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1 Abstract

Motivation: We describe a new content based approach
for the detection of promoter regions of eukaryotic protein
encoding genes. Qur system is based on three interpolated
Markov chains (IMCs) of different order which are trained
on coding, non-coding, and promoter sequences. It was re-
cently shown that the interpolation of Markov chains leads
to stable parameters and improves on the results in micro-
bial gene finding (Salzberg et al., 1998). Here, we present
new methods for an automated estimation of optimal in-
terpolation parameters and show how the IMCs can be ap-
plied to detect promoters in contiguous DNA sequences.
Our interpolation approach can also be employed to obtain
a reliable scoring function for human coding DNA regions,
and the trained models can easily be incorporated in the
general framework for gene recognition systems.
Results: A fivefold cross-validation evaluation of our
IMC approach on a representative sequence set yielded a
mean correlation coefficient of 0.84 (promoter vs. coding
sequences) respectively 0.53 (promoter vs. non-coding se-
quences). Applied on the task of eukaryotic promoter re-
gion identification in genomic DNA sequences, our classi-
fier identifies 50% of the promoter regions in the sequences
used in the most recent review and comparison by Fickett
and Hatzigeorgiou (1997), while having a false positive rate
of 1/849 bp.

Contact: ohler@informatik.uni-erlangen.de

2 Introduction

Today’s state-of-the-art eukaryotic gene finding algo-
rithms (such as Kulp et al., 1996; Burge and Karlin, 1998;
Krogh, 1997) are based on a statistical framework which is
in many cases a generalization of a hidden Markov model,
also called hidden semi-Markov model. Within this frame-
work, several scoring functions for signals such as splice
sites and for regions such as exons, introns, or promoters
are combined. After the search for possible signals and the

judgement of the segments in between, the standard HMM
decoding algorithm then provides the best path through
the graph of all possible segmentations of the whole se-
quence. Although much progress has been made with this
approach, there still is a considerable need for robust al-
gorithms to classify the individual signals and segments,
as the accuracy of the system output depends on the ac-
curacy of its components. In the following we will present
new models for the classification of individual DNA seg-
ments, and we will mainly focus on the recognition of eu-
karyotic promoter regions.

Popular content based measures for primary DNA se-
quences make use of Markov chains (MC) of a fixed or-
der (closely related to oligomer measures) and have been
employed for example in the widespread GeneMark and
GeneMark.hmm prokaryotic gene finders (Lukashin and
Borodovsky, 1998). Recently, the linear interpolation of
Markov chains of different order has been described for mi-
crobial gene recognition (Salzberg et al., 1998). An inter-
polation provides a better parameter estimation, as, with
increasing order of the Markov chain, the training algo-
rithms lack a suitable amount of data because the number
of model parameters increases exponentially.

Here we present a new interpolation scheme which has
been successfully applied by our group for various speech
recognition tasks (see Schukat-Talamazzini et al., 1997).
In the context of speech recognition, interpolated Markov
chains (IMCs) to judge the likelihood of symbol sequences
are commonly referred to as stochastic language models. In
contrast to the method described by Salzberg et al. (1998),
who provided a function including a x2 test on statistical
significance to calculate parameters for a linear interpo-
lation, we use a disjoint part of the training sample to
automatically estimate optimal interpolation parameters
with respect to a statistical objective function.

We will show how this kind of IMC can improve the
detection of eukaryotic promoter sequences in unknown
genomic DNA. Recent progress in the understanding of the
structure and function of these polymerase II promoters is



reviewed in detail by (Kornberg, 1996, and other articles
in the same issue) or (Nikolov and Burley, 1997).

