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ABSTRACT

In computer vision several views exist how to solve vision problems. The first general methodology was introduced
by MARR; he proposed a data-driven and straightforward analysis strategy. Nowadays the concept of active vision
introduced by ALOIMONOS et al. becomes more and more important. In contrast to MARR’S philosophy, active
vision implies a feedback loop which consists of sensors and active components. In this paper we present a system
for the identification of material faults under the surface of a test object. For that purpose the specimen is elastically
deformed, then the deformation is made visible using holographic interferometry, and finally flaw parameters are
estimated using a model-based approach to analyze interferograms. This is an underconstrained computer vision
problem which is regularized using a priori knowledge and an active modification of the experimental setup. More
mathematically, this vision task can be seen in the context of inverse problem theory. In this contribution we describe
the system and point out how it is related to the methodologies named above. To illustrate the functionality of the
system, results are shown from non-destructive testing of satellite fuel tanks.

Keywords: holographic non-destructive testing, interferogram analysis, parameter estimation, inverse problems,
active vision, image processing

1. INTRODUCTION

The problems in optical metrology are very similar to those of computer vision. Both disciplines deal with image—like
input and use image processing techniques to derive a symbolic description of the image content or to reconstruct
various quantities from the acquired intensity distribution. Examples can be found in experimental shape and
stress analysis (ESA) where geometrical and mechanical quantities such as coordinates and displacements have to be
derived from periodically modulated intensity distributions or in holographic non-destructive testing (HNDT) where
the observed fringe patterns must be analyzed with respect to the detection of material faults. In this contribution
we will describe an active approach for automatic HNDT of satellite fuel tanks and show its relation to inverse
problem theory. The term ”active” means that the load of the specimen is changed in a flexible way depending on
the deformation behaviour and the kind of possible material faults.

The well known paradigm of MARR

“Computer vision is the development of procedures for the solution of the inverse task of the image
formation process”!

describes nothing else than the task to conclude from the effect to its cause. In holographic interferometry, the
intensity I(i,7) at pixel location (i, 7) is used to determine the cause, in that case the displacement d(z,y, z) of the
related object point (z,y, z). In other words, an inverse problem has to be solved. But what is an inverse problem?

From the point of view of a mathematician the concept of an inverse problem has a certain degree of ambiguity
which is well illustrated by a frequently quoted statement of J.B. KELLER?:

Further author information:
E-mail: %merz@informatik.uni-erlangen.de, bfe@elanda.bias.uni-bremen.de
WWW: %http://wwwb.informatik.uni-erlangen.de, bhttp://www.bias.uni-bremen.de



“We call two problems inverses of one another if the formulation of each involves all or part of the solution
of the other. Often for historical reasons, one of the two problems has been studied extensively for some
time, while the other has never been studied and is not so well understood. In such cases, the former is
called direct problem, while the latter is the inverse problem.”

Both problems are related by a kind of duality in the sense that one problem can be derived from the other by
exchanging the role of the data and that of the unknown: the data of one problem are the unknowns of the other
and vice versa. As a consequence of this duality it may seem arbitrary to decide what is the direct and what is the
inverse problem. For physicists and engineers, however, the situation is quite different because the two problems
are not on the same level:® one of them, and precisely the one called the direct problem, is considered to be more
fundamental than the other and, for this reason is also better investigated. Consequently the historical reasons
mentioned by KELLER are basically physical reasons. Processes with a well-defined causality such as the process of
image formation are called direct problems. Direct problems need information about all quantities which influence the
unknown effect. Moreover, the internal structure of causality, all initial and boundary conditions and all geometrical
details have to be formulated mathematically.* Initial and boundary value problems which are usually expressed by
ordinary and partial differential equations, are typical examples.

