e. The response of the 
aw on the applied load is smoothed sin
e only the displa
ement on thesurfa
e gives rise to the observed fringe pattern. These fringe patterns are very noisy and their topology is stronglylimited.5 Therefore the 
on
lusion from the observed pattern to the 
ause behind is ambiguous in 
ase of simple andstraightforward inspe
tion pro
edures. Later we will 
ome ba
k to this example. In order to over
ome the disadvan-tages of ill-posedness in the pro
ess of �nding an approximate solution to an inverse problem, di�erent te
hniquesof regularization are used. Regularizing an inverse problem means that instead of the ill-posed original problem awell-posed neighboring problem has to be formulated. The key de
ision of regularization is to �nd out an admissible
ompromise between stability and approximation.4 As a 
onsequen
e one 
annot expe
t that the properties of thesolution of the auxiliary problem 
oin
ide with the properties of the original problem. But 
onvergen
e between theregularized and the original solution should be guaranteed if the sto
hasti
 
hara
ter of the experimental data isde
reasing. In 
ase of noisy data the identi�
ation of unknown quantities 
an be 
onsidered as an estimation problem.Depending on the linearity or non-linearity of the operator F , we than have linear and non-linear regression models,respe
tively. Consequently, least-square methods play an important role in the solution of inverse problems:jjF (x) � y�jj ! min with y� = y + �Several regularization te
hniques are based on the Thikonov regularization theory.9,10A
tive vision/metrology is a dire
t way to handle the diÆ
ult regularization problem.11 This is ensured byformulating an adequately stable auxiliary problem and by adding systemati
ally more knowledge about the obje
tunder test and the method of its investigation into the evaluation pro
ess. A pra
ti
al way to do that is theimplementation of a feedba
k loop in
luding the image formation pro
ess to 
reate an expe
tation 
ontrolled datainput. We now turn our attention to a spe
ial 
lass of images that is relevant for opti
al metrology: fringe patterns.Some evaluation methods are dis
ussed whi
h shall illustrate the di�eren
e between dire
t and inverse problems aswell the di�erent approa
hes to handle inverse problems.In the following se
tions, we �rst look at the inverse problem of 
aw parameter estimation from fringe patternsin general and then propose our approa
h for solving the problem. We use data 
ow diagrams for the illustrationof fun
tional dependen
es. Data 
ow diagrams were �rst used in stru
tured analysis.12 They 
onsists of pro
essesor fun
tions (boxes with round 
orners), data 
ows (arrows), data sets (two lines), and data sour
es or sinks (boxeswith sharp 
orners). The exe
ution 
ow is not expli
itly de�ned, a pro
ess is exe
uted if all required input data areavailable. A pro
ess 
an be re�ned by a further data 
ow diagram.2. DIRECT AND INVERSE PROBLEMSIn general, re
ognition of material faults from fringe patterns 
an be formulated as an inverse parameter identi�-
ation problem. A parametri
 geometri
 model is used to des
ribe possible 
aws. We assume multiple 
aws beingmutually independent and separable in spa
e. The dire
t problem, i.e. the 
al
ulation of observable intensities givena parameter ve
tor, is well understood and well-posed, whereas the inverse problem is diÆ
ult and ill-posed. Fora better understanding of the inverse problem we de
ompose the problem into several fun
tions. The fun
tionaldependen
es are illustrated in Fig. 1. In the following se
tions ea
h fun
tion F and its inverse F�1 are explained.2.1. Fun
tions Fad and F�1adThe key fun
tion of the system is Fad. It des
