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Abstract

While the strategy of active vision is well established in
early vision, it is not widespread in high-level vision. In this
paper we suggest an approach for integrating aspects of ac-
tive vision into a knowledge-based system. One aspect is
the selection ofoptimalcamera actions which are chosen to
make the recognition process more reliable and efficient. We
integrated such camera actions into our knowledge base.
In addition, we describe the extensions of the control algo-
rithm which is needed to use the information represented in
the knowledge base, closing the loop between acting and
sensing. Experiments show the efficiency and flexibility of
the system. As an example, the task of locating objects in an
office room is evaluated.

1 Introduction

Active perception [1, 2] which has become more and
more popular during the last years, deals with modeling and
control strategies for perception [2]. In contrast to the Marr
paradigm, a camera controls the image acquisition process
as anactiveobserver to getoptimalimages concerning sub-
sequent image processing steps. This includes, for example,
the adjustment of zoom if the image contains objects which
cannot reliably be recognized in wide-angle images. In ad-
dition, modeling of sensors and the environment including
the involved objects is essential. We use semantic networks
for knowledge representation. In order to integrate the ideas
of active perception, not only the information about objects
is required in the knowledge base, but also the knowledge
about the adjustment of camera parameters.

In order to use a-priori knowledge represented in the
knowledge base during the data-interpretation process, con-
trol strategies are needed, which include the control of the
interaction between the individual modules like image ac-
quisition and object recognition. Furthermore, a feedback

1This work was partially funded by the German Research Foundation
(DFG) under grant number Ni 191/12-1.

between modules has to be performed by the control al-
gorithm. Strategies for decision making are also needed
to guide the data interpretation; we use utility-based judg-
ments for decision making where the functions for the com-
putation of the judgments are integrated into the knowledge
base. The control algorithm which is based on an A�-search
uses these judgments to select an appropriate camera action
depending on the state of the data interpretation process.

In classical image analysis, of course, many systems like
SIGMA [6] are known which use information represented
in a knowledge base. None of these systems include an ac-
tive camera control component. Related work to our system
can be found, for example, in [5, 8]. A review concerning
selective perception can be found in [3].

The knowledge base for the application domain is intro-
duced next (section 2). Afterwards, we outline the control
algorithm (section 3). Finally, we demonstrate the feasibil-
ity and efficiency of our approach by experiments with a
system for exploration of office scenes. (section 4).

2 Knowledge Base

The application domain chosen here is the exploration of
arbitrary office scenes. Since the main contribution of the
paper is the conceptional work regarding the integration of
camera actions, i.e. the adjustment of camera parameters,
into a semantic network and regarding the extensions of the
control algorithm, the object-recognition task of the system
is simplified in this context: At the moment only red objects
are considered, i.e. the task of the system is to find three pre-
defined red objects, a punch, a gluestick, and an adhesive
tape dispenser which need not be visible in an image taken
with the initial camera set-up. The 2-d object models used at
the moment can easily be substituted by more sophisticated
ones in a later stage. Additionally, the knowledge base can
be easily extended due to the modularity of the concept-
centered representation.
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Figure 1. Semantic network for our domain.

2.1 Declarative Knowledge

The structure of the knowledge base for our application
domain is shown in Figure 1. We use our semantic network
formalismERNEST for knowledge representation [7]. The
knowledge base which was specified manually unifies the
representation of objects and their relations and the repre-
sentation of camera actions on different levels of abstrac-
tion. The knowledge base consists of so-calledconcepts
which are depicted as ovals in Figure 1. The gray ovals
contain, for example, theobjectsof the application domain,
e.g. the concepts “punch”, “gluestick” or “adhesivetape”.
These three concepts areparts ofthe concept “officescene”
and they are connected with the concept “colorregion” by a
concretelink, which was introduced in [7] for relating con-
cepts of different conceptual systems to each other.1

Concepts forcamera actionsare also integrated into the
knowledge base. On the highest level of abstraction one can
find camera actions which are equivalent to search proce-
dures and which are used to find objects in a scene. The first
example is the concept “directsearch”. Each computation
of this concept calculates a new pan angle for the camera
in such a way, that overview images (images captured with
a small focal length) are obtained. The second example is
the concept “indirectsearch”. This concept represents an
indirect search [10], i.e. the search for an object using an
intermediate object, e.g. in order to find a punch we first
find a table and then search for the punch on it.

1In the following the “seg” part of the concept names stands for seg-
mentation.

