
Ative approah for holographi non-destrutive testing ofsatellite fuel tanksTorsten Merza, Frank Elandaloussib, Dietrih Paulusa, Wolfgang Ostenba Universit�at Erlangen-N�urnberg, Lehrstuhl f�ur MustererkennungMartensstr. 3, D-91058 Erlangen, Germanyb Bremer Institut f�ur angewandte Strahltehnik (BIAS)Klagenfurter Str. 2, D-28359 Bremen, GermanyABSTRACTIn omputer vision several views exist how to solve vision problems. The �rst general methodology was introduedby Marr; he proposed a data-driven and straightforward analysis strategy. Nowadays the onept of ative visionintrodued by Aloimonos et al. beomes more and more important. In ontrast to Marr's philosophy, ativevision implies a feedbak loop whih onsists of sensors and ative omponents. In this paper we present a systemfor the identi�ation of material faults under the surfae of a test objet. For that purpose the speimen is elastiallydeformed, then the deformation is made visible using holographi interferometry, and �nally aw parameters areestimated using a model-based approah to analyze interferograms. This is an underonstrained omputer visionproblem whih is regularized using a priori knowledge and an ative modi�ation of the experimental setup. Moremathematially, this vision task an be seen in the ontext of inverse problem theory. In this ontribution we desribethe system and point out how it is related to the methodologies named above. To illustrate the funtionality of thesystem, results are shown from non-destrutive testing of satellite fuel tanks.Keywords: holographi non-destrutive testing, interferogram analysis, parameter estimation, inverse problems,ative vision, image proessing 1. INTRODUCTIONThe problems in optial metrology are very similar to those of omputer vision. Both disiplines deal with image{likeinput and use image proessing tehniques to derive a symboli desription of the image ontent or to reonstrutvarious quantities from the aquired intensity distribution. Examples an be found in experimental shape andstress analysis (ESA) where geometrial and mehanial quantities suh as oordinates and displaements have to bederived from periodially modulated intensity distributions or in holographi non-destrutive testing (HNDT) wherethe observed fringe patterns must be analyzed with respet to the detetion of material faults. In this ontributionwe will desribe an ative approah for automati HNDT of satellite fuel tanks and show its relation to inverseproblem theory. The term "ative" means that the load of the speimen is hanged in a exible way depending onthe deformation behaviour and the kind of possible material faults.The well known paradigm of Marr\Computer vision is the development of proedures for the solution of the inverse task of the imageformation proess"1desribes nothing else than the task to onlude from the e�et to its ause. In holographi interferometry, theintensity I(i; j) at pixel loation (i; j) is used to determine the ause, in that ase the displaement d(x; y; z) of therelated objet point (x; y; z). In other words, an inverse problem has to be solved. But what is an inverse problem?From the point of view of a mathematiian the onept of an inverse problem has a ertain degree of ambiguitywhih is well illustrated by a frequently quoted statement of J.B. Keller2:Further author information:E-mail: amerz�informatik.uni-erlangen.de, bfe�elanda.bias.uni-bremen.deWWW: ahttp://www5.informatik.uni-erlangen.de, bhttp://www.bias.uni-bremen.de



