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ABSTRACT

We show how discriminative training methods,
namely the Mazimum Mutual Information and Maz-
imum Discrimination approach, can be adopted for
the training of N-gram language models used as clas-
sifiers working on symbol strings. By estimating the
model parameters according to a discriminative ob-
jective function instead of Maximum Likelihood, the
emphasis is not put on the exact modeling of each
class, but on the right classification of the samples.
The methods are shown to be suited for a variety
of applications, such as the recognition of regulatory
DNA sequences and language identification. Using
phonotactic information, we achieve an error reduc-
tion of 10.7% (phoneme sequences) or 41.9% (code-
book classes) with respect to the standard ML esti-
mation on a corpus of English and German sentences.

1. INTRODUCTION

N-gram language models [3] are best known as lin-
guistic component in an automatic speech recogni-
tion system; usually, they are applied to estimate the
probabilities of word chains in order to find the best
chain in a word hypothesis graph or lattice. Thereby,
the training goal is the minimization of the model per-
plexity which is equivalent to an optimization of the
parameters according to Maximum Likelihood (ML).
We can regard an N-gram language model as a
stochastic regular grammar. Thus, several language
models used in parallel are well suited as a syntactic
classifier working on any kind of symbol string draw-
ing its characters from a finite alphabet. Our group
could already show the applicability of this approach
in areas such as the classification of dialog acts, lan-
guages, and DNA sequences [7, 6].

A widespread way to estimate N-gram language
model parameters is the following: First we perform
an estimation of the symbol probabilities depending
on up to N — 1 preceding symbols, then we apply
an interpolation technique to yield a more robust es-
timation of the parameters. Usually, both steps are
performed according to the Maximum Likelihood cri-
terion, and this is well motivated for the estimation
of a single language model. But if several language
models for classification purposes are to be estimated,
this approach loses its eligibility: Our main focus is
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not the maximization of the production probability,
where each class is considered independently of the
others, but the maximum number of correct decisions.
This justifies the application of a discriminative esti-
mation method like Maximum Mutual Information
(MMI) and its special case, Maximum Discrimina-
tion (MD), which take into account all classes simul-
taneously and optimize an objective function based
on the a posteriori probability of the right decision.
MMI estimation techniques were mainly used to esti-
mate HMM parameters for speech recognition [1, 5];
the application of MD for protein sequence modeling
is described in [2]. Here we will show how to apply
these techniques within the first step of the construc-
tion of language model classifiers.

The paper is organized as follows: After a short re-
view of the basic concepts of language models and
ML estimation, the main part describes estimation
techniques for MMI and MD parameter training. Af-
terwards we will show how MMI and MD compare
with standard ML estimated models on different data
sets. We close with a discussion of the perspectives
and limitations of the discriminative estimation of
language model classifiers.

2. TRAINING OF LANGUAGE MODELS

Let us assume that we have K classes Q; ...Qx and
wish to classify the symbol sequence w = w; ... wr
with symbols w; taken from a finite vocabulary V.
The likelihood of a sequence w for each class §2; can
be computed with the chain rule:
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P (w) := P(w|Q%) = || Pe(we|wy...we—q1). (1)
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context

With given a priori probabilities pg, we are then able
to classify the sequence into class k according to the
largest a posteriori probability with the Bayes rule:

k = argmax P(Q|w) = argmax(py - Pr(w))  (2)
k k

The right hand side of equation (1) contains a context
of arbitrary length which cannot be handled. A pos-
sible approximation of the probability Py (w) is made
by limiting the context length to N — 1 which is the
basic idea of N-gram language models:
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2.1. Maximum Likelihood Training

Our goal is to obtain parameters, i. e. values for
the conditional probabilities Py (w;|w;— N1 ... wi—1),
which lead to the best possible recognition rate on the
K classes under consideration. As we cannot optimize
the recognition rate directly, we have to use objective
functions which show the desired behaviour and for
which a solution can be found. One well-known ob-
jective function is Mazimum Likelihood (ML). If O
denotes the set of the parameters of model M; for
class €, we optimize the following function:

Lowt) = T Plawk ns), ()

where ny is the number of sequences w? in the train-
ing set WF for class k. The ML estimation of the con-
ditional probabilities Py (v|®) for all elements v € V
and all possible contexts ¥ = vy ...vn—_1 of length
N — 1 can be carried out simply by counting the N-
and N — 1-grams in a set of training sequences:

Auwle) = 2050,

where # denotes the frequency of its argument in the
training sample for the respective class.