On the intermediate level of abstraction in Figure 1, the
camera action “zoomon region” can be found. The effect
of this action is the fovealization of regions which are hy-
potheses for the objects. If an object in a hypothesis is too
small to be reliably recognized, i.e. the height and width of
the dedicated object cannot be determined reliably (cf. sec-
tion 2.2), we use the fovealization to get more detailed in-
formation about it. We refer to images captured after foveal-
ization asclose-up views.

Thecomputationof a camera action concept leads to the
selection of new camera parameters or theperformanceof
a camera action. So, only one camera action concept can
be computed at once. In order to represent competing cam-
era actions, i.e. actions which cannot be performed at the
same time, we make use ofmodalities[7]. Modalities have
been introduced to represent different concurrent realiza-
tions of a concept, such as a chair with or without arm rests
or with varying number of legs. For example, the concept
“explore office” has as parts the concepts “directsearch”
and “indirectsearch”, each of them is represented in one
modality of “exploreoffice”. The same holds for the con-
cept “officescene” which contains two modalities, one for
“explore office seg” and one for “regionsegimage”.

During analysis these ambiguities arising from modali-
ties are resolved and so-calledinstancesare computed for
each concept. Theinstantiationof a concept includes the
computation of its components, i.e. theattributesand the
relations, as well as of its judgment. The judgments in-
dicate the match between image data and a-priori knowl-
edge. Additionally, they specify theutility of camera ac-
tions (section 2.2). Based on these judgments the camera
action which is optimal with respect to the criterion defined
by the judgment functions can be selected by the control
algorithm.

2.2 Procedural Knowledge

The functions for the computation of the attributes and
relations of a concept and the judgment of the correspond-
ing instance build up theproceduralknowledge of the net-
work which includes the functions for attribute calculation
and the judgment functions.

The task of our system - considered from the image pro-
cessing view - splits into several subtasks. First hypotheses
for the object location have to be determined. This is done
by histogram-backprojection [9] where histograms of the
interesting objects are learned before analysis. Using the
resulting hypotheses, subimages can be built on which a
color-region segmentation is performed. The subimages are
represented by the concept “subimage”, whereas the seg-
mented color regions are an attribute of “subimageseg”.
Usually, the objects in the overview images are too small
to be reliably verified. In this case the color region segmen-



Figure 2. Typical office scene and close-up
views for hypotheses.

tation is performed using close-up views which are captured
after a camera move such that the optical axis points to the
center of the hypothesized area resulting from backprojec-
tion. In addition to the region representation, the concept
“color region” contains attributes for the region’s height
and width as well as for the region’s color. The objects are
recognized by their height and width. Judgments are re-
quired to guide the instantiation of concepts and to select
the sequence of camera actions.

A management of uncertainty is provided by the control
algorithm based on the judgment functions. Probabilities
are used to rate the instances of the scene concepts “punch”,
“gluestick” and “adhesivetape”. The judgment of the in-
stanceI(Ck) related to the conceptCk subsume the judg-
ments of the concepts’ componentsompk. Therefore, the
judgment of an instance is defined asp(I(Ck)jompk) =�p(I(Ck))Qnl=1 p(ompkl jI(Ck)): The constant� denotes
the normalization factor. We assume that the individual dis-
tributions are pairwise independent andp(I(Ck)) is uni-
formly distributed. In order to rate the individual attributes,
parameters of a normal distribution for each attribute are
estimated using 40 images for each object. During interpre-
tation values for the attributes are calculated and judged ac-
cording to the corresponding distribution.

Camera actions are performed in order to provide more
information about the scene and reduce the uncertainty of
intermediate results. The control algorithm has to decide
whether new information is needed and which camera ac-
tion yields the information with lowest cost. Therefore,util-
ities are used to judge the camera actions [4]. The utility
measure relies on the intermediate results of the interpre-
tation, i.e. the evidence if all searched objects have been
found. The judgment of an instance which corresponds to
an object reflects this information. For each instance we
have a hypothesis with statesobject foundandobject not
found. Depending on these states the optimal camera ac-
tion is chosen. The utilities are calculated using a utilityta-
ble which contains the utility of an actiona provided that
the hypothesis is in stateh, wherea belongs to the set of

executable actions andh is a state of the random variableH . In general, just the distribution ofH is known. There-
fore, we can only compute the mean utilityEU(aje) =Ph2H U(a; h)p(hje). The variablee denotes the evidence
which arises from the intermediate results of analysis. The
control algorithm chooses the action which maximizes the
mean utility.