The survey of Fickett and Hatzigeorgiou (1997) provides
an excellent introduction to the topic of automated recog-
nition of eukaryotic promoters and a comparison of the
available systems for general-purpose Pol II promoter pre-
diction. Among these are linear discriminative (Solovyev
and Salamov, 1997) as well as neural network (Reese and
Eeckman, 1998) or content based (Audic and Claverie,
1997; Hutchinson, 1996) methods. Content based mea-
sures were up to now either plagued by too large a number
of false positives, or imposed restrictions on the number
of predictions. The results obtained by our interpolated
Markov chains will demonstrate the improvement of the
recognition rate compared to the best methods available.
Our goal was to build a general-purpose promoter recog-
nition system that can be applied to the general task of
promoter recognition; computer models constructed for
specific tissue types as in (Frech et al., 1998) have a much
lower false positive recognition rate. On the other hand,
there is an apparent need to add a general promoter recog-
nition module to a gene recognition system. This should
help to split contiguous stretches of DNA into the right
number of genes and detect the correct transcription start
site which might be far upstream from the translated re-
gion.

3 Algorithm

Let us assume that we have K classes Q; ... Qx and wish
to classifiy a sequence w = w; ...wr with symbols w;,
taken from a finite vocabulary V), into one class. In the
case of molecular genetics, the alphabet might consist of
amino acids or nucleotides. We can make use of the chain
rule to compute the likelihood of a particular sequence w
for each class:
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context

This equation shows that one symbol in a sequence is
dependent on all its predecessors, i. e. on the contexrt of
preceding symbols. Using Bayes’ rule, we are able to clas-
sify the sequence into sequence class k according to the
largest a posteriori probability:

(2)

If we have no exact knowledge about the a priori prob-
abilities py of our sequence classes, the values p; are as-
sumed to be uniformly distributed and can be neglected.
We therefore need to assign a likelihood to the symbol se-
quence w. If we can establish a model which computes this
probability, we have the means to determine how likely a
sequence will occur in a specific class.

]:7 = argmaxP(Qk|w) = argmax(pk . Pk)
k k

3.1 Maximum Likelihood parameter esti-
mation

In the following we will drop the condition on class Q
for simplicity. The right hand side of equation 1 contains
a context of arbitrary length which cannot be handled;
therefore, an approximation is made by imposing a restric-
tion. A possible approximation of the probability P(w) is
thus made by limiting the context length to N — 1:

T
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The resulting model is called a Markov chain of order
N —-1.

Our goal is to obtain parameters — in our case values
for the conditional probabilities P(w;|w; nNiy1..-w;—1) —
which lead to the best possible recognition rate on the K
classes under consideration. As we cannot optimize the
recognition rate directly, we have to use objective func-
tions which show the desired behaviour and for which a
solution can be found. One well-known objective func-
tion is Mazimum Likelihood (ML). If A} denotes the set
of the parameters of model My, for class Q, we optimize
the following function R(Ag):
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where ny, is the number of training sequences for class k.
Each class is regarded as independent of the others, and
ML estimation tries to maximize the probability that the
given training sample was generated, knowing to which
class each sequence belongs.

Using a training sample, the ML estimation of the con-
ditional probabilities 13(w,-|w,-_ N+1---W;—1) can be per-
formed simply by counting the oligomers of length N and
N — 1 in a set of training sequences:

_ #(wf—N+1)
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where wY is an abbreviation for the partial sequence from

position z to position y, and # denotes the frequency of its

argument in the training sample. Here, we have to meet
two problems:

(5)

1. The approximation by a large context gets closer to
the real probability as denoted in equation 1. Unfor-
tunately, the number of parameters which have to be
estimated increases exponentially with the number of
N, and thus the ML estimates become far from being
reliable because of the limited training sample size.

2. With increasing length, some N-mers might not oc-
cur at all in the training sample. This has the con-
sequence that the likelihood of the whole sequence w
is set to zero if it contains any unseen N-mer. This



might be justified if it really is not a part of the con-
sidered class. On the other hand, the sample size
might simply be too small to contain every single N-
mer. As we do not know which case is true, we must
not set any likelihood to zero.

A solution to these problems — the trade-off between
the model context and the training sample size, and the
problem of unseen N-mers — can be found by introducing
a weighted interpolation scheme.