\We all two problems inverses of one another if the formulation of eah involves all or part of the solutionof the other. Often for historial reasons, one of the two problems has been studied extensively for sometime, while the other has never been studied and is not so well understood. In suh ases, the former isalled diret problem, while the latter is the inverse problem."Both problems are related by a kind of duality in the sense that one problem an be derived from the other byexhanging the role of the data and that of the unknown: the data of one problem are the unknowns of the otherand vie versa. As a onsequene of this duality it may seem arbitrary to deide what is the diret and what is theinverse problem. For physiists and engineers, however, the situation is quite di�erent beause the two problemsare not on the same level:3 one of them, and preisely the one alled the diret problem, is onsidered to be morefundamental than the other and, for this reason is also better investigated. Consequently the historial reasonsmentioned by KELLER are basially physial reasons. Proesses with a well-de�ned ausality suh as the proess ofimage formation are alled diret problems. Diret problems need information about all quantities whih inuene theunknown e�et. Moreover, the internal struture of ausality, all initial and boundary onditions and all geometrialdetails have to be formulated mathematially.4 Initial and boundary value problems whih are usually expressed byordinary and partial di�erential equations, are typial examples.One example is Kirhhoff's formulation of the di�ration problem: the diret problem onsists in the omputa-tion of the sattered waves from the knowledge of the soures and obstales. Suh diret problems have some exellentproperties whih make them so attrative for physiists: If reality and mathematial desription �t suÆiently well,the diret problem is expeted to be uniquely solvable. Further on it is in general stable. That means, small hangesof the initial or boundary onditions ause also small e�ets only (in ontrast to haoti proesses). Unfortunately,numerous problems in physis and engineering deal with unknown but non-observable values. If the ausal onne-tions are investigated bakwards we ome to the onept of inverse problems. Based on indiret measurements, i.e.the observation of e�ets aused by the quantity we are looking for, one an try to identify the missing parameters.Suh identi�ation problems are well known in optial metrology. For instane the reognition and interpretation ofsubsurfae aws using HNDT5,6 and the reonstrution of phase distributions7 from the observed intensity values arequite ommon. However, inverse problems have usually some undesirable properties: they are in general ill{posed,ambiguous, and unstable. The onept of well-posedness was introdued by Hadamard8 into the mathematialliterature. He de�ned a Cauhy problem of partial di�erential equations as well-posed, if for all Cauhy data thereis a uniquely determined solution depending ontinuously on the data; otherwise the problem is ill{posed.In mathematial notation, an operator equation F (x) = yis de�ned as well-posed with a linear operator F 2 $(X ;Y ) in Banah spaes X and Y if the following threeHadamard onditions are satis�ed:81. F (x) = y has a solution x 2 X for all y 2 Y (existene),2. This solution x is determined uniquely (uniqueness),3. The solution x depends ontinuously on the data y, i.e. the onvergene jjyn�yjj ! 0 of a sequene yn = F (xn)implies the onvergene jjxn � xjj ! 0 of orresponding solutions (stability).If at least one of the above onditions is violated, then the operator equation is alled ill-posed. Simply spo-ken ill-posedness means that we have not enough information to solve the problem uniquely. For the solution ofinverse/ill-posed problems it is important to apply a maximum amount of a-priori knowledge or preditions aboutthe physial quantities to be determined and we always have to answer the question if the measured data ontainenough information to determine the unknown quantity uniquely. In ase where the data y result from the integra-tion of unknown omponents, thus this results in smoothing. The diret problem is also a problem direted towardsa loss of information: its solution de�nes a transition from a physial quantity with a ertain information ontentto another quantity with a smaller information ontent. This implies that the solution is muh smoother than theorresponding objet. For example, the sattered wave due to an obstale is smooth even if the obstale is rough.3Consequently, the information about any single omponent is lost and very di�erent auses may give almost the