To give an example: Recall the two camera actions “indi-
rect search” and “directsearch”, which form an action set.
We define the vectorv = (I(L); I(A); I(K)) 2 f0; 1g3 as
hypothesisH . Hence, the states ofH are all configurations
of this vector which describe if instances of the punchI(L),
the adhesive tapeI(A) and the gluestickI(K) are available.
Within this vector, 1 denotes “object found”, and 0 denotes
“object not found”. For example, ifv = (1; 1; 1) the punch,
the adhesive tape and the gluestick have been found. At the
moment we use 0 and 1 as utilities. For example, if we have
found a well-rated instance of the intermediate object, the
indirect search is more useful than the direct search. For the
action “zoomon region” we use a hand-crafted utility func-
tion based on the region’s size and the current zoom setting.

3 Using Knowledge - the Control Algorithm

During analysis, the observed image data and the knowl-
edge stored in the semantic network are matched with each
other. The task of the control algorithm is to find the best
rated instance of thegoal conceptand theoptimalsequence
of camera actions with respect to the criterion defined by the
judgment functions. The goal concept corresponds to the
goal of the interpretation process which is “exploreoffice”
in Figure 1. Matching is done by expanding the network and
instantiating its concepts. During the expansion and instan-
tiation, so-calledsearch tree nodesare built which contain
the intermediate results of analysis. Competing segmenta-
tion results or competing instances, which are modality-
dependent, are assigned to competing search tree nodes. For
example, one search tree node contains the instance of “di-
rect search” and another the instance of “indirectsearch”
depending on the modality of the instance of “exploffice”.

These search tree nodes form the search space of the A�-
search algorithm, where the judgment of each node cor-
responds to the judgment of the goal concept’s instance.
Therefore, the judgments of the camera actions which in-
fluence the judgment of this instance as explained in sec-
tion 2.2 are the basis for the control algorithm’s decision
which action should be performed.

The structure of the network determines how to calcu-
late instances and propagate restrictions. It does not impose
a sequence of instantiations on the network. Specifically, no
performance of a closed loop of camera actions and image
processing routines is possible directly. Therefore, we ap-
ply so-calledlocal analysis strategies. They define the se-
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Figure 3. Sequence of concept instantiations

quence of expansions and instantiations within the search
tree node and allow for closed loops of acting and sens-
ing. The sequences specify that after the instantiation of a
camera action concept a new image has to be taken and an-
alyzed. Additionally, local strategies provide a means to de-
fine the direction of analysis, i.e. if the analysis is performed
data-driven or model-driven. In Figure 3 the sequence of
concept computations is shown for an excerpt of the knowl-
edge base depicted in Figure 1. The control algorithm starts
with the concept “colorregion” which can be instantiated.
Afterwards, depending on the modality of the instance of
“office scene” the objects are instantiated or a new zoom
and a new pan value are calculated. During the instantia-
tion of “exploreoffice seg”, a camera action is performed
and therefore, the control algorithm decides to instantiate
the concept “colorregion” again using the close-up views.

4 Experiments

The knowledge-based system was tested in two differ-
ent office environments using two similar cameras and ac-
tors. The first one, office1, is shown in Figure 2. In order to
test the suitability of the whole approach, an active system
which corresponds to the knowledge base depicted in Fig-
ure 1 was compared to apassive system, i.e. a system which
does not perform any camera action, but analyses the scene
based on the originally provided image data. All the ob-
jects which the system had to search for were therefore posi-
tioned in the first overview image and neither a direct nor an
indirect search was performed. The task of the control algo-
rithm was, besides the search for the best matching regions,
to decide if a fovealization would be necessary. 20 experi-
ments were performed in each office with both systems. In
each experiment the position of the objects were changed.
As the experiments revealed, the active system outperforms
the passive system in both office scenes. In office 2 a recog-
nition rate of 80 % was achieved by the active system, in
comparison to 66 % using the passive system. The highest
recognition rate, 93 %, was achieved in office1 by the active

system whereas the passive system achieved 90 %.
In office1 zoom actions were performed if segmentation

errors due to reflections occurred. In office2 all objects ex-
cept the punch were too small to be verified realibly. The
judgment function for “zoomon region” reflects these ob-
servations. However, there are still some problems. If an ob-
ject hypothesis in office2 which is not fovealized gets a high
rating, a zoom action is not performed even if the object is
very small. Furthermore, the judgments after performing a
camera action are in some cases not optimistic and there-
fore, the A�-search yields a wrong result. These problems
need further research and will be solved in the future.

5 Conclusions

In this article we have proposed an approach for active
knowledge-based scene exploration. As the experiments re-
vealed, the approach is suitable to solve the proposed task.
In future, we want to integrate more sophisticated object
models. Additionally, we will learn local analysis strategies
during the exploration of a scene. Instead of the discrete
utility values continuous variables will be used.
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