ribes the 
al
ulation of displa
ement ve
tors d given the parameterve
tor a. For HNDT of satellite fuel tanks a typi
al 
aw is modeled by an ellipsoid with 6 parameters: 
enterof ellipsoid, main axis, an
illary axis, and alignment of main axis. A geometri
 model of the tank is 
reated byintegrating the ellipsoid into a given exa
t model of the 
awless tank. The deformation of the tank under a givenload is 
al
ulated by a �nite-element method.For our purpose we are interested in the inverse fun
tion F�1ad , i.e. estimating the parameters a given a set ofdispla
ement ve
tors d. This ill-posed problem is not very well understood in general, although there exist someinvestigations for some spe
ial 
ases.6 More spe
i�
 investigations for the ellipsoidal model, espe
ially 
on
erningfun
tional dependen
ies, uniqueness, and stability of the solution, have to be done in future works. Up to now we
annot solve this problem in a dire
t way. Instead, we propose an iterative solution in Se
tions 2.4 and 3.
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Figure 1. Data 
ow diagram of dire
t problems F and inverse problems F�1: x obje
t points, a 
aw parameters,d displa
ements, u image points, ' phases, f intensities2.2. Fun
tions Fd' and F�1d'Fun
tion Fd' des
ribes the 
al
ulation of phase di�eren
es ' of the interfering wave �elds from displa
ement ve
tors.In the following we apply the 
on
ept of homologous points,13 i.e. only 
orresponding obje
t point pairs 
ontributeto the formation of holographi
 interferen
e pattern. Ea
h obje
t point x is proje
ted to a 
orresponding imagepoint u. Contributions from other obje
t points produ
e spe
kle noise. The phase di�eren
e is 
al
ulated by theinner produ
t of the displa
ement of an obje
t point and the 
orresponding sensitivity ve
tor sx:13Fd'(d;x) = (';u) = (< d; sx >;Fxu(x)) sx = Fxs(x)Fun
tion Fxs is used for 
al
ulation of sensitivity ve
tors. It 
an be derived for spheri
al wavefronts from theposition of the beam expander and the position of the opti
al 
enter of the 
amera relative to the obje
t and forplane waves from the wave propagation ve
tors. Fun
tion Fxu is des
ribed below.For the 
al
ulation of displa
ement ve
tors from phase distributions we have to solve the inverse problem F�1d' .There are at least three phase di�eren
es from di�erent viewing or illumination dire
tions ne
essary for a uniquesolution:13 F�1d' ('1; '2; '3;u) = (d;x) = 0B�0� Fxs1(xu)tFxs2(xu)tFxs3(xu)t 1A�10� '1'2'3 1A ;xu1CA xu = F�1xu (u)The fun
tions Fxu and F�1xu transform obje
t points x to 
orresponding image points u and vi
e versa. These are
lassi
al problems from three-dimensional 
omputer vision. If we assume a distortion-free pinhole 
amera model, theproje
tion of obje
t points given in homogeneous obje
t 
oordinates ~x to image points given in homogeneous image
oordinates ~u 
an be written using the homogeneous version of Fxu as:14P : P3 ! P2 ~x 2 P3 ~u 2 P2 ~Fxu(~x) = ~u = P ~xIn 
ase of a plane obje
t surfa
e the proje
tion 
an be simpli�ed by 
hoosing a two-dimensional 
oordinate systemin the obje
t plane, transforming the obje
t points in homogeneous plane 
oordinates ~xp, and applying a 
ollineationof proje
tive spa
e:14
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Figure 2. Data 
ow diagrams of phase di�eren
e 
al
ulation from displa
ement ve
tors and the inverse fun
tionP p : P2 ! P2 ~xp 2 P2 ~u 2 P2 ~Fxu(~xp) = ~u = P p ~xpIn the latter 
ase 
orresponding obje
t points 
an be 
al
ulated easily from given image points by inverting the
ollineation matrix P p: ~F�1xu (~u) = ~xp = P�1p ~uIn the general 
ase the inversion of Fxu is not unique. Nevertheless a unique solution exists, if only visible obje
tpoints are 