same e�et after integration. A well{known example for speialists in HNDT is the ambiguous relation betweenan observed fringe pattern (the e�et) on the surfae and its orresponding ause (one or several subsurfae aws)under the surfae. The response of the aw on the applied load is smoothed sine only the displaement on thesurfae gives rise to the observed fringe pattern. These fringe patterns are very noisy and their topology is stronglylimited.5 Therefore the onlusion from the observed pattern to the ause behind is ambiguous in ase of simple andstraightforward inspetion proedures. Later we will ome bak to this example. In order to overome the disadvan-tages of ill-posedness in the proess of �nding an approximate solution to an inverse problem, di�erent tehniquesof regularization are used. Regularizing an inverse problem means that instead of the ill-posed original problem awell-posed neighboring problem has to be formulated. The key deision of regularization is to �nd out an admissibleompromise between stability and approximation.4 As a onsequene one annot expet that the properties of thesolution of the auxiliary problem oinide with the properties of the original problem. But onvergene between theregularized and the original solution should be guaranteed if the stohasti harater of the experimental data isdereasing. In ase of noisy data the identi�ation of unknown quantities an be onsidered as an estimation problem.Depending on the linearity or non-linearity of the operator F , we than have linear and non-linear regression models,respetively. Consequently, least-square methods play an important role in the solution of inverse problems:jjF (x) � y�jj ! min with y� = y + �Several regularization tehniques are based on the Thikonov regularization theory.9,10Ative vision/metrology is a diret way to handle the diÆult regularization problem.11 This is ensured byformulating an adequately stable auxiliary problem and by adding systematially more knowledge about the objetunder test and the method of its investigation into the evaluation proess. A pratial way to do that is theimplementation of a feedbak loop inluding the image formation proess to reate an expetation ontrolled datainput. We now turn our attention to a speial lass of images that is relevant for optial metrology: fringe patterns.Some evaluation methods are disussed whih shall illustrate the di�erene between diret and inverse problems aswell the di�erent approahes to handle inverse problems.In the following setions, we �rst look at the inverse problem of aw parameter estimation from fringe patternsin general and then propose our approah for solving the problem. We use data ow diagrams for the illustrationof funtional dependenes. Data ow diagrams were �rst used in strutured analysis.12 They onsists of proessesor funtions (boxes with round orners), data ows (arrows), data sets (two lines), and data soures or sinks (boxeswith sharp orners). The exeution ow is not expliitly de�ned, a proess is exeuted if all required input data areavailable. A proess an be re�ned by a further data ow diagram.2. DIRECT AND INVERSE PROBLEMSIn general, reognition of material faults from fringe patterns an be formulated as an inverse parameter identi�-ation problem. A parametri geometri model is used to desribe possible aws. We assume multiple aws beingmutually independent and separable in spae. The diret problem, i.e. the alulation of observable intensities givena parameter vetor, is well understood and well-posed, whereas the inverse problem is diÆult and ill-posed. Fora better understanding of the inverse problem we deompose the problem into several funtions. The funtionaldependenes are illustrated in Fig. 1. In the following setions eah funtion F and its inverse F�1 are explained.2.1. Funtions Fad and F�1adThe key funtion of the system is Fad. It desribes the alulation of displaement vetors d given the parametervetor a. For HNDT of satellite fuel tanks a typial aw is modeled by an ellipsoid with 6 parameters: enterof ellipsoid, main axis, anillary axis, and alignment of main axis. A geometri model of the tank is reated byintegrating the ellipsoid into a given exat model of the awless tank. The deformation of the tank under a givenload is alulated by a �nite-element method.For our purpose we are interested in the inverse funtion F�1ad , i.e. estimating the parameters a given a set ofdisplaement vetors d. This ill-posed problem is not very well understood in general, although there exist someinvestigations for some speial ases.6 More spei� investigations for the ellipsoidal model, espeially onerningfuntional dependenies, uniqueness, and stability of the solution, have to be done in future works. Up to now weannot solve this problem in a diret way. Instead, we propose an iterative solution in Setions 2.4 and 3.