3.2 Interpolation techniques

The basic idea of applying interpolation methods is to fall
back on the probability estimation of subsequences shorter
than N if the frequencies of an N-mer v = v; ...vy can-
not be reliably estimated. In principle, interpolation leads
us to a re-estimation of the initial parameter values (equa-
tion 5). Here, we will consider two different interpolation
techniques. The first one is the linear interpolation be-
tween all conditional probabilities with increasing context
length up to N — 1:
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The fraction (1/L) accounts for unseen events and en-
sures that no probability is set to zero. The coefficients
p; are non-negative values which sum up to one to guar-
antee that the new parameter values P(:|-) again form a
probability distribution.

Setting all the weights pg ... pn—1 to zero and pn to one
is very similar to the well-known oligomer approach, with
the only difference that in a Markov chain the parame-
ters are normalized with respect to the context (see equa-
tion 5). The models with linear interpolation are thus a
straightforward generalization combining oligomers of dif-
ferent length. The advantage of interpolation is that the
model can take into account statistics of a higher order
without running into the danger of overfitting the model
to the training data.

Equation 6 contains only one vector of interpolation co-
efficients, whether all the subsequences up to length N re-
ally occured in the training data or not. Additionally, all
parameters are treated equally, whereas the interpolation
coefficient assigned to a parameter with a frequently occur-
ing context should be larger than the coefficient for a rare
event. By introducing an additional function g;(v’) which
scores the reliability of the context v’ = v)~! monoton-
ically, the linear interpolation can be extended to handle
this problem accurately:

Eio pi- 9i(v') - Pi(vn|v’)

P(uy|v’) := Efio pi-gi(v")

(D

where P;(vy|v') serves as an abbreviation for the esti-
mates of different context lengths i, as it was shown in
detail in equation 6. This interpolation scheme is called
rational interpolation. It overcomes the problems of linear
interpolation by using the function g;(v’), which we chose
to be a sigmoid funtion dependent of the frequency of the
last 4 symbols of v’:

(®)

The shape of the sigmoid function is dependent on the
constant bias C. In the case of C' = 0, the function g; is
always equal to one and equation 7 becomes equivalent to
linear interpolation. Also, with an increasing amount of
training data, the bias C' becomes less and less important;
the rational interpolation thus has the largest impact if
the training sample size is small.

3.3 Maximum Likelihood estimation of
interpolation coefficients

We still lack the means to specify appropriate coeffi-
cients p; for both linear and rational interpolation. In our
approach, optimal coefficients according to the ML objec-
tive function are calculated using a second disjoint part of
the training sample. This step is called validation and is
carried out after the initial estimation of the conditional
probabilities (section 3.1).

There is no closed solution for a maximum of the ML ob-
jective function in the case of interpolated Markov chains,
but for the coefficients used in linear interpolation a lo-
cal optimum can be found with the iterative Expectation
Maximization (EM) algorithm (Dempster et al., 1977):
we regard the coefficients as hidden variables in a dou-
ble stochastic process. Afterwards, a large weight will be
assigned to those contexts for which we can obtain reliable
estimations; if only sparse data are at hand, the weights
belonging to short contexts will be increased.

For rational interpolation, the EM algorithm cannot
be applied and the computation of locally optimal inter-
polation weights is carried out with a gradient descent
algorithm instead. The detailed re-estimation formulas
are omitted at this point and can be found in (Schukat-
Talamazzini et al., 1997). This automated estimation of
optimal parameters is the main difference of our interpo-
lation methods to those described for parsing microbial
sequences (Salzberg et al., 1998), where the coefficients
are calculated using a predefined function based on the x?2
statistical test.
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Figure 1: Content based classification with interpolated Markov chains (IMC). The output is the difference between scores of

the best background model and the model of interest; this score is then classified with a suitable threshold.