One example is KIRCHHOFF'S formulation of the diffraction problem: the direct problem consists in the computa-
tion of the scattered waves from the knowledge of the sources and obstacles. Such direct problems have some excellent
properties which make them so attractive for physicists: If reality and mathematical description fit sufficiently well,
the direct problem is expected to be uniquely solvable. Further on it is in general stable. That means, small changes
of the initial or boundary conditions cause also small effects only (in contrast to chaotic processes). Unfortunately,
numerous problems in physics and engineering deal with unknown but non-observable values. If the causal connec-
tions are investigated backwards we come to the concept of inverse problems. Based on indirect measurements, i.e.
the observation of effects caused by the quantity we are looking for, one can try to identify the missing parameters.
Such identification problems are well known in optical metrology. For instance the recognition and interpretation of
subsurface flaws using HNDT?:6 and the reconstruction of phase distributions” from the observed intensity values are
quite common. However, inverse problems have usually some undesirable properties: they are in general ill-posed,
ambiguous, and unstable. The concept of well-posedness was introduced by HADAMARD® into the mathematical
literature. He defined a CAUCHY problem of partial differential equations as well-posed, if for all CAucHY data there
is a uniquely determined solution depending continuously on the data; otherwise the problem is ill-posed.

In mathematical notation, an operator equation
F(z) =y

is defined as well-posed with a linear operator F' € £(X,Y) in Banach spaces X and Y if the following three
Hadamard conditions are satisfied:

1. F(z) =y has a solution z € X for all y € Y (existence)

2. This solution z is determined uniquely (uniqueness),

3. The solution z depends continuously on the data y, i.e. the convergence ||y, —y|| = 0 of a sequence y,, = F(z,)
implies the convergence ||z, — z|| = 0 of corresponding solutions (stability).

If at least one of the above conditions is violated, then the operator equation is called ill-posed. Simply spo-
ken ill-posedness means that we have not enough information to solve the problem uniquely. For the solution of
inverse/ill-posed problems it is important to apply a maximum amount of a-priori knowledge or predictions about
the physical quantities to be determined and we always have to answer the question if the measured data contain
enough information to determine the unknown quantity uniquely. In case where the data y result from the integra-
tion of unknown components, thus this results in smoothing. The direct problem is also a problem directed towards
a loss of information: its solution defines a transition from a physical quantity with a certain information content
to another quantity with a smaller information content. This implies that the solution is much smoother than the
corresponding object. For example, the scattered wave due to an obstacle is smooth even if the obstacle is rough.?
Consequently, the information about any single component is lost and very different causes may give almost the



same effect after integration. A well-known example for specialists in HNDT is the ambiguous relation between
an observed fringe pattern (the effect) on the surface and its corresponding cause (one or several subsurface flaws)
under the surface. The response of the flaw on the applied load is smoothed since only the displacement on the
surface gives rise to the observed fringe pattern. These fringe patterns are very noisy and their topology is strongly
limited.? Therefore the conclusion from the observed pattern to the cause behind is ambiguous in case of simple and
straightforward inspection procedures. Later we will come back to this example. In order to overcome the disadvan-
tages of ill-posedness in the process of finding an approximate solution to an inverse problem, different techniques
of regularization are used. Regularizing an inverse problem means that instead of the ill-posed original problem a
well-posed neighboring problem has to be formulated. The key decision of regularization is to find out an admissible
compromise between stability and approximation.* As a consequence one cannot expect that the properties of the
solution of the auxiliary problem coincide with the properties of the original problem. But convergence between the
regularized and the original solution should be guaranteed if the stochastic character of the experimental data is
decreasing. In case of noisy data the identification of unknown quantities can be considered as an estimation problem.
Depending on the linearity or non-linearity of the operator F', we than have linear and non-linear regression models,
respectively. Consequently, least-square methods play an important role in the solution of inverse problems:

Several regularization techniques are based on the Thikonov regularization theory.%1°

Active vision/metrology is a direct way to handle the difficult regularization problem.!! This is ensured by
formulating an adequately stable auxiliary problem and by adding systematically more knowledge about the object
under test and the method of its investigation into the evaluation process. A practical way to do that is the
implementation of a feedback loop including the image formation process to create an expectation controlled data
input. We now turn our attention to a special class of images that is relevant for optical metrology: fringe patterns.
Some evaluation methods are discussed which shall illustrate the difference between direct and inverse problems as
well the different approaches to handle inverse problems.

