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3.1 Introduction

Con�guring or programming image processing systems is a time-consuming task which

requires specialized knowledge on the e�ects of image processing algorithms as well as

knowledge about the implementation and interfaces. Clearly, software engineering is

required for the application programmer of image processing systems. But even people

who do not implement their applications themselves occasionally have to face software

engineering problems. Several commercial or free packages for image processing exist

providing routines which can be plugged together to more complex operations. This

does not solve software engineering problems; it rather shifts the basic building blocks

to a higher level. The larger the application gets which uses such libraries, the higher

is the importance of well-structured software.

The major problem in design of general imaging systems is that on the one hand

highly run-time e�cient code and low-level access to hardware is required, and that

on the other hand a general and platform-independent implementation is desired which

provides all data types and functions also for at least intermediate-level processing, such

as results of segmentation.

Software re-use is crucial in any large system; well-documented packages should be

usable even across applications. If every programmer is allowed to re-program existing

code, soon several pieces of code will be scattered around in the system which serve the

same purpose.

Today's software engineering is closely coupled with the ideas of object-orientation.

Theoretically and practically, object-oriented programming gains high attention. Object-

oriented programming can help simplifying code re-use; if applied properly, it uni�es
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interfaces and simpli�es documentation by the hierarchical structure of classes. A key

mechanism of object-oriented programming is polymorphism [Cardelli�Wegner 85]. In

this article we give examples of how polymorphism can simplify image processing pro-

grams and how it can keep the required e�ciency.

In this contribution we describe the use of object-oriented programming for the

implementor of image processing and analysis software. In CVA III, Sect. 3.9, a similar

issue is shown with an emphasis on the con�guration of an application system. In

CVA III, Sect. 3.12, an alternative to object-oriented programming is shown by the

introduction of independent generic modules which can also be used in combination

with object-oriented programming.

We start with a short introduction of the general terminology of object-oriented

programming in Sect. 3.2. Software developers for image processing today have the

choice from several programming languages suited for their needs, e. g. C C++ Java Ada

Fortran etc. (Sect. 3.3). In general, image analysis has to use knowledge about the task

domain. We outline an object-oriented implementation of a knowledge based image

analysis system in Sect. 3.4; In Sect. 3.4 we emphasize implementation issues, whereas

in CVA II, Chap. 2 the general structure is described formally. In Sect. 3.5 a novel

architecture for classes representing data, actions, and algorithms for image processing

is presented. This architecture is applied to segmentation, object recognition, and object

localization. We conclude with a summary in Sect. 3.6.

3.2 Object-oriented software engineering

Object-oriented programming has become popular in many �elds including imaging

applications. We brie�y introduce the important ideas and terms of object-oriented

software and the basic principles for object-oriented analysis, design, and programming.

Especially, we discuss those software engineering issues which are relevant for image

processing.

3.2.1 Object-oriented principles, analysis, and design

The object-oriented programming style suggests the decomposition of the problem do-

main into a hierarchy of classes and a set of communicating objects, which are instances

of classes. The object-oriented programmer speci�es what is done with the objects; the

procedural way of programming uses aspects of how something gets done. One advan-

tage of object-oriented software design is the one-to-one assignment between concepts

in the application domain and the objects in the program. Even the analysis of the

problem domain has to be involved in this mapping. Analysis and program design are

no longer separated in the software development process; object-oriented analysis and

design share the same terminology and tools. The �rst phase of any software devel-

opment is to de�ne the requirements. Three other connected stages which are shortly

described in the following sections are common to object-oriented software develop-
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ment. The most important ideas of object-oriented software which we introduce in the

following sections are objects, classes, inheritance, and polymorphism.

In the object-oriented analysis (OOA) stage, concepts of the problem domain and

their correspondence are identi�ed and speci�ed. These objects are grouped to classes.

Hierarchical relations between these classes are used; information which can be shared

by several special classes will be included in a general class and passed to the special

cases by inheritance. Objects are decomposed into their components which are again

described as classes.

Example 3.1: Object-oriented analysis

A typical problem domain from the area of image analysis is the recognition and

localization of industrial objects on an assembly line. Concepts of this domain are

the various parts, the belt, or non-physical terms like speed, motion, or a stable

position for the object. A hierarchic order of parts may group the parts according to

their purpose. General terms can be identi�ed which are used for a group of concepts.

In the object-oriented design (OOD) phase the attention shifts slightly towards the

implementation domain. The conceptual class hierarchy created in OOA is overlayed

with links which are meaningful for the implementation only. This causes a transition

from the problem domain to the solution domain.

Ideally, two hierarchies are used. One relates the classes speci�c to the application

domain which were drafted in the analysis phase. The other hierarchy provides the

implementation concepts, like sets, lists, or geometric objects. These two hierarchies

are linked together, possibly creating multiple inheritance relations.

So called methods are de�ned for the new classes. These methods provide access to

the data represented in the classes and also perform the intended transformations on

the objects.

Example 3.2: Object-oriented design

In example 3.1, the classes for the industrial objects can now use geometric object

classes to describe their shape, e. g., a wheel will use a circle class. This combines the

speci�c application with general de�nitions which are independent of the application.