3.4 Sequence classification using interpo-
lated Markov chains

After an IMC has been trained according to sections 3.1—
3.3 for each of the considered sequence classes, the IMCs
can be used in parallel to classify a sequence using equa-
tion 2. Sometimes though the focus is put on the right
classification of only one class. In this case, we have one
class of interest and one or more ”background” classes,
and it is not important which particular class a sequence
from the backgorund is assigned to, as long as it is not
classified into the class of interest. This situation occurs
in promoter recognition, where we want to distinguish
promoters (”class of interest”) from non-promoters (the
”background” consists of several models for exonic, in-
tronic and intergenic sequences). We can tune the IMCs
with respect to sensitivity and specificity for the class of
interest using the following approach: First, we compute
the likelihood Pj, for each class €2, and then we determine
the difference between the score for the model of interest
Pyr and the best of the background models Pg. Including
a length normalization, we obtain the following equation
for the total score S:

— PM('LU)
len(w)

(9)

In practice, the logarithms of the probabilities are used
because of the more efficient computation and the preven-
tion of numerically unstable values when regarding long
sequences. In figure 1 an overview of the resulting algo-
rithm is given.

Choosing a suitable threshold value on the total score
S, we can select any percentage of false positives (i. e. pat-
terns out of one of the background classes which were clas-
sified into the class of interest). The curve of false positive
rate vs. recognition rate over the whole range is called re-
ceiver operating characteristics (ROC) and will be used to
compare the performance of different classifiers. Addition-
ally we will provide the correlation coefficent (CC) which
is defined as follows:

(TP - TN) — (FN - FP)

/(TP + FN) - (TN + FP) - (TP + FP) - (TN + FN)
(10)

CC =

Herein, TP stands for true positives, TN for true neg-
atives, FP for false positives, and FN for false negatives;
these numbers denote the absolute numbers of correctly
and wrongly classified sequences.



3.5 Application of IMCs to search for reg-
ulatory regions

We will now briefly describe our system for the detection
of eukaryotic polymerase II promoters in contiguous DNA
sequences. The system consists of one IMC model for
promoter sequences and two background IMC models for
coding and non-coding sequences. To search for promoters
in contiguous sequences, we use a sliding window of 300
bases (motivated by the size of the training sequences; see
section 4). Every 10 bases, the current sequence in the
window is classified as promoter or non-promoter using a
scoring threshold that has previously been selected empir-
ically on the training data (see figure 1). Because a whole
promoter region is very likely to cause multiple predictions
of several overlapping windows, a prediction is only made
for each local minimum of the difference between back-
ground and promoter score which lies below the chosen
threshold. The transcription start site is then assumed to
be located at position 250 within the window.

To eliminate single false predictions, a post processing
operation is applied on the graph of the score function S.
By a smoothing algorithm, single false promoter predic-
tions as well as single non-promoter predictions within a
promoter region are filtered out. We chose to apply the
hysteresis threshold algorithm, where a smoothing cursor
of a chosen height is shifted over the curve from left to
right. As the local minima within the smoothed graph
usually comprise several positions with the same value,
the prediction is then made at the position with the low-
est value in the original graph. More detailed information
can be found in (Ohler and Reese, 1998).

4 Data sets

‘We have built strongly needed representative training and
test sets for eukaryotic promoter recognition which allows
for a thorough comparison of different methods. These
data sets are suited for algorithms aiming at human and
D. melanogaster promoter prediction.

The data do not contain only promoter sequences which
can be retrieved quite easily from the Eukaryotic Pro-
moter Database EPD, but also carefully chosen coding
and non-coding sequences. For the human promoter set,
we extracted all non-related vertebrate sequences except
retroviruses from EPD rel. 50 (Perier et al., 1998). Re-
trieving only human promoter sequences would result in
a too small dataset to fit the parameters of our models;
EPD release 50 contained only 181 independent human
sequences. Sequences with less than 40 bases upstream
or 5 bases downstream from the annotated transcription
start site were discarded to assure that at least the pos-
sible TATA-box and the initiator site were contained in
each entry. This resulted in 565 entries, from which se-
quences of 300 bases (250 upstream and 50 downstream)
were extracted.