(f;u) (';u) (d;x) aF�1adF�1d'F�1'f
F�1af

Fd' FadF'f
Faf

x
Figure 1. Data ow diagram of diret problems F and inverse problems F�1: x objet points, a aw parameters,d displaements, u image points, ' phases, f intensities2.2. Funtions Fd' and F�1d'Funtion Fd' desribes the alulation of phase di�erenes ' of the interfering wave �elds from displaement vetors.In the following we apply the onept of homologous points,13 i.e. only orresponding objet point pairs ontributeto the formation of holographi interferene pattern. Eah objet point x is projeted to a orresponding imagepoint u. Contributions from other objet points produe spekle noise. The phase di�erene is alulated by theinner produt of the displaement of an objet point and the orresponding sensitivity vetor sx:13Fd'(d;x) = (';u) = (< d; sx >;Fxu(x)) sx = Fxs(x)Funtion Fxs is used for alulation of sensitivity vetors. It an be derived for spherial wavefronts from theposition of the beam expander and the position of the optial enter of the amera relative to the objet and forplane waves from the wave propagation vetors. Funtion Fxu is desribed below.For the alulation of displaement vetors from phase distributions we have to solve the inverse problem F�1d' .There are at least three phase di�erenes from di�erent viewing or illumination diretions neessary for a uniquesolution:13 F�1d' ('1; '2; '3;u) = (d;x) = 0B�0� Fxs1(xu)tFxs2(xu)tFxs3(xu)t 1A�10� '1'2'3 1A ;xu1CA xu = F�1xu (u)The funtions Fxu and F�1xu transform objet points x to orresponding image points u and vie versa. These arelassial problems from three-dimensional omputer vision. If we assume a distortion-free pinhole amera model, theprojetion of objet points given in homogeneous objet oordinates ~x to image points given in homogeneous imageoordinates ~u an be written using the homogeneous version of Fxu as:14P : P3 ! P2 ~x 2 P3 ~u 2 P2 ~Fxu(~x) = ~u = P ~xIn ase of a plane objet surfae the projetion an be simpli�ed by hoosing a two-dimensional oordinate systemin the objet plane, transforming the objet points in homogeneous plane oordinates ~xp, and applying a ollineationof projetive spae:14
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Figure 2. Data ow diagrams of phase di�erene alulation from displaement vetors and the inverse funtionP p : P2 ! P2 ~xp 2 P2 ~u 2 P2 ~Fxu(~xp) = ~u = P p ~xpIn the latter ase orresponding objet points an be alulated easily from given image points by inverting theollineation matrix P p: ~F�1xu (~u) = ~xp = P�1p ~uIn the general ase the inversion of Fxu is not unique. Nevertheless a unique solution exists, if only visible objetpoints are onsidered. Raytraing methods are used to �nd orresponding, visible objet points.In Fig. 2 the funtions for alulating phase di�erenes from displaement vetors and vie versa are summarized.2.3. Funtions F'f and F�1'fFuntion F'f desribes the alulation of observable intensities f from phase di�erenes ' of the interfering wave�elds:13 F'f (';u) = (f;u) = (a(u) + b(u) os';u)where a(u) and b(u) are the additive and multipliative distortions (bakground intensity, spekle noise, varyingfringe visibility).A minimum of three intensities f1; f2; f3 at an image point u with known phase shift of the referene beam areneessary for the alulation of phase di�erenes with unknown distortions a(u) and b(u). In ase of a onstantphase shift of �2 the funtion ~F�1'f for alulation of raw phases ~' is:15~F�1'f (f1; f2; f3;u) = ( ~';u) = �tan�1 f3 � f2f1 � f2 ;u�For alulation of the absolute phases ' the raw phases have to be unwrapped starting from a point with knownabsolute phase.15 A ontinuous phase distribution is assumed.2.4. Funtions Faf and F�1afFuntion Faf desribes the alulation of intensity distributions given a parameter vetor desribing a aw. It anbe written as a omposition of funtions: Faf = F'f Æ Fd' Æ FadIn our system the inverse funtion F�1af annot be alulated by ombining the inverse problems introdued aboveas we do not have enough information for phase and displaement reonstrution. Instead, we use a feature based



aFf(f;u) (;u) FaFigure 3. Data ow diagram of parameter estimation from interferograms using featuresapproah from the �eld of omputer vision and pattern reognition.16 From the observable intensities (pattern)we alulate features  whih ontain only information about the underlying phase distribution (funtion Ff, seeFig. 3). The same kind of features are alulated from displaement vetors with funtion Fad. In an iterative proess(funtion Fa), an estimation of a parameter vetor is searhed, whih produes similar features to the features frommeasurement.Funtion F�1af always must have a solution, as it is based on a well-de�ned physial proess, but the solution isnot unique. We have to add additional information to restrit the set of solutions. From a single interferogram thesign of the phase annot be determined, but in most ases the sign is determined by the way the objet is loaded.Displaements an be reonstruted uniquely if the displaement diretions are known. In ase of tank inspetion weassume displaements being perpendiular to the surfae. As already mentioned above, the uniqueness of funtionF�1ad is still a ruial point. In ase of multiple solutions it is worth to investigate, if it is possible to obtain a uniquesolution by hanging the type of load. 3. SYSTEM DESCRIPTIONIn the last setion we desribed the deomposition of the image formation and image analysis problem into severalinverse and diret problems from a theoretial point of view. Now we fous on the realization of the analysis system.A top level data ow diagram of the system is shown in Fig. 4, a re�nement of the parameter estimation proess forthe tank testing appliation is shown in Fig. 5. In the following, we give a brief desription of the proesses and showexperimental results. For our experiments we use a repliation of a typial satellite fuel tank with exatly knownaw parameters. The image proessing algorithms are implemented on a standard PC (Pentium MMX 233 MHz),the �nite-element simulation is exeuted on a SUN SPARC Ultra workstation.
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Figure 4. Top level data ow diagram of the system
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Figure 5. Data ow diagram of the parameter estimation proess3.1. MeasurementFor the inspetion of satellite fuel tanks a standard holographi setup is used (Fig. 6). To avoid repositioningproblems and wet hemial proessing we use photopolymers as holographi reording medium. Interferograms aredigitized with a standard CCD amera and a standard PC frame grabber with PAL resolution. The tank is elastiallydeformed by hanging internal pressure, the pressure is ontrolled by a PC. As no phase reonstrution is neessary,no phase shifting devies are needed. In Fig. 7 a holographi interferogram of the tank with aw is shown.