Several graphical representations and mechanisms have been proposed for OOA

and OOD in the past. The proposals of Booch, Coad & Yourdon, Jacobson, Rum-

baugh et al., and Shlaer & Mellor used similar ideas, each with its own �avor and with

di�erent notation. G. Booch, I. Jacobson, and J. Rumbaugh joint their e�orts and

created the �Uni�ed Modeling Language� (UML) which includes three essential parts

[Breu�Hinkel�Hofmann et al. 97]:

� guidelines for the vocabulary,

� fundamental modeling concepts and their semantics,

� notation for the visual rendering of the concepts.

This language has a considerable syntactical complexity and requires advanced program-

ming skills. Nethertheless it gains industrial attention widely, although no publications
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are known which use this notation for imaging applications, yet. Since these skills are

required for the implementation of image analysis as well, the language is useful for our

purpose. We will use it in the following (e. g. in Fig. 3.3) and introduce the very basic

notation brie�y.

Classes are represented as boxes, divided up to three �elds; the upper �eld contains

the class name,1 the middle �eld contains data �elds called attributes, and the lower

�eld contains method names. An extra small box in the left upper corner marks a

template; the actual type is inserted here for a template instantiation. Except for the

class name, the �elds may be empty. Types and arguments are listed as well, as we

will see in the examples below. Classes which are merely used as a common interface

de�nition for further derived classes are called abstract classes in the object-oriented

terminology; the name is printed in italics in UML.

An arrow with an empty triangle as arrow head relates two classes by inheritance,

pointing to the base class. Template instantiations use a dashed line to relate to the

template. A line with a �lled diamond at the head denotes composition; an empty

diamond is used for aggregation. In the following sections we will see several examples.

3.2.2 Object-oriented programming

After analysis and design, object-oriented programming (OOP) can take place. Classes

are used for the implementation of actions or tasks, i. e. algorithms, as well as informa-

tion, i. e., data. As we outline in Sect. 3.4.2, classes can also be used to provide easy

and portable access to devices such as frame grabbers, or access to actors which are

commonly used in active vision. As shown in CVA III, Chap. 3.12, implementations

for image operations can gain run�time e�ciency if generic modules are used. Classes

can be used to wrap these generic interfaces and to provide a uniform interface by

inheritance.

Software re-use is highly desired due to the high costs of programming. Modularity

is a central concept which helps maintaining large systems. Data abstraction provides

clean interfaces which are essential when several programmers share code in a team. One

other goal of software engineering is to provide components with a long lifetime, even

when changes are required. These principles have been known since years in the context

of object-oriented programming they have now gained attention widely. Object-oriented

design cannot guarantee that these principles are ful�lled, but the strong interconnection

of OOD, OOA, and OOP simpli�es updates and evolution. In contrast to traditional

software engineering, these three stages are not strictly sequential; a return from a later

stage to a previous one is possible and intended.

The programming language C++ in particular has the advantage that it combines

e�cient conventional constructs with object-oriented features. Existing routines in C

which sacri�ce clean structure to gain speed � which unfortunately is necessary in

1Instead of the technical name in the syntax of the programming language, we will use a descriptive
term in the following �gures.
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some rare cases for image processing � can be encapsulated in classes or objects which

provide safe interfaces.

Generally, methods in object-oriented programming have fewer arguments than cor-

responding function calls in traditional programming, since parts of the required in-

formation may be already bound to the object (for example, a FFT object may have

its internal tables for the the actual image size, and no such tables will have to be

allocated for the function call and passed to it as arguments). This again facilitates

software maintenance and re-use, especially if a class and its interface has to be ex-

changed. Fewer modi�cations are then required in the code, compared to conventional

programs.

Reuse of general class libraries serves for two purposes. Common programming

problems � like the implementation of linked lists or sets � have already been solved

in these systems and can be used without further e�ort. Exchange of software using

such class libraries is simpli�ed since the classes share the same structure and interfaces.

The major idea of object-oriented programming now is to de�ne abstract interfaces

in general classes, i. e., classes which are in the higher levels of the class inheritance

graph, and to provide a speci�c implementation in the derived classes. If an algorithm

now uses only the interfaces available in the more general classes, then the outcome of

the process depends on the actual object to which the method is applied. The type of

this object may vary and can be taken from several derived classes. This behavior is

called polymorphism.

3.2.3 Software engineering for image processing

Real-time constraints, e�ciency, and the large amount of data impose special software

problems to image processing systems. The basic requirements for designing a general

software system for image processing (in the sense of the invariant part of a system in

CVA III, Sect. 3.7) are:

1. Access to imaging hardware has to be possible; this includes capturing devices,

graphics, etc. as well as camera interfaces, camera motors, etc. Since hardware

development cycles are much faster than software change, and since software re-use

is desired, the interfaces have to be encapsulated by portable de�nitions.

2. Naturally, highly e�cient � yet safe � access to vectors and matrices has to be

possible.

3. Input and output has to be fast, e�cient, and machine-independent. This has to be

guaranteed not only for low-level data structures such as image matrices, but also

for intermediate� and high-level data such as segmentation results and knowledge

bases, as well.