For the coding and noncoding sequences, we used the
exon and intron sequences of human genes contained in
the data set of 1998 for the GENIE genefinding system
(Kulp et al., 1996; Reese et al., 1997). The exons were
concatenated to form long coding sequences. Then, 300
bases long non-overlapping sequences were extracted. Due
to the still limited amount of data, we divided the human
data in five sets containing 113 promoter, 180 coding, and
869 non-coding sequences each. On these sets, reliable
results can now be obtained by carrying out a fivefold
cross-validation: In each experiment, the model is trained
on four parts of the sequence data, leaving one part out
at a time and testing the performance on the part not
used for training. Then the average over all five experi-
ments is computed and used as a result for comparison. All
the data sets and more detailed information are publicly
available and can be retrievd via the URL http://www-
hge.lbl.gov/inf/human.html; this site also contains a link
to the similar set of D. melanogaster data. We encourage
researchers working in the field of promoter recognition to
compare their algorithms on these representative sets.

To evaluate the performance of the system on long con-
tiguous sequences, we made use of the data set in (Fickett
and Hatzigeorgiou, 1997). Using this data, we evaluated
our IMC based system on a more realistic problem of rec-
ognizing transcription start sites and the corresponding
promoters in DNA stretches of genomic DNA, and were
able to compare our results with other programs. The set
consists of 18 vertebrate sequences containing 24 anno-
tated and experimentally proven promoters with a total
of 33,120 bp. The evaluation on the contiguous sequences
was carried out on both strands; recognition results are
therefore given in base pairs instead of single bases.

5 Results and discussion

To get a first impression, we compared different context
lengths (46 bases) and interpolation methods (none, lin-
ear, and rational) on the classification of human promot-
ers and coding sequences from the fixed length sequence
set (see section 4). Figure 2 shows a part of the receiver
operating characteristics using IMCs of sixth order and
pure simple hexamer frequencies, for which the best re-
sults could be obtained. The figure shows clearly that ra-
tional interpolation outperforms drastically the oligomer
approach without interpolation; it is also superior to the
simpler linear approach, thus confirming that interpola-
tion helps us to avoid the effect of overfitting the models
to the sparse training data.

As a second step we applied careful five-fold cross-
validation experiments on the complete fixed length se-
quence set (promoters, introns, coding sequences), using
IMCs with a context length of six and rational interpola-
tion. To get a better insight, we tested the promoter model
not only against both non-promoter models at once, but
also individually against one non-promoter class. Table
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Figure 2: Comparison of the performance of IMC models with
oligomer statistics without interpolation for eukaryotic pro-
moter recognition. The results (which are the best for each
considered method) were achieved for hexamers resp. IMCs
based on 7-mers. The ROC curve for promoter/coding se-
quence classification in the range of 0-15 % of false positives is
shown. The models were trained on a set of 452 promoters and
720 coding sequences of 300 bases length and evaluated on a
disjoint test set of 113 promoters and 180 coding sequences.

1 therefore contains the average of the five experiments
for three discrimination tasks: promoter vs. coding se-
quences, promoter vs. intron sequences, and promoters
vs. both coding and non-coding sequences. Choosing a
threshold for more than five percents of false positives here
does not lead to a practically useful number of predictions.

The discrimination performance between promoters and
coding regions is stunning; at a false positive rate of 5%
almost 89 % of the promoter sequences were classified cor-
rectly (correlation coeflicient 0.84). Nevertheless it is also
very clear that a classification between promoter and in-
trons is much more difficult — the best CC value obtained
was 0.53, at a false positive rate of 3% and a recognition
rate of 49.7%. Most probably this stems from the much
weaker information contained in the introns compared to
the strong coding information of the exons. On applying
models on the three-part set of promoters, non-coding,
and coding sequences, the results are comparable to the
two-class problem of promoters and non-coding sequences,
resulting from the much larger sample size of intronic se-
quences. Corresponding results were obtained for the D.
melanogaster set (Ohler and Reese, 1998).