(5)

2.2. Maximum Mutual Information Training

The ML objective function regards each class as inde-
pendent of the others and aims at the maximization
of the probability that the given training sample was
generated, knowing to which class each sequence be-
longs. In contrast, the MMI objective function,
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maximizes the a posteriori probability of a model un-
der the assumption that a pattern associated with
this model was observed. Here, ¢; gives the number
of the correct model for sequence w;, and n is the
total number of training sequences for all classes.
Assuming that we have one training sequence w;, the
partial derivation of the logarithm of the MMI objec-
tive function with respect to parameter Py (v|9) leads
us to

dlog RE™M(w;) _
8P (v|d)

0

- logZP(wi|Mj)P(Mj))

J

P(w;| M) P(My)

#ov) . #(6v)
P,

T P([s) M T Pu]d) X, P(wi M;)P(MM;)
1 . '
= rore) (e (80) — #/(00)) (7)

where 0y, 4, is equal to one if g; = k and zero otherwise.
#' is a weighted counting function, and #j,4, is a
function which counts only if ¢; = k.

We follow the approach described by Normandin et
al. (see [5] and references therein) who carry out the
parameter optimization with a re-estimation formula
for rational objective functions such as MMI:
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For a sufficiently large constant D, the convergence to
a local optimum was proven. In practice, we choose
D to be equal to
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which then guarantees that the new parameters ful-
fill the conditions of a probability distribution. The
original value of the partial derivation is replaced by
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to remove emphasis from low-valued parameters and
achieve a more stable convergence.

2.3. Maximum Discrimination Estimation

In [2] a variant of MMI was proposed under the name
Mazimum Discrimination (MD). Each class is trained
according to MMI, but using only positive samples.
The derivation of the objective function for class k is
then equal to

0log R%\Q/ID(wz) _ #(9v) (1 - RMMI(w)) (11)
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because dy,, (equation 7) is always equal to one, and
the negative weight term is equal to the MMI objec-
tive function. We can introduce the condition that all
parameters belonging to the same distribution must
sum up to one with the help of Lagrange multipliers.
This leads us to an expectation-maximization-style

re-estimation formula for the parameters:
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The values on the right side are calculated using the
parameters of the last iteration. If we have n training



sequences, the numerator and denominator sum up
over all of them. Once initialized with values greater
than zero, the parameters will always be greater or
equal than zero, thus fulfilling all characteristics of a
probability distribution.

To ensure that no models parameters are set to zero
during the iterations, the counts on the right hand
side are modified by Dirichlet priors on the parame-
ters. If we have no a priori information on the pa-
rameters, this leads to a discounting of 1/ny.

A closer look at equation (12) shows that MD can
be regarded as nothing else than a weighted version
of ML estimation where the training sequences have
weights dependent on how bad they are actually rec-
ognized by the correct model.

2.4. Corrective Training and Model Interpo-
lation

To avoid oscillatory effects during the course of train-
ing, it was necessary for both approaches to perform
an interpolation between the model before and after
an estimation iteration. In the case of MD, we assign
a class-dependent weight to the updated parameters
which declines logarithmically with the number of it-
erations and is additionally dependent on the classi-
fication performance of the old model.

In the case of MMI, a uniform weight of 0.98 assigned
to the old model performed well in all cases. The
small weight for the new model is partly due to the
fact that we performed a corrective training as pro-
posed in [5], i. e. a training where only the misclas-
sified sequences of the last iteration are part of the
actual training set. This is justified by the observa-
tion that well recognized sequences do not contribute
much to the derivation (eq. 7) and can thus be left
away without much harm. This improves drastically
on the speed of an iteration, as only a fraction of the
sequences has to be taken into account.

3. INTERPOLATION OF LANGUAGE
MODELS

The choice of the context length is a crucial point in
the training process of a language model. If its value
is too small, the resulting N-grams are not distinctive
enough; if its value is too large, the model runs into
the danger of over-fitting to the training material,
as the number of parameters increases exponentially
with the context length.

A compromise to this dilemma can be found by in-
troducing an interpolation of models with different
context length. The interpolation parameters are op-
timized using a disjoint part of the training sample.
For instance, we can perform a linear interpolation:

L 1 ~ —
P(v|d) := pog +p1P(w)+...+ pnP(v|8) (13)

The weights can again be calculated using different
objective functions such as ML or MMI. For detailed
information on this topic, the reader is referred to
[7, 8.
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Figure 1. Convergence of the MMI objective function
during the iterations of MMI and MD training.

