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In the last few years there has been a growing interest withinthe machine learning comunity in Spin-Glass Theory (SGT) [8]
and its possible applications in learning and recognition tasks [9], [2]. SGT was first used in physics to describe magnetic
materials in which the interactions between the magnetic moments (spins) are random and conflicting [8]. The attempt to
understand the cooperative behaviour of such systems has led to the development of new concepts and techniques which have
been finding applications and extensions in many areas such as attractor neural networks [1], combinatorial optimization
problems, prebiotic evolution [8], and recently Gaussian Processes [9] and shape recognition [2]. This contribution describes
a new model that makes it possible to use SGT results in a Maximum A Posteriori-Markov Random Field (MAP-MRF, [7])
framework. Many vision problems can be posed as labeling problems; labeling is also a natural representation for the
study of MRFs [7]. Two major tasks in MRF modeling are how to define the neighborhood system for irregular sites, and
how to choose the energy function for a proper encoding of constraints. How to define the neighbor relations between
sites is related to their regularity; in the irregular case (i.e. object recognition problems, [7]), the neighborhood system
must be defined by means of an “ad-hoc” distance that will be feature-dependent. If the application problem is 3-D object
recognition, we have the additional problem of choosing invariant features, or we should incorporate the pose parameters
in the energy formulation and in the neighbor relations definition, with a dramatical increase in complexity. The energy
function is a quantitative cost measure of the quality of a solution, which defines the best solution as its minimum. In the
case of irregular sites, the energy function’s formulationcan become something of an art, as it is generally done manually.

SGT provides a way to deal with these problems in an elegant manner: full connectivity makes the neighborhood defi-
nition irrelevant, and the energy function is defined independently from the considered application; this makes it possible
to find the analytical properties of the minima and may make itunnecessary to construct fast algorithms for seaching the
absolute minima. To our knowledge, there are no previous works attempting to integrate SGT results in a MRF-MAP frame-
work. Two basic properties of SG aredisorderandfrustration; these features are readily visualized in the energy functionE = (�1=N)P(i;j) Jij si sj , wheres= (s1; : : : ; sN ) is a generic configuration, thesi are random variables taking values
in f�1g andJ = [Jij ℄; i; j = 1; : : : ; N is the connection matrix. It has been proved that (see [1], chap. 4-6) choosingJij = (1=N)Pp�=1 �(�)i �(�)j (while �(�) ? �(�) 8� 6= � andp � N;N ! 1 hold), thef�(�) j� = 1 : : : pg (a chosen
set of configurations) are the absolute minima ofE. These results can be extended from the discrete to the continuous case
(i.e. s 2 [�1;+1℄N , see [5]). With this choice for the connection matrix is straightforward to recognize thatE is a function
of the scalar product between a generic configurations and a particular configuration�(�) which we want to be an absolute
minima ofE.

We propose to use SGT results as follows. Consider a generic pattern recognition problem: letR = f1; : : : ;mg be a
set ofm sites corresponding to the features, andLx = [xl; xh℄ � < a continuous label set; thenf = ff1; : : : ; fmg will be
a labeling configuration in the configuration spaceG; given the observed dataD, we define the optimal labelinĝf to be
the one which satisfy a MAP criterion. Now suppose we map the data fromG to a spaceH � [�1;+1℄N , with N ! 1,
using a mapping� : G ! H . AsE is a function of the scalar product, this allows us to look forkernel functionsK such
thatK(f1;f2) = �(f1) � �(f2), and thus to use the kernelK without explicitly knowing�. The Mercer’s condition
[3] tells us for which kernels there exist a pairfH;�g; the Gaussian kernelK(f1;f2) = expf�jjf1 � f 2jj2=2�2g is a
Mercer’s kernel [3], that is to say it is the scalar product between two generic vector in a spaceH = [�1;+1℄N ; N ! 1
[3], which is the space where the SG energyE lives. Thus, the kernel trick allows us to realize a Spin-Glass model of a
Markov Random Field.

We tested this model on two texture classification problems:in the first experiment we classified five types of textures
(see Figure 1); for each class we had a sample set of 64 images,each of dimension64� 64.
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Figure 1: Textures databases: on the top are five textures taken from the Meastex Database (available at
www.cssip.elec.uq.edu.au/ guy/meastex/meastex.html); on the bottom an example of radiographic image of periapical le-
sion [4], and four regions of interest representing healtlyand lesioned bone.

The second experiment was done on a database of 228 Regions OfInterest (ROIs) which were extracted from radio-
graphic images of periapical lesions (see Figure 1, [4]). These ROIs represented regions of the image where the disease
could be detected. The dimensions of these ROIs varied from10� 10 to 20� 20;
each region was selected on the basis of visual criteria and clinical results. Fea-
tures were extracted in both cases by means of the co-occurrence matrices method
[6], thus we obtained a vector of five features for each sample. The experiments
were performed with a leave-one-out technique and prototypes were evaluated in

mean value 90.6% 85.1%
median value 90.3% 86.0%

gaussian mixture 91.8% 86.8%

Table 1: Experimental results

three different ways: mean value, median value and Gaussianmixtures. Results reported in Table 1 show that Gaussian
mixtures give the best performance in both cases.
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