We applied one model trained on promoters, coding,
and non-coding sequences to the task of finding promoter
regions in longer vertebrate DNA sequences, following the
principles described in section 3.5 and using the set of
contiguous sequences from the promoter prediction pro-
gram survey of Fickett and Hatzigeorgiou (1997). In this
survey, a prediction is judged as correct if an annotated
transcription start site lies within 200 bases downstream

false recognized promoters (%)
posit. | promoter vs. | promoter vs. | promoter vs.
(%) CDS intron | CDS/intron
0.0 58.6 (0.68) 12.9 (0.33) 3.9 (0.16)
1.0 69.4 (0.74) 32.2 (0.46) 29.9 (0.45)
2.0 78.8 (0.80) 42.5 (0.51) 41.8 (0.50)
3.0 80.5 (0.81) | 49.7 (0.53) 48.7 (0.52)
4.0 85.7 (0.83) 51.9 (0.52) | 53.6 (0.52)
5.0 | 88.9 (0.84) 54.7 (0.51) 56.6 (0.51)

Table 1: Promoter classification on vertebrate sequences with
Markov chain models using rational interpolation and an order
of six. For a certain percentage of false positives, the corre-
sponding cross-validated recognition rate and the correlation
coefficient is given. The recognition rate with the highest cor-
relation coefficient is printed in bold (CDS = coding sequence).

and 100 bases upstream from the predicted site. Using
this criterion, and a threshold set at a rate of 4% false
positives (highest CC value), we could detect 12 out of
the 24 promoters (50 %) while having one false prediction
on average every 849 base pairs. The two programs which
achieved the best performance in the survey could detect
54 % and 42 % of the promoters with a false positive rate
of 1/460 bp and 1/789 bp, respectively (Reese and Eeck-
man, 1998; Solovyev and Salamov, 1997). These numbers
show that the performance of the IMCs is slightly better
than the best available tools for promoter prediction, but
the number of test sequences is too small to make a general
statement possible.

An example of the performance on the longest
test sequence, the human phenol sulfotransferase gene
(5,663 bases, forward strand of GenBank accession code
HSU54701), is shown in figure 3. Following the approach
described in section 3.5, two predictions are made within
this sequence, one of which is located close to one of the
two annotated transcription start sites. A complete graph
describing the regulatory potential over the sequence posi-
tions is calculated. Even if no clear decision is possible at
the default threshold, a manually inspection of the graph
may still reveal where a sudden change from regulatory
(low values) to non-regulatory (high values) takes place.

A closer look at the contiguous sequences in the Fickett
et al. data set and the behaviour of the system concludes
this section and helps to reveal some advantages and short-
comings of the current approach:

o The overall results are certainly influenced by the fact
that our system was established as a promoter pre-
dictor for human sequences, whereas seven of the 18
sequences were of non-human origin.

e One start site missed was located only a few bases
downstream of the sequence start. As we score a win-
dow which is assumed to contain 250 bases upstream
and 50 bases downstream, no predictions are made
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Figure 3: Output of the system on a large contiguous sequence
(GenBank accession HSU54701), before and after applying the
automated smoothing step. The original graph depicts the dif-
ference of the the best non-promoter and the promoter model
score on the forward strand of the sequence. Two predic-
tions are made, one for each local minimum below a prede-
fined threshold on the smoothed output. Here, the predictions
are located at positions 980 and 3580; the identified annotated
transcription start site is located at position 935. Another start

site located at position 2002 is not revealed.

before position 250.

e In sequence MMG67PRO, three annotated start sites
were located within 300 bp, and our program made
only one detection. This is not unexpected since a
whole 300 bp region is scored at once, and the post
processing smoothes out the small local maxima that
might help to seperate the individual start sites.

e The prediction accuracy of the TSS location was quite
good despite the fact that Markov chains do not use
location specific information: Seven of the 12 correct
predictions were made within 30 bases from the an-
notated start site.

e Only two of the missed promoters were also not de-
tected by any of the nine programs evaluated in (Fick-
ett and Hatzigeorgiou, 1997). On the other hand, one
promoter detected by our Markov chains could not
be identified by any other program. This means that
much improvement could be achieved by a combina-
tion of several systems.