4. Image processing and analysis modules should be as independent as possible from

the �nal application, in order to be re-usable accross systems.
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The discussion of object-oriented programming for image processing started when

C++ became known. This programming language promised to provide the e�ciency

required for image processing, combined with object-oriented programming, and the

possible code re-use by the upward compatibility to C.

The test phase is a crucial part of software design and programming. Systemati-

cally organized tests will increase the reliability of software for real-world applications.

Problems not considered during the analysis might be detected during tests. A general

problem is that tests can reveal only the existence of bugs, but generally cannot be used

to prove that there are no errors in a program. The more you test, however, the lower

will be the chance that there is a hidden bug in your code. Some general guidelines will

help you testing your software:2

1. Put assertions in every method and function.3 Test the module separately and

unde�ne these assertions when either run-time is crucial for further tests, or when

you are sure the assertions never fail.

2. Each branch in the program should be activated at least once during the test. This

comprises the parts for rare error conditions as well!

3. Every loop should be used at least twice during a test suite.

4. Try to imagine irregular, unexpected, wrong, inconsistent input and test your rou-

tines with such data, for example:

(a) images of size 1� 10000 or even of size 0� 0,

(b) images with constant intensity value at every pixel,

(c) sequences of zero length.

5. Use more than one image for testing. Vary all possible parameters, such as intensity,

size, number of objects, contrast, etc.

6. Use at least one data set as input for which you know the expected output of the

program.

7. Test predictable special cases, such as discontinuities of functions, division by num-

bers close to zero, etc.

8. Keep in mind the limitations of resources, such as storage or execution time. Es-

timate the required resources. Verify that predictable behavior of your program is

guaranteed even if you exceed the limits.

9. Verify that users will accept your software and use it for their needs.

3.3 Programming languages for image processing

We survey existing programming languages with respect to their usefulness for image

processing and image analysis.

2Collected from the world wide web, from lecture notes, and from personal experience.
3Most C and C++ environments provide an e�cient and e�ective solution by a simple assert macro.
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3.3.1 Conventional Programming Languages

Early image processing systems were mostly written in Fortran, e. g. SPIDER [Tamura 83].

Although this language still has its users, mostly because if its mathematical capabilities

and libraries, only few image processing applications written in Fortran remain.

Since the ideas of IKS [Gemmar�Hofele 90], several new software architectures for

image processing have been proposed, �nally resulting in an international standard

PIKS [Blum�Hofmann�Kromker 91, Butler�Krolak 91, Standard 94, Pratt 95]. This

standard contains an interface to Fortran programs.

A software architecture was planned as a common basis for program exchange be-

tween companies, research institutes, and universities is presented in [Kawai�Okazaki�Tanaka�Tamura 92].

This system is now written in C++ and extends the ideas of SPIDER [Tamura 83] and

o�ers more than 500 algorithms for image processing.

For image processing, at least one decade was dominated by the use of C (e. g.

[Dobie�Lewis 91, Parker 97]). On the one hand, this language lacks most of the higher

mathematical notation; on the other hand it provides e�cient access to low level bit

manipulations. The latter is very useful for low level image manipulation, such as mask-

ing out areas in an image. The missing mathematical de�nitions in the language syntax

are compensated by the large number of mathematical libraries which are available for

the language. Rather than operators of the language, function calls to the libraries have

to be used to apply mathematics.

The Khoros system [Rasure�Young 92, Young�Argiro�Kubica 95] is an environment

for interactive development of image processing algorithms. The system includes a neat

visual programming environment. The algorithms can also be run without interactive

graphics. The system provides a large C-language library of imaging functions (over

500 functions), some of them used in 2 1
2
D and 3-D image processing. Knowledge based

processing is not part of this package.

The PIKS standard mentioned above is also speci�ed for the C language.

3.3.2 Object-oriented programming

Object-oriented programming languages have been known to computer scientists since

over 25 years. The ideas originated in the ancestors Simula and Smalltalk. During this

period of time, the (conventional) programming language C had its breakthrough in

the world.

In the late eighties, the C language was extended with object-oriented ideas. The

language C++ [Stroustrup 91] mainly used the ideas of Simula. C++ is almost a superset

of C; i. e., most C programs are C++ programs as well. Many valuable image processing

routines nowadays written in C can be re-used without modi�cation. Possibly because

of the cheap or free availability of C++-compilers � even on personal computers � this

language had enormous success.
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Several new object-oriented languages have been invented, such as Ei�el, CLOS, In

the following, we report only on those languages which are currently relevant in imaging

applications.

The programming language C++ [Stroustrup 91] had an overwhelming success in the

last few years in all application areas. Many image processing projects started in C and

are now extended or converted to C++, e. g. [Eckstein�Lohmann�Meyer�Gruhl et al. 93,

Young�Argiro�Kubica 95]. Although the C++-language is only partially suited for

object-oriented programming, it presently seems to be the best choice to combine e�-

ciency with object-oriented design in real world applications, especially those operat-

ing under real-time conditions. For a discussion of image processing systems see e. g.