Figure 6. Experimental setup for HNDT of satellite fuel tanks



Figure 7. Holographi interferogram of a tank withaw (eye-shaped pattern) Figure 8. Referene image for registration3.2. RegistrationThe problem of omparing two images of one sene reorded under di�erent viewing onditions is usually alled imageregistration in image proessing.16 For the omparison of features alulated from measurements and simulations itis neessary to �nd orresponding image and objet points, i.e. a mapping of the tank surfae to the image plane. Ifa pinhole amera model is assumed the mapping an be written as already desribed in setion 2.2.We use markers for the determination of the transformation matrix. The objet pose is uniquely de�ned usingsix markers. If a rough estimation of the objet pose is known, the solution an be onstrained and four markersare suÆient. We use irular markers �xed on the tank surfae whih are made from light-adsorbing material.For the automati extration of the marker oordinates in the image, the tank is illuminated with the objet waveonly, so that no disturbing interferenes ompliate the detetion. We apply image proessing methods whih areoptimized for the segmentation of images with oherent illumination: Due to spekle noise it is not possible to applya onventional edge detetor. Instead, we �rst segment regions with low intensity and then searh for neighbouringedges. Finally, marker enters are found by �tting ellipses to the edge image.The objet pose also is used for the alulation of sensitivity vetors, the propagation of the illumination beamis assumed to be known. Regions outside the quadrangle of the four markers are masked for the further alulation.In Fig. 8 the referene image for registration of a tank is shown. The omplete registration proess requires about20 seonds.3.3. Feature CalulationIn general, features should ondense the essential information of a pattern onerning a given appliation. Here weare interested in the underlying phase of an interferogram, i.e. features should be independent of fringe ontrastand bakground intensity. Furthermore, features should be independent of the absolute phase, as in most ases theabsolute phase is not known or not very stable due to vibrations. We already proposed suitable features and methodsfor feature alulation from interferograms.17 For eah image point (xo; yo) we alulate a two-dimensional featurevetor (xo; yo) ontaining the features fringe density and fringe orientation.Def.: fringe density and fringe orientationgiven a quadrati region B = f(x; y)jx1 � x � x2 ^ y1 � y � y2g with (xo; yo) 2 B and following properties:8 (x; y) 2 B holds: grad'(x; y) = onst 6= 0 ^ a(x; y) = onst ^ b(x; y) = onst 6= 0^ 9 fringe ridge-line ^ 9 fringe ravine-linefringe density: �(xo; yo) = �l with l = distane between ridge-line and adjaent ravine-line) �(xo; yo) = j grad'(x; y)j



Figure 9. Features alulated from interferogram 7: fringe orientation (left), fringe density (right)fringe orientation: �(xo; yo) = angle between y-axis and ridge-line) �(xo; yo) = ( artan grady'(xo;yo)gradx'(xo;yo) : gradx 6= 0�2 : gradx = 0 ^ grady 6= 0(xo; yo) = (�(xo; yo); �(xo; yo))tBriey summarized from our previous work17 features an be alulated robustly from interferograms as follows:First intensity ridge-lines and ravine-lines are segmented using only the diretions of a gradient image of the in-terferogram. The gradient image is estimated from the interferogram using several window sizes depending on thehomogeneneity of the gradient diretions. Finally the distane between adjaent lines is estimated at eah imagepoint. Feature alulation from simulated phase distributions is less diÆult, as it is possible to alulate the phasegradients diretly and hardly any noise ompliates the alulation.In Fig. 9 an example for feature alulation from interferogram Fig. 7 is shown. The omputation time is about200 seonds. Regions where no features are available are either masked as they lay outside the marker area or theyare masked due to unstable features, i.e. regions with inhomogeneous orientations or low fringe density. It an beshown that features from regions with low fringe density are quite sensitive to noise, furthermore the assumption ofa onstant phase gradient is easily violated. However a seletive hange of load allows to get a dense feature map(dashed line in Fig. 5).3.4. SimulationSine the desribed method assumes knowledge about the boundary onditions like used material, onstrution,applied load et., it is possible to simulate the objet deformation using the �nite-element method (FEM). First, thegeometry of the tank is meshed with the mesh generator of the �nite-element program ANSYS 5.3, then the awis integrated automatially into the mesh, given a aw parameter vetor, and �nally the deformation of the surfaeunder internal pressure is alulated using the ANSYS FE-solver (Fig. 10).During this proedure, the �nite-element method delivers the deformation only for the edges of the element, i.e. thenodes. For the alulation of displaements at an arbitrary image point it is neessary to know the displaements ateah orresponding objet surfae point, i.e. we have to interpolate between the nodes to get a ontinuous displaementdistribution. Point orrespondenes are known from registration. The seond problem we were faed with was thatthe entire strategy to solve the inverse problem is an iterative one, i.e. we have to alulate the deformation notonly one, so it was unavoidable to redue the simulation time from hours towards seonds. We ahieved this byreduing the total area to be omputed during the iteration to an smaller area of interest inluding the detetedaw indiating pattern only. In Fig. 11 a simulated interferogram of the tank is shown whih is omparable to themeasured one in Fig. 7.