In the following sections, we first look at the inverse problem of flaw parameter estimation from fringe patterns
in general and then propose our approach for solving the problem. We use data flow diagrams for the illustration
of functional dependences. Data flow diagrams were first used in structured analysis.!? They consists of processes
or functions (boxes with round corners), data flows (arrows), data sets (two lines), and data sources or sinks (boxes
with sharp corners). The execution flow is not explicitly defined, a process is executed if all required input data are
available. A process can be refined by a further data flow diagram.

2. DIRECT AND INVERSE PROBLEMS

In general, recognition of material faults from fringe patterns can be formulated as an inverse parameter identifi-
cation problem. A parametric geometric model is used to describe possible flaws. We assume multiple flaws being
mutually independent and separable in space. The direct problem, i.e. the calculation of observable intensities given
a parameter vector, is well understood and well-posed, whereas the inverse problem is difficult and ill-posed. For
a better understanding of the inverse problem we decompose the problem into several functions. The functional
dependences are illustrated in Fig. 1. In the following sections each function F and its inverse F'~! are explained.

2.1. Functions F,; and F(;il

The key function of the system is F,4. It describes the calculation of displacement vectors d given the parameter
vector a. For HNDT of satellite fuel tanks a typical flaw is modeled by an ellipsoid with 6 parameters: center
of ellipsoid, main axis, ancillary axis, and alignment of main axis. A geometric model of the tank is created by
integrating the ellipsoid into a given exact model of the flawless tank. The deformation of the tank under a given
load is calculated by a finite-element method.

For our purpose we are interested in the inverse function F;dl, i.e. estimating the parameters a given a set of
displacement vectors d. This ill-posed problem is not very well understood in general, although there exist some
investigations for some special cases.® More specific investigations for the ellipsoidal model, especially concerning
functional dependencies, uniqueness, and stability of the solution, have to be done in future works. Up to now we
cannot, solve this problem in a direct way. Instead, we propose an iterative solution in Sections 2.4 and 3.
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Figure 1. Data flow diagram of direct problems F and inverse problems F~': & object points, a flaw parameters,
d displacements, u image points, ¢ phases, f intensities

2.2. Functions Fj, and Fdfpl

Function Fy, describes the calculation of phase differences ¢ of the interfering wave fields from displacement vectors.
In the following we apply the concept of homologous points,'® i.e. only corresponding object point pairs contribute
to the formation of holographic interference pattern. Each object point x is projected to a corresponding image
point . Contributions from other object points produce speckle noise. The phase difference is calculated by the

inner product of the displacement of an object point and the corresponding sensitivity vector s,:

Fi,(d,x) = (p,u) = (< d,s; >, Fpu(x)) 8. = Fps(x)

Function F, is used for calculation of sensitivity vectors. It can be derived for spherical wavefronts from the
position of the beam expander and the position of the optical center of the camera relative to the object and for
plane waves from the wave propagation vectors. Function Fy,, is described below.

For the calculation of displacement vectors from phase distributions we have to solve the inverse problem Fd;l.
There are at least three phase differences from different viewing or illumination directions necessary for a unique

solution:'?
-1
. Fes, (mu)t P1 .
Fd_gp (1,02, 903,u) = (d,x) = Fs, (mu)t P2 ; Ly xy = F,, (u)
Fz33 (wu)t ©3

The functions Fj, and F,,} transform object points & to corresponding image points w and vice versa. These are
classical problems from three-dimensional computer vision. If we assume a distortion-free pinhole camera model, the
projection of object points given in homogeneous object coordinates T to image points given in homogeneous image
coordinates @ can be written using the homogeneous version of Fj, as:'*

P:P? 5P gcP® acP® F,.Z¥)=a=P&
In case of a plane object surface the projection can be simplified by choosing a two-dimensional coordinate system

in the object plane, transforming the object points in homogeneous plane coordinates &,, and applying a collineation
of projective space:'*



Figure 2. Data flow diagrams of phase difference calculation from displacement vectors and the inverse function

P,:P> 5P i,eP? acP? Fo(@,)=tu=P,i,

In the latter case corresponding object points can be calculated easily from given image points by inverting the
collineation matrix P):

Fo (@) = &, = P, 'a
In the general case the inversion of F}, is not unique. Nevertheless a unique solution exists, if only visible object
points are considered. Raytracing methods are used to find corresponding, visible object points.