[Carlsen�Haaks 91, Coggins 87, Zimmer�Bonz 96, Paulus�Hornegger 97, Piper�Rutovitz 88]

One major disadvantage of C++ was its lack of standard general purpose classes, such

as linked lists. Meanwhile, the Standard Template Library (STL) [Musser�Saini 96] has

become part of the C++ standard and is distributed with most compiler. Since it uses

templates rather than inheritance, it gains run-time e�ciency at some points compared

to object-oriented class libraries. STL supports genericity (CVA III, Chap. 3.12); this

is a somewhat orthogonal idea to object-oriented programming which is based on in-

heritance. In C++, polymorphism is supported at run-time by virtual functions;

these functions are internally called indirectly via a pointer, rather than by a direct

function call. Template instantiation at compile-time provides a variant which is called

compile-time polymorphism.

General purpose classes are also available for C++ as class libraries. A system called

NIHCL [Gorlen�Orlow�Plexico 90] incorporates many Smalltalk ideas into C++ and

uses inheritance rather than templates. In contrast to STL, NIHCL provides storage

and recovery of arbitrary objects in a uni�ed way, as it was possible in Smalltalk. Our

image analysis system described in Sect. 3.5 uses this general library.

Since several years, people work on the image understanding environment; examples

can be found in [Haralick�Ramesh 92] and in various articles in the proceedings of

the Image Understanding Workshop, e. g. [Mundy�Binford�Boult et al. 92]. This large

system is implemented in C++ as well and partially uses STL.

The machine vision system described in [Caelli�Bischof 97] is implemented in C++

and uses class hierarchies for the knowledge base as well as for the interfaces to image

processing algorithms.

The programming language Java [Lyon�Rao 97] promises a new era in program-

ming4. It is de�ned as a portable language where the portability extends down to the

level of binary programs. This is achieved by the so called �Java virtual machine�

which interprets the compiled programs. This interpreter has to be present on the host

machine or hardware support has to be provided. Java is an object-oriented language

with a clean and simple syntax de�nition, much simpler than C++ although with a

similar outlook. The language is type safe which helps creating reliable programs. The

4e. g. http://rsb.info.nih.gov/ij/
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language has no pointer variables which is somewhat unusual. Many de�ciencies of C++

have been cured in this new language. The compilers come with a rich library of general

purpose classes which greatly simpli�es sharing code with others.

Although �rst highly e�cient implementations exist and applications to signal pro-

cessing have been proposed [Lyon�Rao 97], Java currently lacks the required run-time

e�ciency for image processing applications.

In its original de�nition, the programming language ADA was an object-based lan-

guage; it was not an object-oriented programming language since it did not support

inheritance which is an essential object-oriented feature. Because of the high complex-

ity of the formal syntax, it took several years before complete compilers were available on

any platform. Although the language provides e�cient, portable libraries, and concepts

for software re-use, it was not accepted by the image processing population. Instead,

the language C was used all over the world.

The recent re-de�nition in [Barnes�Brosgol�others 95] added the missing object-

oriented features. The syntax complexity remained, however.

Smalltalk is the prototype of the object-oriented paradigm. Since it is an interpreted

language it is generally slower than a compiled program. It is also not particularly

suited for mathematical problems. Smalltalk can be used to program the higher levels

in image understanding; since the language has a large number of classes for various

general problems, solutions can be formulated elegantly. When it comes down to pixel

access for image preprocessing, the language is not the right choice.

3.3.3 Proprietary image processing programming languages

Some systems use an own programming language for image processing, which is usu-

ally either interpreted from a textual description or a graphical user interface. The

Cantata language in Khoros [Rasure�Young 92, Young�Argiro�Kubica 95] is one typ-

ical example. Heurisco [Jähne 97] uses a textual as well as a graphical interface. Ad

Oculus [Bässmann�Besslich 95] has a graphical description. The major advantage is

that usually only few keystrokes are required for even complex imaging operations. The

drawback is that a new language has to be learned and that this language is not portable

to other systems, unless the interpreter exists on the target platform. One special case

of this idea are image algebras where image processing is formalized as an algebraic

problem, e. g. in [Giardina 84].

If image processing is seen as a data �ow problem (as in Sect. 3.4.1), the command

interpreter of the operating can be used to compose operations from single processes.

This strategy has been applied in the system HIPS [Landy 93] which uses Unix-pipes

to create sequences of operations. The Khoros system also provides a command line

interface; the automatically created sequences of program invocations use intermediate

�les as interfaces.
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The system presented in [Cracknell�Downton�Du 97] uses the Tcl/Tk language and

interface to compose image understanding algorithms. The components may be written

in C or C++.

3.3.4 Summary

In Sect. 3.2 we argued that object-oriented ideas greatly help reducing di�culties in

software for image processing. In Table 3.1 we summarize those features of object-

oriented programming languages which are of interest for imaging. Parallel processing

is of course useful for image processing, especially when processing times are crucial.

Although we did not treat this subject in the previous sections, we list in Table 3.1

whether concurrent and distributed processing is supported by the syntax of the pro-

gramming language.

Although ADA'95 provides object-oriented features, it is barely used in scienti�c

projects, except in those related to space technology; the programming languages C,

C++, and Java are currently used in image processing implementations. In the table we

note whether the language is currently used for image processing and image analysis

(ip/ia). We also have a column which shows whether the language is type-safe; this

feature, if provided, makes the tests performed by the compiler more reliable and thus

increases software stability.

