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DISCRIMINATIVE TRAINING OF LANGUAGE MODEL CLASSIFIERSUwe Ohler, Stefan Harbeck and Heinrich NiemannChair for Pattern RecognitionUniversity of Erlangen-NurembergMartensstrasse 3D-91058 Erlangen, Germanye-mail: fohler,snharbec,niemanng@informatik.uni-erlangen.dehttp://www5.informatik.uni-erlangen.de/Persons/ohABSTRACTWe show how discriminative training methods,namely the Maximum Mutual Information and Max-imum Discrimination approach, can be adopted forthe training of N -gram language models used as clas-si�ers working on symbol strings. By estimating themodel parameters according to a discriminative ob-jective function instead of Maximum Likelihood, theemphasis is not put on the exact modeling of eachclass, but on the right classi�cation of the samples.The methods are shown to be suited for a varietyof applications, such as the recognition of regulatoryDNA sequences and language identi�cation. Usingphonotactic information, we achieve an error reduc-tion of 10.7% (phoneme sequences) or 41.9% (code-book classes) with respect to the standard ML esti-mation on a corpus of English and German sentences.1. INTRODUCTIONN -gram language models [3] are best known as lin-guistic component in an automatic speech recogni-tion system; usually, they are applied to estimate theprobabilities of word chains in order to �nd the bestchain in a word hypothesis graph or lattice. Thereby,the training goal is the minimization of the model per-plexity which is equivalent to an optimization of theparameters according to Maximum Likelihood (ML).We can regard an N -gram language model as astochastic regular grammar. Thus, several languagemodels used in parallel are well suited as a syntacticclassi�er working on any kind of symbol string draw-ing its characters from a �nite alphabet. Our groupcould already show the applicability of this approachin areas such as the classi�cation of dialog acts, lan-guages, and DNA sequences [7, 6].A widespread way to estimate N -gram languagemodel parameters is the following: First we performan estimation of the symbol probabilities dependingon up to N � 1 preceding symbols, then we applyan interpolation technique to yield a more robust es-timation of the parameters. Usually, both steps areperformed according to the Maximum Likelihood cri-terion, and this is well motivated for the estimationof a single language model. But if several languagemodels for classi�cation purposes are to be estimated,this approach loses its eligibility: Our main focus is�Part of this work was supported by a grant of theBoehringer Ingelheim Fonds to U. O.

not the maximization of the production probability,where each class is considered independently of theothers, but the maximumnumber of correct decisions.This justi�es the application of a discriminative esti-mation method like Maximum Mutual Information(MMI) and its special case, Maximum Discrimina-tion (MD), which take into account all classes simul-taneously and optimize an objective function basedon the a posteriori probability of the right decision.MMI estimation techniques were mainly used to esti-mate HMM parameters for speech recognition [1, 5];the application of MD for protein sequence modelingis described in [2]. Here we will show how to applythese techniques within the �rst step of the construc-tion of language model classi�ers.The paper is organized as follows: After a short re-view of the basic concepts of language models andML estimation, the main part describes estimationtechniques for MMI and MD parameter training. Af-terwards we will show how MMI and MD comparewith standard ML estimated models on di�erent datasets. We close with a discussion of the perspectivesand limitations of the discriminative estimation oflanguage model classi�ers.2. TRAINING OF LANGUAGE MODELSLet us assume that we have K classes 
1 : : :
K andwish to classify the symbol sequence w = w1 : : : wTwith symbols wi taken from a �nite vocabulary V .The likelihood of a sequence w for each class 
k canbe computed with the chain rule:Pk(w) := P (wj
k) = TYt=1Pk(wtjw1 : : : wt�1| {z }context ): (1)With given a priori probabilities pk, we are then ableto classify the sequence into class k̂ according to thelargest a posteriori probability with the Bayes rule:k̂ = argmaxk P (
kjw) = argmaxk (pk � Pk(w)) (2)The right hand side of equation (1) contains a contextof arbitrary length which cannot be handled. A pos-sible approximation of the probability Pk(w) is madeby limiting the context length to N � 1 which is thebasic idea of N -gram language models:



Pk(w) � TYi=1Pk(wijwi�N+1 : : : wi�1) (3)2.1. Maximum Likelihood TrainingOur goal is to obtain parameters, i. e. values forthe conditional probabilities Pk(wijwi�N+1 : : : wi�1),which lead to the best possible recognition rate on theK classes under consideration. As we cannot optimizethe recognition rate directly, we have to use objectivefunctions which show the desired behaviour and forwhich a solution can be found. One well-known ob-jective function is Maximum Likelihood (ML). If �kdenotes the set of the parameters of model Mk forclass 
k, we optimize the following function:RML�k (Wk) = nkYi=1P (wki jMk); (4)where nk is the number of sequences wki in the train-ing setWk for class k. The ML estimation of the con-ditional probabilities ~Pk(vjv̂) for all elements v 2 Vand all possible contexts v̂ = v1 : : : vN�1 of lengthN � 1 can be carried out simply by counting the N -and N � 1-grams in a set of training sequences:~Pk(vjv̂) = #(v̂v)#(v̂) ; (5)where # denotes the frequency of its argument in thetraining sample for the respective class.2.2. Maximum Mutual Information TrainingThe ML objective function regards each class as inde-pendent of the others and aims at the maximizationof the probability that the given training sample wasgenerated, knowing to which class each sequence be-longs. In contrast, the MMI objective function,RMMI� (W) = nYi=1P (Mqi jwi)= nYi=1 P (wijMqi)P (Mqi)Pj P (wijMj)P (Mj) ; (6)maximizes the a posteriori probability of a model un-der the assumption that a pattern associated withthis model was observed. Here, qi gives the numberof the correct model for sequence wi, and n is thetotal number of training sequences for all classes.Assuming that we have one training sequence wi, thepartial derivation of the logarithm of the MMI objec-tive function with respect to parameter Pk(vjv̂) leadsus to@ logRMMI� (wi)@Pk(vjv̂) = @@Pk(vjv̂) (logP (wijMqi)P (Mqi)� logXj P (wijMj)P (Mj))

= #(v̂v)Pk(vjv̂)�k;qi � #(v̂v)Pk(vjv̂) � P (wijMk)P (Mk)Pj P (wijMj)P (Mj)=: 1Pk(vjv̂) (#k;qi(v̂v)�#0(v̂v)) (7)where �k;qi is equal to one if qi = k and zero otherwise.#0 is a weighted counting function, and #k;qi is afunction which counts only if qi = k.We follow the approach described by Normandin etal. (see [5] and references therein) who carry out theparameter optimization with a re-estimation formulafor rational objective functions such as MMI:~Pk(vjv̂) = Pk(vjv̂)�@ logRMMI� (W)@Pk(vjv̂) +D�Pvj2V Pk(vj jv̂)�@ logRMMI� (W)@Pk(vj jv̂) +D� (8)For a su�ciently large constant D, the convergence toa local optimum was proven. In practice, we chooseD to be equal toD = maxvj2V(�@ logRMMI� (W)@Pk(vj jv̂) ; 0)+ � (9)which then guarantees that the new parameters ful-�ll the conditions of a probability distribution. Theoriginal value of the partial derivation is replaced by@ logRMMI� (W)@Pk(vjv̂) � #k;qi(v̂v)Pvj2V#k;qi (v̂vj) � #0(v̂v)Pvj2V#0(v̂vj)(10)to remove emphasis from low-valued parameters andachieve a more stable convergence.2.3. Maximum Discrimination EstimationIn [2] a variant of MMI was proposed under the nameMaximum Discrimination (MD). Each class is trainedaccording to MMI, but using only positive samples.The derivation of the objective function for class k isthen equal to@ logRMD� (wi)@P (vjv̂) = #(v̂v)P (vjv̂) �1�RMMI� (wi)� ; (11)because �k;q (equation 7) is always equal to one, andthe negative weight term is equal to the MMI objec-tive function. We can introduce the condition that allparameters belonging to the same distribution mustsum up to one with the help of Lagrange multipliers.This leads us to an expectation-maximization-stylere-estimation formula for the parameters:~Pk(vjv̂) = #(v̂v)(1�RMMI� (wi))Pvj2V#(v̂vj)(1�RMMI� (wi)) (12)The values on the right side are calculated using theparameters of the last iteration. If we have n training2