In Fig. 2 the functions for calculating phase differences from displacement vectors and vice versa are summarized.

. 1
2.3. Functions F,; and F(pf

Function F; describes the calculation of observable intensities f from phase differences ¢ of the interfering wave
fields:'?

Fop(p.u) = (f,u) = (a(w) + b(u) cosp,u)

where a(u) and b(u) are the additive and multiplicative distortions (background intensity, speckle noise, varying
fringe visibility).

A minimum of three intensities fi, f2, f3 at an image point 4 with known phase shift of the reference beam are
necessary for the calculation of phase differences with unknown distortions a(u) and b(u). In case of a constant
phase shift of  the function F‘p_f1 for calculation of raw phases ¢ is:'®

F;fl(flzf%f&il:) = (p,u) = (tan_l Hu>

For calculation of the absolute phases ¢ the raw phases have to be unwrapped starting from a point with known
absolute phase.!> A continuous phase distribution is assumed.

2.4. Functions F,; and F(;fl

Function F,; describes the calculation of intensity distributions given a parameter vector describing a flaw. It can
be written as a composition of functions:

Faop = Fop o Fag o Fag

In our system the inverse function Fa}l cannot be calculated by combining the inverse problems introduced above
as we do not have enough information for phase and displacement reconstruction. Instead, we use a feature based



Figure 3. Data flow diagram of parameter estimation from interferograms using features

approach from the field of computer vision and pattern recognition.!'® From the observable intensities (pattern)
we calculate features ¢ which contain only information about the underlying phase distribution (function FYy., see
Fig. 3). The same kind of features are calculated from displacement vectors with function F,4. In an iterative process
(function F,,), an estimation of a parameter vector is searched, which produces similar features to the features from
measurement.

Function Fa}l always must have a solution, as it is based on a well-defined physical process, but the solution is
not unique. We have to add additional information to restrict the set of solutions. From a single interferogram the
sign of the phase cannot be determined, but in most cases the sign is determined by the way the object is loaded.
Displacements can be reconstructed uniquely if the displacement directions are known. In case of tank inspection we
assume displacements being perpendicular to the surface. As already mentioned above, the uniqueness of function
Fafd1 is still a crucial point. In case of multiple solutions it is worth to investigate, if it is possible to obtain a unique
solution by changing the type of load.

3. SYSTEM DESCRIPTION

In the last section we described the decomposition of the image formation and image analysis problem into several
inverse and direct problems from a theoretical point of view. Now we focus on the realization of the analysis system.
A top level data flow diagram of the system is shown in Fig. 4, a refinement of the parameter estimation process for
the tank testing application is shown in Fig. 5. In the following, we give a brief description of the processes and show
experimental results. For our experiments we use a replication of a typical satellite fuel tank with exactly known
flaw parameters. The image processing algorithms are implemented on a standard PC (Pentium MMX 233 MHz)
the finite-element simulation is executed on a SUN SPARC Ultra workstation.
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Figure 4. Top level data flow diagram of the system
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3.1. Measurement

For the inspection of satellite fuel tanks a standard holographic setup is used (Fig. 6). To avoid repositioning
problems and wet chemical processing we use photopolymers as holographic recording medium. Interferograms are
digitized with a standard CCD camera and a standard PC frame grabber with PAL resolution. The tank is elastically
deformed by changing internal pressure, the pressure is controlled by a PC. As no phase reconstruction is necessary,
no phase shifting devices are needed. In Fig. 7 a holographic interferogram of the tank with flaw is shown.