Table 3.1: Features of object-oriented programming languages. Extended from the table in

[Goedicke 97].

type-safe syntax complexity ip/ia concurrency tools

C++ low high yes not part of the language

Java yes low no primitives exist

Ada almost high few fully suppored

Smalltalk yes low no coroutines

Although most programming languages allow mixtures with subroutines of other

languages, we assume that the design goal in most cases is to have a uniform architecture

as well as a uniform programming language. C function calls in C++ can be seen

as almost conformant with this guideline and are acceptable, since the bene�t of re-

using existing C code is much higher than the penalty of some minor extra interface

requirements.

The language Objective-C encapsulated Smalltalk features in the C language. The

system described in [Carlsen�Haaks 91] is one of the few references to applications of

Objective-C in imaging applications, combined with object-oriented extensions to LISP

and Prolog. Today's best choice for a programming language for image processing and

understanding is C++.
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Figure 3.1: Data �ow in an image analysis system.

3.4 Image understanding

In this section we describe the general software architecture of image understanding

(IU) systems and apply object-oriented principles.

3.4.1 Data �ow

The general problem of image analysis is to �nd the best description of the input image

data which is appropriate to the current problem. Sometimes this means that the most

precise description has to be found, in other cases a less exact result which can computed

quicker will be su�cient. This task may be divided into several sub-problems. After an

initial preprocessing stage, images are usually segmented into meaningful parts. Various

segmentation algorithms create so called segmentation objects [Paulus�Niemann 92].

Segmentation objects are matched with models in a knowledge base which contains

expectations of the possible scenes in the problem domain.

The various data types involved in image segmentation, like images, lines or regions,

may serve for data abstraction of the problem. In object-oriented programming, these

data types are naturally represented in classes. Segmentation may be seen as a data �ow

problem relating these various representations. An overview of the main components is

shown in Fig. 3.1; data is captured and digitized from a camera and transformed to a

symbolic description or results in an action of the system. Image processing tasks are

shown in oval boxes; data is depicted as rectangles; in the object-oriented design phase,

both will naturally be grouped to class hierarchies. If required, the algorithms can be

implemented as generic modules for di�ernt types, as shown in CVA III, Sect. 3.11.

The problem of �nding an optimal match and the best segmentation can be seen as

an optimization problem and is formulated as such in CVA II, Chap. 2. Optimization

may search for the best possible match as well as include e�ciency considerations which

are crucial for real-time image processing.
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Knowledge based vision uses a model of the scene for image interpretation. The

scene may be decomposed into object-models which can be represented using their

structural properties and relations (e. g. in a semantic network CVA II, Sect. 2.2.1), or

as statistical object models ([Hornegger�Niemann 94], CVA II, Sect. 3.5.3).

The system architecture in Fig. 3.1 implies various interactions between modules.

Information has to be exchanged by means of well de�ned interfaces. Modules and data

structures with well de�ned interfaces are naturally implemented as classes in OOP or

as modules in structured programming.

The segmentation object is a central idea for the data representation independent

of the algorithms used for image segmentation, and can be used as an interface between

data-driven segmentation and knowledge-based analysis. Models can be described in a

similar formalism [Niemann 90].

3.4.2 Devices and actors

The output of the system in Fig. 3.1 is a description of the input image data. In active

vision systems (Chap. 3.10), the output may additionally or alternatively contain control

commands for the sensor device or for the actor (e. g. a robot or a moving vehicle). This

provides feedback from high-level processing to data driven segmentation, or even to

the image capturing devices (dashed line in Fig. 3.1). This data �ow is also common to

active vision systems, the parameters of the visual system are adjusted by the controlling

computer in order to get the best possible image for the actual analysis purpose. The

system design in Fig. 3.1 is therefore suitable for conventional image analysis as well as

for active vision.

Interaction with graphical and pointing devices is necessary for interactive computer

vision systems, as they are common e. g. in medicine. Interaction with physically moving

tools requires a control loop which can be closed in real-time.

Naturally, these actions and devices are modelled as classes and objects in OOA

and OOD. Their well de�ned interface facilitates data exchange between programs and

devices.

Example 3.3: OOD for a frame grabber

Image processing software has to access imaging hardware, e. g., to a frame grabber.

Most systems provide libraries which are to some extent portable to the next gen-

eration of the same hardware. Although the functionality of two frame grabbers of

di�erent manufacturer may be rather similar, the software interface will be of course

di�erent.

Instead of the traditional approach which scattered #ifdef's around in the code

to be able to compile a program for di�erent interfaces, the object-oriented designer

creates a class which encapsulates the common features of several hardware interfaces,

for example, for setting the resolution of an input image or for selecting the input

connector. The algorithms use this general � polymorphic � interface and are

independent of the underlying hardware.
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Figure 3.2: Example of a scene with heterogeneous background: a gray-level image, b segmen-

tation result, and c estimated pose

3.4.3 Statistical object recognition

In a Bayesian framework for object recognition using 2-D images ([Hornegger 96], CVA

II, Sect. 1.4), statistical model generation, classi�cation, and localization is based on

projected feature vectors. Localization is expressed by the rotation and projection

matrix and translation vector. The objects are taken from a set of possible classes

� 2 f1 � � �Kg and described by parameter vectors, matrices, or sets.