onsidered. Raytra
ing methods are used to �nd 
orresponding, visible obje
t points.In Fig. 2 the fun
tions for 
al
ulating phase di�eren
es from displa
ement ve
tors and vi
e versa are summarized.2.3. Fun
tions F'f and F�1'fFun
tion F'f des
ribes the 
al
ulation of observable intensities f from phase di�eren
es ' of the interfering wave�elds:13 F'f (';u) = (f;u) = (a(u) + b(u) 
os';u)where a(u) and b(u) are the additive and multipli
ative distortions (ba
kground intensity, spe
kle noise, varyingfringe visibility).A minimum of three intensities f1; f2; f3 at an image point u with known phase shift of the referen
e beam arene
essary for the 
al
ulation of phase di�eren
es with unknown distortions a(u) and b(u). In 
ase of a 
onstantphase shift of �2 the fun
tion ~F�1'f for 
al
ulation of raw phases ~' is:15~F�1'f (f1; f2; f3;u) = ( ~';u) = �tan�1 f3 � f2f1 � f2 ;u�For 
al
ulation of the absolute phases ' the raw phases have to be unwrapped starting from a point with knownabsolute phase.15 A 
ontinuous phase distribution is assumed.2.4. Fun
tions Faf and F�1afFun
tion Faf des
ribes the 
al
ulation of intensity distributions given a parameter ve
tor des
ribing a 
aw. It 
anbe written as a 
omposition of fun
tions: Faf = F'f Æ Fd' Æ FadIn our system the inverse fun
tion F�1af 
annot be 
al
ulated by 
ombining the inverse problems introdu
ed aboveas we do not have enough information for phase and displa
ement re
onstru
tion. Instead, we use a feature based
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;u) F
aFigure 3. Data 
ow diagram of parameter estimation from interferograms using featuresapproa
h from the �eld of 
omputer vision and pattern re
ognition.16 From the observable intensities (pattern)we 
al
ulate features 
 whi
h 
ontain only information about the underlying phase distribution (fun
tion Ff
, seeFig. 3). The same kind of features are 
al
ulated from displa
ement ve
tors with fun
tion Fad. In an iterative pro
ess(fun
tion F
a), an estimation of a parameter ve
tor is sear
hed, whi
h produ
es similar features to the features frommeasurement.Fun
tion F�1af always must have a solution, as it is based on a well-de�ned physi
al pro
ess, but the solution isnot unique. We have to add additional information to restri
t the set of solutions. From a single interferogram thesign of the phase 
annot be determined, but in most 
ases the sign is determined by the way the obje
t is loaded.Displa
ements 
an be re
onstru
ted uniquely if the displa
ement dire
tions are known. In 
ase of tank inspe
tion weassume displa
ements being perpendi
ular to the surfa
e. As already mentioned above, the uniqueness of fun
tionF�1ad is still a 
ru
ial point. In 
ase of multiple solutions it is worth to investigate, if it is possible to obtain a uniquesolution by 
hanging the type of load. 3. SYSTEM DESCRIPTIONIn the last se
tion we des
ribed the de
omposition of the image formation and image analysis problem into severalinverse and dire
t problems from a theoreti
al point of view. Now we fo
us on the realization of the analysis system.A top level data 
ow diagram of the system is shown in Fig. 4, a re�nement of the parameter estimation pro
ess forthe tank testing appli
ation is shown in Fig. 5. In the following, we give a brief des
ription of the pro
esses and showexperimental results. For our experiments we use a repli
ation of a typi
al satellite fuel tank with exa
tly known
aw parameters. The image pro
essing algorithms are implemented on a standard PC (Pentium MMX 233 MHz),the �nite-element simulation is exe
uted on a SUN SPARC Ultra workstation.
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e imagewavelengthobje
t geometryinterferometer geometry interferograms

