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Abstract. Successful detection of the position of prosodic phrase bound-
aries is useful for the rescoring of the sentence hypotheses in a speech
recognition system. In addition, knowledge about prosodic boundaries
may be used in a speech understanding system for disambiguation. In
this paper, a segment oriented approach to prosodic boundary detec-
tion is presented. In contrast to word oriented methods (e.g. [6]), it has
the advance to be independent of the spoken word chain. This makes
it possible to use the knowledge about the boundary positions to re-
duce search space during word recognition. We have evaluated several
different boundary detectors. For the two class problem ‘boundary vs.
no-boundary’ we achieved an average recognition rate of 77% and an
overall recognition rate up to 92%. On the spoken phoneme chain 83%
average recognition rate (total 92%) is possible.

1 Introduction

State—of-the—art speech understanding systems use different knowledge sources
to process on spoken utterances. In the VERBMOBIL speech-to-speech translation
system [8] prosodic boundary information is used for disambiguation of phrase
boundaries. For example the word chain Of course not on Friday may have the
two different meanings:

1. Of course not ! on Friday. vs. 2. Of course ! not on Friday.

Currently the prosodic boundary classifier depends on the output of a word rec-
ognizer [5]. If boundary information would be available during the word recog-
nition task, the search space of the word recognizer could be reduced. Thus we
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have to develop a boundary classifier, that does not depend on information from
the word recognizer. In this paper we present two segment based approaches for
prosodic boundary classification.

2 Data

The VERBMOBIL-database contains spontaneous—speech dialogs of German, En-
glish, and Japanese speakers. For each utterance, a basic transliteration is given
containing the spoken words, the lexically correct word form, pronunciation, and
several labels for (filled) pauses and non—verbal sounds. In addition to this basic
transliteration, large parts of the corpus are annotated with supplemental labels,
such as prosodic (B) and syntactic-prosodic (M) phrase boundaries, dialog act
boundaries (D), phrase accents (A), and dialog act classes (DA) [3,1].
For the experimental evaluation we use the subset of the VERBMOBIL-database,

labeled with the prosodic B boundaries. It consists of 118 minutes. 790 turns are
used for training and 64 for testing.

3 Experiments and Results

All classifiers described in the following attempt to distinguish the prosodic
events that mark prosodic boundaries from all other acoustic events that mark
no boundary. Those include normal speech and also irregular phrase boundaries,
like hesitations and interruptions; i.e. detection of the prosodic boundaries in
speech data is viewed as a sequence of classification steps.

We investigated into two major types of classifiers. The first type works
equidistantly, after each 10 milliseconds the classifier decides, whether to detect
a boundary or not. The second type works in a non-equidistant way, it uses
segments of variable length to incorporate durational modeling. In successive
order, each segment gets mapped to one of the two classes ‘boundary’ or ‘no-
boundary’.

3.1 Fixed Length Segments

The equidistant approach uses Gaussian distribution densities to model the
acoustic correlates of the boundaries. The Gaussian distributions are estimated
on fixed length segments. In the training data, no information about the extent
of the acoustic correlate of a prosodic boundary is given. For the robust super-
vised estimation of the Gaussian distributions we have to determine in advance,
which of the fixed length segments belong to an acoustic correlate of a boundary
or not. We use the following heuristic: All segments within the time interval
between the end of the word at the prosodic boundary and the beginning of
the next word belong to the acoustic correlate of a boundary, i.e. all pauses and
non—verbals after a prosodic boundary are used to estimate the Gaussian distri-
bution of the corresponding class. During classification a post processing step is



used to reduce the false detection rate: If successive segments were classified as
‘boundary’, only the middle segment of the sequence is marked as ‘boundary’,
the remaining segments are marked as ‘no-boundary’.

We considered different segment lengths between 40 and 160 msec. In or-
der to achieve a robust estimation of the covariance matrices, Karhunen-Loeve
transformation is applied to each segment to reduce its dimension. The resulting
feature vectors we investigated have a dimension between 2 and 80. The best re-
sults were achieved using segments with a duration of 160 msec and a dimension
of 10; the detection rate is 44% at an insertion rate of 151%. That is equivalent
to a precision of 23%.

3.2 Variable Length Segments

The non-equidistant approach is motivated by the n-gram classifier [4,7] for
boundary detection as described in [6]. In [6] the spoken word chain of the
training data is labeled with ‘boundary’ and ‘no-boundary’ symbols. A stochastic
language model is estimated on the resulting symbol chain. Classification is
done with the Bayes rule by computing the a-posteriori probabilities for the
occurrence of a ‘boundary’ or a ‘no-boundary’ symbol, given the recognized
word sequence. We examine, if this method may be applied to chains of symbols
other than words. The difficulty is to find a symbol representation, that contains
enough of the information about the boundaries, while it must be as simple as
possible to ensure that the boundary detector can be used as a fast preprocessing
module. We took two major types of symbol representation into account. The
first uses unsupervised learning for symbol generation, while the second uses
phone models, that were trained by supervised learning.

For all experiments that are described in the following, a bigram stochastic
language model has been used. Our first experiments in unsupervised generation
of symbols used the codebook classes of a vector-quantizer for symbol representa-
tion. This led to disappointing results (average boundary recognition rate: 70%,
total 75%).

Better recognition rates can be achieved by incorporating durational vari-
ability of the symbols and adding more selectivity to the segment models. For
this purpose we used fenones [2] to represent the symbols. A fenone recognizer
can be looked upon as a recognizer for subword units, but it is trained unsuper-
vised. If the number of fenones is small (< 10), this corresponds to a phonetic
category recognizer (nasals, fricatives, ...), if the number is about 40-200, this
corresponds to a phone recognizer. Each fenone has a duration between 30 and 80
msec. The fenone model is a simple linear HMM with one or three looped states
and Gaussian output densities. The fenone recognizer uses a bigram language
model. The fenone codebook was designed in two steps. The first step consists
of clustering the training data with the LBG-algorithm into a fixed number of
partitions. In the second step, subsequent equal codebook symbols in the train-
ing data get merged. The resulting variable-length symbols are the fenones. We
considered different sizes of fenone codebooks between 7 and 120 symbols. The



experiments resulted in an average boundary recognition rate of 77% (total 83%)
on a codebook size of 15 fenones.

We got the best results, when we used a phone recognizer to convert the
feature vector sequence into a symbol sequence. The phone recognizer has a
lexicon of 62 phones and three different pauses. The phone sequence was used
for the polygram classifier as input symbol sequence. This approach achieved
an average recognition rate of 77% (total 92%). Evaluation of the accuracy of
the phone recognition resulted in the very bad value of 35%. In order to show
that further improvement of boundary detection can be achieved by using a
better phone recognizer, we applied the polygram classifier to the spoken phone
sequence (100% accuracy). A much better boundary detection was the result:
An average recognition rate of 89% together with a total recognition rate of 90%.

4 Conclusion and Further Work

We have shown that successful recognition of prosodic phrase boundaries is possi-
ble without using the spoken word chain. Further improvements may be achieved
by using a better phone recognizer.

Our future work is to combine the boundary detector with a word recognizer.
We will evaluate the influence of the information about the boundary positions
on the word recognition rate.
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