Control Unit

Optical set-up

\

Figure 6. Experimental setup for HNDT of satellite fuel tanks



Figure 7. Holographic interferogram of a tank with Figure 8. Reference image for registration
flaw (eye-shaped pattern)

3.2. Registration

The problem of comparing two images of one scene recorded under different viewing conditions is usually called image
registration in image processing.!® For the comparison of features calculated from measurements and simulations it
is necessary to find corresponding image and object points, i.e. a mapping of the tank surface to the image plane. If
a pinhole camera model is assumed the mapping can be written as already described in section 2.2.

We use markers for the determination of the transformation matrix. The object pose is uniquely defined using
six markers. If a rough estimation of the object pose is known, the solution can be constrained and four markers
are sufficient. We use circular markers fixed on the tank surface which are made from light-adsorbing material.
For the automatic extraction of the marker coordinates in the image, the tank is illuminated with the object wave
only, so that no disturbing interferences complicate the detection. We apply image processing methods which are
optimized for the segmentation of images with coherent illumination: Due to speckle noise it is not possible to apply
a conventional edge detector. Instead, we first segment regions with low intensity and then search for neighbouring
edges. Finally, marker centers are found by fitting ellipses to the edge image.

The object pose also is used for the calculation of sensitivity vectors, the propagation of the illumination beam
is assumed to be known. Regions outside the quadrangle of the four markers are masked for the further calculation.
In Fig. 8 the reference image for registration of a tank is shown. The complete registration process requires about
20 seconds.

3.3. Feature Calculation

In general, features should condense the essential information of a pattern concerning a given application. Here we
are interested in the underlying phase of an interferogram, i.e. features should be independent of fringe contrast
and background intensity. Furthermore, features should be independent of the absolute phase, as in most cases the
absolute phase is not known or not very stable due to vibrations. We already proposed suitable features and methods
for feature calculation from interferograms.!” For each image point (z,,y,) we calculate a two-dimensional feature
vector ¢(z,,y,) containing the features fringe density and fringe orientation.

Def.: fringe density and fringe orientation

given a quadratic region B = {(z,y)|z; <z < 22 A y1 <y < y2} with (z,,y,) € B and following properties:
V (z,y) € B holds: grad¢(x,y) = const #0 A a(x,y) = const A b(z,y) = const # 0
A 3 fringe ridge-line A 3 fringe ravine-line

fringe density: p(z,,y,) = ? with [ = distance between ridge-line and adjacent ravine-line

| grad (z, )]

= p(T0,Y0)



Figure 9. Features calculated from interferogram 7: fringe orientation (left), fringe density (right)

fringe orientation: «a(z,,vy,) = angle between y-axis and ridge-line
g 'Y g y g
grad, 9(zo.90) |
=  a(z,,y,) = arctan oo ey, | 8rads # 0
z : grad, =0 A grad, #0
c(To,y0) = (p(xo,yo),a(xo,yo))t

Briefly summarized from our previous work!” features can be calculated robustly from interferograms as follows:
First intensity ridge-lines and ravine-lines are segmented using only the directions of a gradient image of the in-
terferogram. The gradient image is estimated from the interferogram using several window sizes depending on the
homogeneneity of the gradient directions. Finally the distance between adjacent lines is estimated at each image
point. Feature calculation from simulated phase distributions is less difficult, as it is possible to calculate the phase
gradients directly and hardly any noise complicates the calculation.

In Fig. 9 an example for feature calculation from interferogram Fig. 7 is shown. The computation time is about
200 seconds. Regions where no features are available are either masked as they lay outside the marker area or they
are masked due to unstable features, i.e. regions with inhomogeneous orientations or low fringe density. It can be
shown that features from regions with low fringe density are quite sensitive to noise, furthermore the assumption of
a constant phase gradient is easily violated. However a selective change of load allows to get a dense feature map
(dashed line in Fig. 5).

