A Spin-Glass model of a Markov Random Field

B. Caputo, J. Hornegger, D. Paulus and H. Niemann
Computer Science Department, Chair for Pattern Recognitio
University of Erlangen,
Martensstrasse 3, D-91058, Erlangen, Germany

In the last few years there has been a growing interest witléimachine learning comunity in Spin-Glass Theory (SGT) [8
and its possible applications in learning and recognitamks [9], [2]. SGT was first used in physics to describe magnet
materials in which the interactions between the magnetimards (spins) are random and conflicting [8]. The attempt to
understand the cooperative behaviour of such systemsdhtstiee development of new concepts and techniques whiah hav
been finding applications and extensions in many areas sualtractor neural networks [1], combinatorial optimiaati
problems, prebiotic evolution [8], and recently GaussisotEsses [9] and shape recognition [2]. This contributestdbes
a new model that makes it possible to use SGT results in a Maxid Posteriori-Markov Random Field (MAP-MRF, [7])
framework. Many vision problems can be posed as labelinglpros; labeling is also a natural representation for the
study of MRFs [7]. Two major tasks in MRF modeling are how téirethe neighborhood system for irregular sites, and
how to choose the energy function for a proper encoding ofizaimts. How to define the neighbor relations between
sites is related to their regularity; in the irregular caise. (object recognition problems, [7]), the neighborhogstem
must be defined by means of an “ad-hoc” distance that will beufe-dependent. If the application problem is 3-D object
recognition, we have the additional problem of choosin@iiant features, or we should incorporate the pose parasnete
in the energy formulation and in the neighbor relations diéin, with a dramatical increase in complexity. The energy
function is a quantitative cost measure of the quality of latsmn, which defines the best solution as its minimum. In the
case of irregular sites, the energy function’s formulatian become something of an art, as it is generally done mignual

SGT provides a way to deal with these problems in an eleganhera full connectivity makes the neighborhood defi-
nition irrelevant, and the energy function is defined indefently from the considered application; this makes it fibss
to find the analytical properties of the minima and may makeitecessary to construct fast algorithms for seaching the
absolute minima. To our knowledge, there are no previougswattempting to integrate SGT results in a MRF-MAP frame-
work. Two basic properties of SG adésorderandfrustration; these features are readily visualized in the energy fancti
E = (=1/N)>_  Jij si sj  wheres = (s,..., sn) is a generic configuration, the are random variables taking values
in {£1} andJ = [J;; ],4,5 = 1,..., N is the connection matrix. It has been proved that (see [Hpch-6) choosing
Jii = (/N)SP_ 6" € (while g% 1 €)Yy # vandp < N,N — oo hold), the{¢") | = 1...p} (a chosen
set of configurations) are the absolute minima&obfThese results can be extended from the discrete to thenoonis case
(i.e. s € [-1,+1]7, see [5]). With this choice for the connection matrix is igfhaforward to recognize thdf is a function
of the scalar product between a generic configuratiand a particular configuratiaﬁ“) which we want to be an absolute
minima of E.

We propose to use SGT results as follows. Consider a genattierp recognition problem: I8 = {1,...,m} be a
set ofm sites corresponding to the features, dnd= [z;, ;] C R a continuous label set; thef= {f1,..., fn } will be
a labeling configuration in the configuration sp&@¢egiven the observed dafa, we define the optimal Iabelinﬁ to be
the one which satisfy a MAP criterion. Now suppose we map tta ttomG to a spacd? = [ 1, +1]V, with N — o,
using a mappin@ : G — H. As F is a function of the scalar product, this allows us to lookKernel functiongk” such
that K(f,, fo) = ®(f,) - ®(f-), and thus to use the kerna&l without explicitly knowing®. The Mercer’s condition
[3] tells us for which kernels there exist a pdiH, ®}; the Gaussian kernél (f,, f5) = exp{—||f, — f5||?/20%} is a
Mercer’s kernel [3], that is to say it is the scalar produdingen two generic vector in a spate= [—1,+1]V, N — oo
[3], which is the space where the SG enefgyives. Thus, the kernel trick allows us to realize a SpingSlenodel of a
Markov Random Field.

We tested this model on two texture classification probleimshe first experiment we classified five types of textures
(see Figure 1); for each class we had a sample set of 64 imeaEspf dimensiofi4 x 64.



Figure 1: Textures databases: on the top are five texturesntdfom the Meastex Database (available at
www.cssip.elec.uq.edu.au/ guy/meastex/meastey.fumthe bottom an example of radiographic image of perape
sion [4], and four regions of interest representing healtig lesioned bone.

The second experiment was done on a database of 228 Regidnge€ist (ROIs) which were extracted from radio-
graphic images of periapical lesions (see Figure 1, [4])esSEnROIs represented regions of the image where the disease
could be detected. The dimensions of these ROIs varied ffbr110 to 20 x 20; meanvalue | 90.6%]| 85.1%
each region was selected on the basis of visual criteria lamidat results. Fea-| median value | 90.3% | 86.0%
tures were extracted in both cases by means of the co-oocerneatrices method gaussian mixturd 91.8% | 86.8%
[6], thus we obtained a vector of five features for each sanipihe experiments
were performed with a leave-one-out technique and progstyyere evaluated in Table1: Experimental results
three different ways: mean value, median value and Gaussiiginires. Results reported in Table 1 show that Gaussian
mixtures give the best performance in both cases.
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