Figure 10. Finite-element-mesh of the tank and alulated deformation for internal pressure (magnitude of dis-plaements in meters)

Figure 11. Simulation of interferogram with known aw3.5. Feature ComparisonThe basi idea of solving the inverse problem F�1af is to ompare features alulated from interferograms with featuresof simulated phase distributions and hanging the parameter vetor as long as the distane between the feature vetorsis bigger than a given threshold. A ruial point is still the generation of suitable aw hypotheses for an eÆientiteration. This has to be done in future work. In priniple the proposed method works if a omplete parametervariation is done.For feature omparison we are interested in a set S of image points (i; j) where the simulated deformations andthe measured deformations do not oinide with a ertain probability, given features and feature varianes at (i; j):S = f(i; j)j(�ij � ~�ij)2 > �2� _ (�ij � ~�ij)2 > �2�g with�ij ; �ij fringe orientation and fringe density from measurement~�ij ; ~�ij fringe orientation and fringe density from simulation�2� ; �2� varianes of featuresIf S ontains no more image points, the parameter estimation proess is terminated. Feature varianes are estimatedfrom interferograms of a alibration objet with known deformation.



a) b)

) d)Figure 12. Comparison of features from measurement and simulation (gray overlays show evaluated regions, whiteoverlays show regions with signi�ant model deviations): a) fringe orientation, no aw assumed, b) fringe density,no aw assumed, ) fringe orientation, simulation with known aw, d) fringe density, simulation with known awIn Fig. 12 some results for the tank example are shown. We ompared features from interferogram Fig. 7 witha simulation of the tank without aw and a simulation with aw; the parameters of the aw are exatly known.In the white regions the model deviates signi�antly from the measurement. It an be seen that in the aw regionthere are signi�ant deviations ompared to the simulation without aw. These deviations nearly vanish in ase of asimulation with the orret parameter vetor. However, there are some white regions whih are falsely marked dueto an inorret simulation, i.e. the simulation still has to be improved. It takes about 80 seonds to alulate featuresfrom simulated phase distributions and to ompare these features with features from measurement.4. CONCLUSIONIn this ontribution we proposed a method for automati HNDT of satellite fuel tanks. Here testing means to estimateparameters of a geometri aw model from deformation behaviour of the tank surfae, given a geometri model ofthe faultless tank. Deformation information is extrated from fringe patterns using image proessing tehniques.This kind of HNDT is an ill-posed inverse problem whih is regularized using priniples of ative vision/metrology.In a feedbak loop, features alulated from interferograms of di�erent load states are ompared with features froma �nite-element simulation of the tank deformation with a hypothetial aw. Di�erent load states are useful forimprovement of feature alulation and inreasing sensitivity of fault detetion.Experiments have shown that the proposed method works in priniple. The great advantage of the method isits exibility, we do not need any sample to learn from. Further on we get a quantitative desription of the awwhih makes it easy to deide if it is ritial or not. Cruial point is a orret simulation of the tank whih still hasto be improved and the generation of suitable aw hypotheses for a fast onvergene whih still has to be done infuture works. Further on we have to investigate uniqueness of the solution and measurement unertainties of theaw parameters.
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