Figure 4. Top level data 
ow diagram of the system
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Figure 5. Data 
ow diagram of the parameter estimation pro
ess3.1. MeasurementFor the inspe
tion of satellite fuel tanks a standard holographi
 setup is used (Fig. 6). To avoid repositioningproblems and wet 
hemi
al pro
essing we use photopolymers as holographi
 re
ording medium. Interferograms aredigitized with a standard CCD 
amera and a standard PC frame grabber with PAL resolution. The tank is elasti
allydeformed by 
hanging internal pressure, the pressure is 
ontrolled by a PC. As no phase re
onstru
tion is ne
essary,no phase shifting devi
es are needed. In Fig. 7 a holographi
 interferogram of the tank with 
aw is shown.

Figure 6. Experimental setup for HNDT of satellite fuel tanks



Figure 7. Holographi
 interferogram of a tank with
aw (eye-shaped pattern) Figure 8. Referen
e image for registration3.2. RegistrationThe problem of 
omparing two images of one s
ene re
orded under di�erent viewing 
onditions is usually 
alled imageregistration in image pro
essing.16 For the 
omparison of features 
al
ulated from measurements and simulations itis ne
essary to �nd 
orresponding image and obje
t points, i.e. a mapping of the tank surfa
e to the image plane. Ifa pinhole 
amera model is assumed the mapping 
an be written as already des
ribed in se
tion 2.2.We use markers for the determination of the transformation matrix. The obje
t pose is uniquely de�ned usingsix markers. If a rough estimation of the obje
t pose is known, the solution 
an be 
onstrained and four markersare suÆ
ient. We use 
ir
ular markers �xed on the tank surfa
e whi
h are made from light-adsorbing material.For the automati
 extra
tion of the marker 
oordinates in the image, the tank is illuminated with the obje
t waveonly, so that no disturbing interferen
es 
ompli
ate the dete
tion. We apply image pro
essing methods whi
h areoptimized for the segmentation of images with 
oherent illumination: Due to spe
kle noise it is not possible to applya 
onventional edge dete
tor. Instead, we �rst segment regions with low intensity and then sear
h for neighbouringedges. Finally, marker 
enters are found by �tting ellipses to the edge image.The obje
t pose also is used for the 
al
ulation of sensitivity ve
tors, the propagation of the illumination beamis assumed to be known. Regions outside the quadrangle of the four markers are masked for the further 
al
ulation.In Fig. 8 the referen
e image for registration of a tank is shown. The 
omplete registration pro
ess requires about20 se
onds.3.3. Feature Cal
ulationIn general, features should 
ondense the essential information of a pattern 
on
erning a given appli
ation. Here weare interested in the underlying phase of an interferogram, i.e. features should be independent of fringe 
ontrastand ba
kground intensity. Furthermore, features should be independent of the absolute phase, as in most 
ases theabsolute phase is not known or not very stable due to vibrations. We already proposed suitable features and methodsfor feature 
al
ulation from interferograms.17 For ea
h image point (xo; yo) we 
al
ulate a two-dimensional featureve
tor 
(xo; yo) 
ontaining the features fringe density and fringe orientation.Def.: fringe density and fringe orientationgiven a quadrati
 region B = f(x; y)jx1 � x � x2 ^ y1 � y � y2g with (xo; yo) 2 B and following properties:8 (x; y) 2 B holds: grad'(x; y) = 
onst 6= 0 ^ a(x; y) = 
onst ^ b(x; y) = 
onst 6= 0^ 9 fringe ridge-line ^ 9 fringe ravine-linefringe density: �(xo; yo) = �l with l = distan
e between ridge-line and adja
ent ravine-line) �(xo; yo) = j grad'(x; y)j



Figure 9. Features 
al
ulated from interferogram 7: fringe orientation (left), fringe density (right)fringe orientation: �(xo; yo) = angle between y-axis and ridge-line) �(xo; yo) = ( ar
tan grady'(xo;yo)gradx'(xo;yo) : gradx 6= 0�2 : gradx = 0 ^ grady 6= 0
(xo; yo) = (�(xo; yo); �(xo; yo))tBrie
y summarized from our previous work17 features 
an be 
al
ulated robustly from interferograms as follows:First intensity ridge-lines and ravine-lines are segmented using only the dire
tions of a gradient image of the in-terferogram. The gradient image is estimated from the interferogram using several window sizes depending on thehomogeneneity of the gradient dire
tions. Finally the distan
e between adja
ent lines is estimated at ea
h imagepoint. Feature 
al
ulation from simulated phase distributions is less diÆ
ult, as it is possible to 
al
ulate the phasegradients dire
tly and hardly any noise 
ompli
ates the 
al
ulation.In Fig. 9 an example for feature 
al
ulation from interferogram Fig. 7 is shown. The 
omputation time is about200 se
onds. Regions where no features are available are either masked as they lay outside the marker area or theyare masked due to unstable features, i.e. regions with inhomogeneous orientations or low fringe density. It 
an beshown that features from regions with low fringe density are quite sensitive to noise, furthermore the assumption ofa 
onstant phase gradient is easily violated. However a sele
tive 
hange of load allows to get a dense feature map(dashed line in Fig. 5).3.4. SimulationSin
e the des
ribed method assumes knowledge about the boundary 
onditions like used material, 
onstru
tion,applied load et
., it is possible to simulate the obje
t deformation using the �nite-element method (FEM). First, thegeometry of the tank is meshed with the mesh generator of the �nite-element program ANSYS 5.3, then the 
awis integrated automati
ally into the mesh, given a 
aw parameter ve
tor, and �nally the deformation of the surfa
eunder internal pressure is 
al
ulated using the ANSYS FE-solver (Fig. 10).During this pro
edure, the �nite-element method delivers the deformation only for the edges of the element, i.e. thenodes. For the 
al
ulation of displa
ements at an arbitrary image point it is ne
essary to know the displa
ements atea
h 
orresponding obje
t surfa
e point, i.e. we have to interpolate between the nodes to get a 
ontinuous displa
ementdistribution. Point 
orresponden
es are known from registration. The se
ond problem we were fa
ed with was thatthe entire strategy to solve the inverse problem is an iterative one, i.e. we have to 
al
ulate the deformation notonly on
e, so it was unavoidable to redu
e the simulation time from hours towards se
onds. We a
hieved this byredu
ing the total area to be 
omputed during the iteration to an smaller area of interest in
luding the dete
ted
aw indi
ating pattern only. In Fig. 11 a simulated interferogram of the tank is shown whi
h is 
omparable to themeasured one in Fig. 7.