Object localization and recognition corresponds to a general maximization problem

CVA II, (1.4).

Fig. 3.2 shows a gray-level image (a) and the resulting set of 2-D point features (b),

if a standard corner detection algorithm is applied. Fig. 3.2c shows the result of the

maximization of CVA II, (1.4). Similar results are shown in CVA II, Fig. 1.7.

In order to implement such an optimization, the function to be optimized has to be

independently speci�ed from the algorithm performing the optimization. Whereas this

is written down easily in mathematics, it requires clean design in the implementation

taking into account the computational complexity of the optimization. We outline a

solution in Section 3.5.3.

3.5 Class hierarchy for data and algorithms

Whereas hierarchical data representation by classes has become almost state of the art,

hierarchies of classes for operations, algorithms, and actors are not common, yet.

We �rst describe a hierarchy of classes which facilitate simple interfaces for image

processing; image processing operations are implemented as another class hierarchy

which uses the data interfaces [Paulus�Hornegger 97]. A third hierarchy provides var-

ious optimization algorithms. These ideas are realized in An image analysis system

which is written in C++.
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Figure 3.3: A section of a hierarchy of geometric objects for segmentation (in total approxi-

mately 150 classes).

3.5.1 Data representation

Various data representation schemes have been developed for data in image analysis

covering image data structures as well as results from segmentation. Some of them

may be treated as algebras with more or less complete sets of operations (e. g., chain

codes or quad trees). Other representations are used because of their storage e�ciency

(e. g., run length codes), others because of their runtime e�ciency. Such ideas were

combined into a Hierarchy of Picture Processing ObjectS (HIPPOS, written as �̀���o&

[Paulus�Niemann 92]).

A central problem visible in Fig. 3.1 is the data exchange of segmentation results,

which are an initial symbolic description of the image. The solution in �̀���o& is a

hierarchy of classes, which is shown in Fig. 3.3. The general classes for implementa-

tion which are added in OOA (Sect. 3.2.1) were taken from the NIHCL class library

[Gorlen�Orlow�Plexico 90]. All segmentation results can be stored in an object of class

SegObj no matter whether the data is computed from line-based or region-based segmen-

tation, color, range, or gray level images. This object representation can be exchanged

between di�erent processes which possibly run on di�erent computer architectures. This

general tool is used in many algorithms. A segmentation object is a geometric object

(GeoObj). It consists of a set of parts which are in turn geometric objects. Atomic

objects are geometric objects as well and end the recursion. The abstract base class

HipposObj connects to the NIHCL object and serves as a common root for all image

processing classes. It contains a judgment attribute which is used for the comparison

of competing segmentation results by the analysis control (cmp. CVA II, Sect. 2.6).

As our applications, e. g., in [Denzler�Paulus 94, Beÿ�Paulus�Niemann 96] show,

this has proven adequate for 2-D, 2 1
2
D and 3-D image analysis. Other sub-trees exists

for image classes, like gray level images, stereo images, range images, color images, etc.

as well as classes for lines, circular arcs, polygons, chain codes, regions, active contours

etc. The whole �̀���o&-hierarchy currently consists of approximately 150 classes.
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Vectors and matrices are implemented as templates using the concept of genericity

(CVA III, Sect. 3.12). In order to be e�cient, pixel access to images should not be

programmed via virtual functions. A �exible, safe, and simple mechanism is used

instead which is shown in example 3.4. Pixel access by operator syntax is possible

for vectors as well as for matrices without loss of speed [Paulus�Hornegger 97]. The

index operator in example 3.4 can do a check on the validity of the operand thereby

eliminating most of the common errors in image processing (which cannot be detected

in C automatically).

Example 3.4: E�cient and safe pixel access

template <class T> struct Vector { // simplified version

T * array; int size; // the actual data

public:

T& operator[] (int i)

{ /* check index validity here */ return array[i]; }

Vector(int); // allocate internal pointer

Vector(int,T* p); // use already existent storage in p

};

template <class T> struct Matrix { // simplified version

T ** tarray; int size; // contiguous allocation for the matrix

Vector<T>** varray; // the varrays internally use tarray

public:

Matrix(int,int); // will allocate C-compatible tarray and

// use second construtor for vectors

// using this array

operator T**() { return tarray; } // provides C compatiblity

Vector<T>& operator[] (int i)

{ /* check index here */ return *varray[i]; }

};

void t()

{

Matrix<int> m(10,10); // define a matrix object

m[3][4] = 3; // safe pixel access

int** mp = m; // convert to pointer access

mp[3][4] = 4; // fast pixel access

}

The idea in example 3.4 can be used to implement sub-images [Paulus�Hornegger 97].

An interface to commonly available C-functions is easy by the automatic conversion op-

erator to type T**; Since these generice modules are integrated into the NIHCL class

hierarchy, they share methods for input and output of objects.

3.5.2 Image operator hierarchy

Many operations in image processing can be structured hierarchically in a straight

forward manner. Such hierarchies can be implemented in a hierarchy of classes for
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operations in a straight forward way (cmp. [Carlsen�Haaks 91, Faasch 87]). Objects are

the actual algorithms with speci�c parameter sets which are also objects [Harbeck 96].