sequences, the numerator and denominator sum upover all of them. Once initialized with values greaterthan zero, the parameters will always be greater orequal than zero, thus ful�lling all characteristics of aprobability distribution.To ensure that no models parameters are set to zeroduring the iterations, the counts on the right handside are modi�ed by Dirichlet priors on the parame-ters. If we have no a priori information on the pa-rameters, this leads to a discounting of 1=nk.A closer look at equation (12) shows that MD canbe regarded as nothing else than a weighted versionof ML estimation where the training sequences haveweights dependent on how bad they are actually rec-ognized by the correct model.2.4. Corrective Training and Model Interpo-lationTo avoid oscillatory e�ects during the course of train-ing, it was necessary for both approaches to performan interpolation between the model before and afteran estimation iteration. In the case of MD, we assigna class-dependent weight to the updated parameterswhich declines logarithmically with the number of it-erations and is additionally dependent on the classi-�cation performance of the old model.In the case of MMI, a uniform weight of 0.98 assignedto the old model performed well in all cases. Thesmall weight for the new model is partly due to thefact that we performed a corrective training as pro-posed in [5], i. e. a training where only the misclas-si�ed sequences of the last iteration are part of theactual training set. This is justi�ed by the observa-tion that well recognized sequences do not contributemuch to the derivation (eq. 7) and can thus be leftaway without much harm. This improves drasticallyon the speed of an iteration, as only a fraction of thesequences has to be taken into account.3. INTERPOLATION OF LANGUAGEMODELSThe choice of the context length is a crucial point inthe training process of a language model. If its valueis too small, the resultingN -grams are not distinctiveenough; if its value is too large, the model runs intothe danger of over-�tting to the training material,as the number of parameters increases exponentiallywith the context length.A compromise to this dilemma can be found by in-troducing an interpolation of models with di�erentcontext length. The interpolation parameters are op-timized using a disjoint part of the training sample.For instance, we can perform a linear interpolation:P̂ (vjv̂) := �0 1L + �1 ~P (v) + : : :+ �N ~P (vjv̂) (13)The weights can again be calculated using di�erentobjective functions such as ML or MMI. For detailedinformation on this topic, the reader is referred to[7, 8].
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Figure 1. Convergence of the MMI objective functionduring the iterations of MMI and MD training.4. EXPERIMENTS AND RESULTSWe examined the impact of discriminative estima-tion on di�erent data sets to show its general use-fulness. The models are initialized with the standardML counts, discounted by one to assure that no pa-rameter value is set to zero. This initialization is thenfollowed by several cycles of MMI or MD estimationuntil a preset number of cycles is ful�lled, both recog-nition rate and value of the objective function do notincrease any further, or all sequences of one class arecompletely recognized.4.1. Language Identi�cationTo examine the discriminative training, we took the478 German and 464 English sentences of the OGItraining and validation material as training set andtested the performance on the o�cial NIST databasetest sentences cut in 10 seconds long disjoint pieces,thus totaling in 100 German and 100 English samples.The baseline system for our language identi�cationsystem is described in the accompanying paper onmultigrams for language identi�cation [4]. We usethe language models as a classi�er for symbol stringswhich are obtained in a �rst step. Here, we showthe classi�cation of sequences of phonemes (80 sym-bols) and codebook classes (180 symbols). Figure 1depicts the convergence of the objective function onthe training set of phonemes for both MMI and MDestimation during the �rst six cycles. Due to the dif-ferent approach of the model interpolation (sec. 2.4),the application of MMI leads to a slower convergence,but in all cases under consideration, less than 20 cy-cles were needed to obtain stable parameters. For thecodebook class experiments, we stopped the trainingafter 5 (MMI) resp. 2 (MD) cycles to prevent over-adaptation to the small sample.The recognition results are given in table 1. We com-pare the results to (1) the models obtained by MLestimation and (2) the models obtained by ML witha follow-up linear interpolation. For both phonemesand codebook classes, a considerable improvementcould be achieved: without interpolation, the errorrate on phoneme sequences is reduced by 10.7%, andon codebook class sequences by 41.9% for both MDand MMI. The results with interpolation were ob-tained with uniform weights for equation 13; an opti-3



Results (%)Method phonemes codebook classesML 86.0 84.5ML interp. 87.0 |MD 87.5 91.0MD interp. 88.0 |MMI 87.5 91.0MMI interp. 89.0 |Table 1. Recognition of German and English sentencesof 10 seconds. Shown is the average recognition rate onsequences of phonemes or codebook classes which wereobtained in a previous step. The results on phonemeswere achieved by bigrams, the results on codebookclasses on unigrams; therefore, in the latter case no re-sults for interpolated models are shown.mization of the weights according to the ML criteriondoes not lead to an improvement in any of the con-sidered cases.4.2. DNA Sequence Classi�cationAn increasingly important application �eld for speechrecognition methods emerges for bioinformatics prob-lems, such as the classi�cation of DNA sequences intoseveral functional classes. In this case, the vocabu-lary consists of the four nucleotides which are thebasic units of DNA sequences. An interesting prob-lem within sequence analysis is the identi�cation ofso-called promoter sequences which have regulatorypotential over neighbouring genes [6]. In �gure 2 apart of the receiver operating characteristics obtainedby a �ve-fold cross-validation experiment on a stan-dard set for promoter vs. non-promoter classi�cationis depicted. We compare the results of standard dis-counted ML estimation using 6-grams and the im-provements made by successive application of MMIand MD. The current system uses a threshold set atfour percent of false positives; the �gure shows that inthis case the recognition rate could be improved from53.6 (ML) to 55.8 (MD) respectively 58.6% (MMI).5. CONCLUSIONS AND FUTURE WORKOur results show clearly that a discriminative train-ing outperforms consistently the usual ML parame-ter estimation. Also, MMI always performs equallyor better than the MD approach, but at the cost ofmuch higher computational costs, as the training se-quences of all classes have to be examined by eachmodel in the re-estimation step.A fundamental problem of discriminative estimationwith respect to ML is the fact that much more pa-rameters have to be represented explicitly. For ML,only the N -grams which occur in the training set ofa particular class are stored. For MD, all parame-ters which context occurs in the training set of theparticular class are part of the model. For MMI thenumber is further increased by all parameters whichcontext occurs in any of the training sequences, nomatter which class they belong to, because each se-quence has to be judged by each class. This leadsto problems with large vocabularies: With increas-ing context length, the model quickly gets intractably
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