At the moment, we do not have a non-promoter model
for intergenic sequences; if a reliable training sample for
this sequence class can be obtained, the performance is
likely to improve because of the more accurate sequence
modeling. Obtaining such a sample though is difficult;
most database entries contain only single genes, and for
large sequences generated in the genome projects, the

genes and especially the transcription start site annota-
tions are mostly computational and not experimentally
verified and therefore not reliable.

The probably most widespread application of MCs so
far is found in gene recognition systems, where they serve
as a classifier for coding versus non-coding parts of a DNA
sequence. Thus, we also compared the performance of our
interpolated models to the standard Markov chains, fol-
lowing the guidelines of the coding measure survey of Fick-
ett and Tung (1992). On the GENIE data set of human
exons and introns, the average recognition rate on 108 bp
long sequences is 85% which is an improvement of 2.2 per-
cent points (frame independent classification) compared
to the best reviewed method, a non-interpolated Markov
chain. Detailed results will be presented elsewhere.

6 Conclusions

In this paper, we describe the application of interpolated
Markov chains to content based DNA classification prob-
lems. The performance of our models on two different
applications, the recognition of promoter regions and the
discrimination of coding and non-coding sequences, is con-
sistently better than the one of oligomer models which
realize Markov chains of a fixed order. We therefore rec-
ommend the use of interpolated models in any case, even
if enough data is at hand — due to the estimation of opti-
mal interpolation parameters, the interpolated model will
in the ”worst” case again result in a conventional non-
interpolated Markov chain.

For the classification of promoter regions, we could
demonstrate on the test set of Fickett and Hatzigeorgiou
(1997) that our method performs equally or better than
any signal or content based method in the survey. Sig-
nal based approaches rely on the application of position
specific models, e. g. neural networks or weight matri-
ces trained on frequently occuring pattern such as the
TATA box or the initiator site. In the case of general
purpose promoter prediction where no certain combina-
tion of transcription factor binding sites is expected in ad-
vance, the judgement of the overall sequence proves to be
equally suitable. Further research towards the integration
of content and signal based approaches therefore seems
appropriate; a first step in this direction was described by
(Solovyev and Salamov, 1997).

In our opinion, another important factor for the suc-
cess of our promoter recognizer is the competition of sev-
eral models. Promoter predictors which only consist of a
model for promoter sequences and rely on a certain fixed
threshold have to meet the problem that it often depends
not only on the sequence itself, but also on the particular
context whether a region is functionally active. Because
we use several models and judge the difference of the par-
ticular likelihoods, this is implicitely captured.

The integration of a promoter recognition module into
gene parsers like GENIE (Kulp et al., 1996) or GenScan



(Burge and Karlin, 1997), where the different sensors are
trained seperately and can be easily exchanged, is in prin-
ciple straightforward. But up to now, the only system
incorporating a promoter module is GenScan, and this is
a fairly simple model incorporating weight matrices for
the TATA and the initiator region, coupled with a null
model to cope with promoters with a weakly conserved
core region. According to (Burge and Karlin, 1997), this
approach is due to the lack of sensitivity of current predic-
tors. The performance of promoter prediction algorithms
is still much worse than those for coding regions or sig-
nals involved in the transcription process such as splice
sites, and therefore a cautionless employment of a pro-
moter module may lead to an overall deterioration of the
system. Nevertheless, especially the good classification re-
sults for promoters vs. exons leads us to the expectation
that a future integration of our promoter recognizer into
a gene parsing framework will be successful.
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