4. EXPERIMENTS AND RESULTS

We examined the impact of discriminative estima-
tion on different data sets to show its general use-
fulness. The models are initialized with the standard
ML counts, discounted by one to assure that no pa-
rameter value is set to zero. This initialization is then
followed by several cycles of MMI or MD estimation
until a preset number of cycles is fulfilled, both recog-
nition rate and value of the objective function do not
increase any further, or all sequences of one class are
completely recognized.

4.1. Language Identification

To examine the discriminative training, we took the
478 German and 464 English sentences of the OGI
training and validation material as training set and
tested the performance on the official NIST database
test sentences cut in 10 seconds long disjoint pieces,
thus totaling in 100 German and 100 English samples.
The baseline system for our language identification
system is described in the accompanying paper on
multigrams for language identification [4]. We use
the language models as a classifier for symbol strings
which are obtained in a first step. Here, we show
the classification of sequences of phonemes (80 sym-
bols) and codebook classes (180 symbols). Figure 1
depicts the convergence of the objective function on
the training set of phonemes for both MMI and MD
estimation during the first six cycles. Due to the dif-
ferent approach of the model interpolation (sec. 2.4),
the application of MMI leads to a slower convergence,
but in all cases under consideration, less than 20 cy-
cles were needed to obtain stable parameters. For the
codebook class experiments, we stopped the training
after 5 (MMI) resp. 2 (MD) cycles to prevent over-
adaptation to the small sample.

The recognition results are given in table 1. We com-
pare the results to (1) the models obtained by ML
estimation and (2) the models obtained by ML with
a follow-up linear interpolation. For both phonemes
and codebook classes, a considerable improvement
could be achieved: without interpolation, the error
rate on phoneme sequences is reduced by 10.7 %, and
on codebook class sequences by 41.9 % for both MD
and MMI. The results with interpolation were ob-
tained with uniform weights for equation 13; an opti-



Results (%
Method phonemes codel(;ool)ﬂ classes
ML 86.0 84.5
ML interp. 87.0 —
MD 87.5 91.0
MD interp. 88.0 —
MMI 87.5 91.0
MMI interp. 89.0 —

Table 1. Recognition of German and English sentences
of 10 seconds. Shown is the average recognition rate on
sequences of phonemes or codebook classes which were
obtained in a previous step. The results on phonemes
were achieved by bigrams, the results on codebook
classes on unigrams; therefore, in the latter case no re-
sults for interpolated models are shown.

mization of the weights according to the ML criterion
does not lead to an improvement in any of the con-
sidered cases.

4.2. DNA Sequence Classification

An increasingly important application field for speech
recognition methods emerges for bioinformatics prob-
lems, such as the classification of DNA sequences into
several functional classes. In this case, the vocabu-
lary consists of the four nucleotides which are the
basic units of DNA sequences. An interesting prob-
lem within sequence analysis is the identification of
so-called promoter sequences which have regulatory
potential over neighbouring genes [6]. In figure 2 a
part of the receiver operating characteristics obtained
by a five-fold cross-validation experiment on a stan-
dard set for promoter vs. non-promoter classification
is depicted. We compare the results of standard dis-
counted ML estimation using 6-grams and the im-
provements made by successive application of MMI
and MD. The current system uses a threshold set at
four percent of false positives; the figure shows that in
this case the recognition rate could be improved from
53.6 (ML) to 55.8 (MD) respectively 58.6 % (MMTI).

5. CONCLUSIONS AND FUTURE WORK

Our results show clearly that a discriminative train-
ing outperforms consistently the usual ML parame-
ter estimation. Also, MMI always performs equally
or better than the MD approach, but at the cost of
much higher computational costs, as the training se-
quences of all classes have to be examined by each
model in the re-estimation step.

A fundamental problem of discriminative estimation
with respect to ML is the fact that much more pa-
rameters have to be represented explicitly. For ML,
only the N-grams which occur in the training set of
a particular class are stored. For MD, all parame-
ters which context occurs in the training set of the
particular class are part of the model. For MMI the
number is further increased by all parameters which
context occurs in any of the training sequences, no
matter which class they belong to, because each se-
quence has to be judged by each class. This leads
to problems with large vocabularies: With increas-
ing context length, the model quickly gets intractably
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Figure 2. Receiver operating characteristics for the
recognition of DNA promoter sequences with language
model classifiers trained by MMI, MD and ML estima-
tion.

large, and the obligatory discounting has a stronger
impact for a large number of parameters. But as our
results show, MMI is well justified for a vocabulary
of small to medium size.

In a recent paper, our group described how to perform
the estimation of interpolation parameters (sec. 3)
according to MMI instead of ML [8]. In future we will
therefore examine language models for which both
parameters and interpolation coefficients are trained
with discriminative methods.
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