Figure 10. Finite-element-mesh of the tank and 
al
ulated deformation for internal pressure (magnitude of dis-pla
ements in meters)

Figure 11. Simulation of interferogram with known 
aw3.5. Feature ComparisonThe basi
 idea of solving the inverse problem F�1af is to 
ompare features 
al
ulated from interferograms with featuresof simulated phase distributions and 
hanging the parameter ve
tor as long as the distan
e between the feature ve
torsis bigger than a given threshold. A 
ru
ial point is still the generation of suitable 
aw hypotheses for an eÆ
ientiteration. This has to be done in future work. In prin
iple the proposed method works if a 
omplete parametervariation is done.For feature 
omparison we are interested in a set S of image points (i; j) where the simulated deformations andthe measured deformations do not 
oin
ide with a 
ertain probability, given features and feature varian
es at (i; j):S = f(i; j)j(�ij � ~�ij)2 > �2� _ (�ij � ~�ij)2 > �2�g with�ij ; �ij fringe orientation and fringe density from measurement~�ij ; ~�ij fringe orientation and fringe density from simulation�2� ; �2� varian
es of featuresIf S 
ontains no more image points, the parameter estimation pro
ess is terminated. Feature varian
es are estimatedfrom interferograms of a 
alibration obje
t with known deformation.



a) b)


) d)Figure 12. Comparison of features from measurement and simulation (gray overlays show evaluated regions, whiteoverlays show regions with signi�
ant model deviations): a) fringe orientation, no 
aw assumed, b) fringe density,no 
aw assumed, 
) fringe orientation, simulation with known 
aw, d) fringe density, simulation with known 
awIn Fig. 12 some results for the tank example are shown. We 
ompared features from interferogram Fig. 7 witha simulation of the tank without 
aw and a simulation with 
aw; the parameters of the 
aw are exa
tly known.In the white regions the model deviates signi�
antly from the measurement. It 
an be seen that in the 
aw regionthere are signi�
ant deviations 
ompared to the simulation without 
aw. These deviations nearly vanish in 
ase of asimulation with the 
orre
t parameter ve
tor. However, there are some white regions whi
h are falsely marked dueto an in
orre
t simulation, i.e. the simulation still has to be improved. It takes about 80 se
onds to 
al
ulate featuresfrom simulated phase distributions and to 
ompare these features with features from measurement.4. CONCLUSIONIn this 
ontribution we proposed a method for automati
 HNDT of satellite fuel tanks. Here testing means to estimateparameters of a geometri
 
aw model from deformation behaviour of the tank surfa
e, given a geometri
 model ofthe faultless tank. Deformation information is extra
ted from fringe patterns using image pro
essing te
hniques.This kind of HNDT is an ill-posed inverse problem whi
h is regularized using prin
iples of a
tive vision/metrology.In a feedba
k loop, features 
al
ulated from interferograms of di�erent load states are 
ompared with features froma �nite-element simulation of the tank deformation with a hypotheti
al 
aw. Di�erent load states are useful forimprovement of feature 
al
ulation and in
reasing sensitivity of fault dete
tion.Experiments have shown that the proposed method works in prin
iple. The great advantage of the method isits 
exibility, we do not need any sample to learn from. Further on we get a quantitative des
ription of the 
awwhi
h makes it easy to de
ide if it is 
riti
al or not. Cru
ial point is a 
orre
t simulation of the tank whi
h still hasto be improved and the generation of suitable 
aw hypotheses for a fast 
onvergen
e whi
h still has to be done infuture works. Further on we have to investigate uniqueness of the solution and measurement un
ertainties of the
aw parameters.
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