Classes as implementation of algorithms are particularly useful, when operations require

internal tables which increase their e�ciency. The requirement stated in CVA III,

Sect. 3.8 that algorithms should provide meta�knowledge about themselves, can be

ful�lled by operator classes; provide polymorphic methods list the type of the operator,

the required arguments, and further administrational information. Programmers can

be forced by the compiler to implement these functions.

The major advantages of operator-classes are threefold.

� Algorithms can be programmed in an abstract level referencing only the general

class of operations to be performed; extensions of the system by a new derived

special operator will not require changes in the abstract algorithm.

� Such an extension cannot change the interface which is �xed by the de�nition in

the abstract base class. This guarantees uniform and thus easy-to-use interfaces.

� Dynamic information about the operator, which is actually used, is available. For

example, a program may just reference a �lter object; during run time it will be

decided which concrete �lter should be used. Using virtual functions in C++, the

run time overhead is negligible Sect. 3.5.5.

The segmentation in [Harbeck 96] accepts as input an image object. An edge-

operator-object such as a Sobel-object or a Nevatia-object converts this input image

to an edge image. Edges are linked to line objects collected in a segmentation object.

Corners are detected on the line and added to the segmentation object with one of

several corner detector objects. Later, vertices are identi�ed and the lines are approxi-

mated by circular arcs and straight lines using a split-and-merge object. This sequence

of operators introduces a re�nement of the data �ow in Fig. 3.1. Figure 3.4 shows

the hierarchy for line segmentation. The segmentation result in Fig. 3.2 as well as the

results in CVA II, Fig. 1.7 are computed using this sequence; both point sets are col-

lected in an object of class SegObj. Parameter blocks can be shared between di�erent

operators as parameter objects. Function call C++ syntax for these operators as shown

in example 3.5 is used in Animals which facilitates migration of existing conventional

programs to operator objects.

Example 3.5: Image Operator Classes in C++

class Sobel: public EdgeDet { // Sobel operator as a special case

public: // of an edge detector

static const int maxStrength; // = 2040;

virtual void operator() (const GrayLevelImage&,EdgeImage&) ;

};

class Prewitt : public EdgeDet { // Prewitt edge operator

public:

static const int maxStrength; // = 1020;

virtual void operator() (const GrayLevelImage&,EdgeImage&) ;

};
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Figure 3.4: Subtree of the operator hierarchy for image segmentation; from [Harbeck 96].

Whereas one object of a Sobel object will usually be su�cient in a program, several

objects of a certain operator object will be needed if these objects keep their inter-

nal state and auxiliary data between invocation. As an example consider a discrete

Fourier transform which uses tables for sine and cosine values; the size and contents

of these tables varies however upon the frame size to be transformed. Several Fourier-

transform objects may thus be used in one program for transformations of images, e. g.

in a resolution hierarchy. In contrast to conventional solutions, this requires neither

code duplication nor complicated management of functions with local storage. In ex-

ample 3.6, a simple interface to an FFT object is shown. Each instance of the FFT

class has an associated internal size and can be used to transform a vector of this size.

Again, function call syntax is used.

Example 3.6: Implementation of class FFT

class FFT : public IP_OP {

Vector<double> sintab, costab; // internal tables

public:

FFT(int s) : sintab(s), costab(s) { /* init tables here */ }

Vector<complex> operator() (const Vector<double>&); // apply FFT

};

void f()

{

FFT f128(128); // init internal tab for 128 entries

FFT f256(256); // init internal tab for 256 entries
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Figure 3.5: Partial view on class hierarchy for optimization algorithms.

Vector<double> v128(128), v256(256); // input data

Vector<complex> c128 = f128(v128); // resulting spectrum 1

Vector<complex> c256 = f256(v256); // resulting spectrum 2

}

3.5.3 Hierarchy for optimization algorithms

The optimization problem in CVA II, (1.4) and in CVA II, example 1.6 requires that

several strategies for optimization are evaluated in order to �nd e�cient object recog-

nition strategies. Probabilistic optimization routines which allow practically e�cient

solutions are discussed in [Hornegger 96]. Again, a class hierarchy for optimization

strategies similar to the operator hierarchy above simpli�es the experiments.

The basic idea of the implementation is to program the algorithms independently

from the function which is to be optimized. An abstract base for all optimization

strategies has an internal variable which is the function to be optimized; the class

provides a method for minimization or maximization to all derived classes.

All optimization algorithms can be divided into global and local procedures; addi-

tional information may be present such as e. g. the gradient of the function (Fig. 3.5).

Procedures which use the function directly are e. g. the combinatorial optimization,

the simplex algorithm, or the continuous variant of the simulated annealing algorithm

(Fig. 3.7). The gradient vector can be used for the optimization of �rst order. Examples

are the iterative algorithms implemented in [Hornegger 96], the algorithm of Fletcher

und Powell, and the well known Newton-Raphson iteration which are shown in Fig. 3.6.

Fig. 3.8 �nally shows an overview of other algorithms implemented in [Hornegger 96].
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Figure 3.6: Partial view on class hierarchy for local optimization algorithms of �rst order.
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Figure 3.7: Partial view on class hierarchy for for model densities.