3.4. Simulation

Since the described method assumes knowledge about the boundary conditions like used material, construction,
applied load etc., it is possible to simulate the object deformation using the finite-element method (FEM). First, the
geometry of the tank is meshed with the mesh generator of the finite-element program ANSYS 5.3, then the flaw
is integrated automatically into the mesh, given a flaw parameter vector, and finally the deformation of the surface
under internal pressure is calculated using the ANSYS FE-solver (Fig. 10).

During this procedure, the finite-element method delivers the deformation only for the edges of the element, i.e. the
nodes. For the calculation of displacements at an arbitrary image point it is necessary to know the displacements at
each corresponding object surface point, i.e. we have to interpolate between the nodes to get a continuous displacement
distribution. Point correspondences are known from registration. The second problem we were faced with was that
the entire strategy to solve the inverse problem is an iterative one, i.e. we have to calculate the deformation not
only once, so it was unavoidable to reduce the simulation time from hours towards seconds. We achieved this by
reducing the total area to be computed during the iteration to an smaller area of interest including the detected
flaw indicating pattern only. In Fig. 11 a simulated interferogram of the tank is shown which is comparable to the
measured one in Fig. 7.



Figure 10. Finite-element-mesh of the tank and calculated deformation for internal pressure (magnitude of dis-
placements in meters)
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Figure 11. Simulation of interferogram with known flaw

3.5. Feature Comparison

The basic idea of solving the inverse problem Fa_f1 is to compare features calculated from interferograms with features
of simulated phase distributions and changing the parameter vector as long as the distance between the feature vectors
is bigger than a given threshold. A crucial point is still the generation of suitable flaw hypotheses for an efficient
iteration. This has to be done in future work. In principle the proposed method works if a complete parameter
variation is done.

For feature comparison we are interested in a set S of image points (i, j) where the simulated deformations and
the measured deformations do not coincide with a certain probability, given features and feature variances at (i, j):

S = {6 DNpis = pij)? > 05 V (e — @ij)? > 03} with
Qij, Pij fringe orientation and fringe density from measurement
Qij, Pij fringe orientation and fringe density from simulation
oi, o2 variances of features

If S contains no more image points, the parameter estimation process is terminated. Feature variances are estimated
from interferograms of a calibration object with known deformation.



c)

Figure 12. Comparison of features from measurement and simulation (gray overlays show evaluated regions, white
overlays show regions with significant model deviations): a) fringe orientation, no flaw assumed, b) fringe density,
no flaw assumed, c) fringe orientation, simulation with known flaw, d) fringe density, simulation with known flaw

d)

In Fig. 12 some results for the tank example are shown. We compared features from interferogram Fig. 7 with
a simulation of the tank without flaw and a simulation with flaw; the parameters of the flaw are exactly known.
In the white regions the model deviates significantly from the measurement. It can be seen that in the flaw region
there are significant deviations compared to the simulation without flaw. These deviations nearly vanish in case of a
simulation with the correct parameter vector. However, there are some white regions which are falsely marked due
to an incorrect simulation, i.e. the simulation still has to be improved. It takes about 80 seconds to calculate features
from simulated phase distributions and to compare these features with features from measurement.

4. CONCLUSION

In this contribution we proposed a method for automatic HNDT of satellite fuel tanks. Here testing means to estimate
parameters of a geometric flaw model from deformation behaviour of the tank surface, given a geometric model of
the faultless tank. Deformation information is extracted from fringe patterns using image processing techniques.
This kind of HNDT is an ill-posed inverse problem which is regularized using principles of active vision/metrology.
In a feedback loop, features calculated from interferograms of different load states are compared with features from
a finite-element simulation of the tank deformation with a hypothetical flaw. Different load states are useful for
improvement of feature calculation and increasing sensitivity of fault detection.

Experiments have shown that the proposed method works in principle. The great advantage of the method is
its flexibility, we do not need any sample to learn from. Further on we get a quantitative description of the flaw
which makes it easy to decide if it is critical or not. Crucial point is a correct simulation of the tank which still has
to be improved and the generation of suitable flaw hypotheses for a fast convergence which still has to be done in
future works. Further on we have to investigate uniqueness of the solution and measurement uncertainties of the
flaw parameters.
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