3.5.4 Hierarchy for actors and devices

A similar technique as in example 3.5 can be used to ful�ll requirement 1 on page 67.

This is shown in example 3.7 for the case of a camera which can capture either gray-

level images or color images and a pan/tilt unit which is commonly used in active

vision systems. Of course, a more elaborate internal structure of the class SMotor is

required in real applications. In fact, a hierarchy of classes providing di�erent interfaces

to various hardware is used. This is invisible for the application programmer.
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Figure 3.8: Partial view on class hierarchy for global optimization algorithms.

Example 3.7: Actor Classes in C++

struct SMotor { // assume stepper motor

operator=(int p); // will set motor to position p

operator++(); // will move by one step

};

struct PTVDev : public IP_DEV {

SMotor panaxis;

SMotor tiltaxis;

};

struct Camera : public IP_DEV {

SMotor zoom; // zoom motor is stepper motor

virtual void operator() (GrayLevelImage&); // will capture the correct

virtual void operator() (ColorImage&); // type and size

};

Most common functions of such devices can be accessed by operator-syntax. This

even releases the programmer from the need of remembering method names since the

value for the stepper motor can simply be assigned to the object. The challenging idea

behind this concept is not only to encapsulate the hardware interface for each device,

but also to provide common interfaces for parts of the device, such as motors.
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Table 3.2: Run time measurements for HP (735/99 MHz), SGI O2 (R10000, 195 MHz), and

Dual-Pentium (Linux 300 MHz); all times in milliseconds

Number of calls HP O2 PC

Direct function call 10
7 199 93 43

Direct method call 10
7 233 93 55

Virtual method call 10
7 634 98 65

Sobel function 256
2 image 10

2 1085 287 300

Sobel object 2562 image 10
2 1096 290 301

Sobel function 32
2 image 10

4 1551 418 415

Sobel object 322 image 10
4 1557 419 175

Safe pixel access 10
7 446 246 84

Fast pixel access 10
7 162 72 37

3.5.5 E�ciency

As shown in Table 3.2, time overhead for virtual function calls is negligible compared to

the time needed for the actual computation, such as in the case of the Sobel operator.

Of course, trivial computations or pixel access should not be performed using virtual

functions, since the ratio of overhead and required processing time for the task is worse,

then. The implementation of the Sobel operator uses the fast pixel access via pointers

(Table 3.2).

In [Denzler 97], a real-time active vision system was implemented for tracking ob-

jects and moving a pan/tilt camera. This system used the image and matrix classes

as well as the camera and actor classes in Sect. 3.5 The computation times were small

enough to process images and control the camera.

The computation times measured in [Hornegger 96] for the optimization classes out-

lined in Sect. 3.5.3 were around one minute for 10000 calls to the function to be opti-

mized.

The system has been used in many other applications as well. These references and

the measures in Table 3.2 prove that object-oriented programming can be successfully

applied in image processing: low�level tasks on matrices and vectors use templates;

intermediate results and high�level processing rely on class hierarchies.

The bene�t of using object-oriented programming instead of conventional program-

ming is hard to be measured. One measure for the quality of a software system is the

duration of its use which which is long if the architecture is accepted by the implementors

and which is shorter if the system fails to meet the requirements of the programmers. Our

system has been started in 1988 and the oldest class still in use is the one for chain codes

which was released in 1989. Our personal experience strongly suggests object-oriented

principles for system design in image analysis.
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3.5.6 Summary

In Sect. 3.2.3 we listed three essentials for imaging software design. In Sect. 3.5.5 we

showed how e�cient processing is possible simultaneously with object-oriented design.

Several examples were given in the previous sections on access to hardware and devices.

The NIHCL object which is used as base class for all classes shown above, provides

machine independent persistent objects. This data representation is available not only

for images, segmentation objects, etc., but also for actors such as a camera; in this case,

the camera parameter settings are stored and can easily be retrieved later.

Of course, object-oriented programming implies that the complete class hierarchy

has to be available for the application programmerer, e. g. as a shared library. In

contrast, the independent building blocks proposed in CVA III, Sect. 3.12 require almost

no common libraries, but share the code for the generic modules. A combination of both

approaches will give the best results for complete imaging systems.

3.6 Conclusion

We argued for a clean and uniform software design in imaging software systems. At the

same time, a highly e�cient implementation is crucial. Only C++ can currently provide

these features. For regular data structures such as matrices and vectors, genericity is

the right choice; in C++ this concept is available as templates. Starting with images

which use such matrices, and ending with complex data representation as segmentation

results, classes and inheritance provide clean yet e�cient interfaces.

In addition to data, algorithms are grouped hierarchically as classes. While not

imposing measurable overhead on the run-time, this idea adds a lot to keep interface

problems small and to force programmers to adhere to standards.

The use of classes for interfaces to hardware is to guarantee platform independent

access. Hierarchies of such classes facilitate uniform syntax even for varying devices.

A wise choice of the available tools will keep the run-time overhead at a negligible

minimum and will on the same time greatly increase the value of the software in terms

of reusability and expected maintenance e�ort.
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