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1 IntrodutionSreen-�lm mammography assoiated withlinial breast examination and breast self-examination is widely reognized as the onlye�etive imaging modality for early detetionof breast aner in women [1℄, [2℄. However,the interpretation of X-ray mammograms isvery diÆult beause of the small di�erenesin the image densities of various breast tis-sues, partiularly for dense breast. The in-terpretation of mammograms by radiologistsis performed by a visual examination of �lmsfor the presene of abnormalities that indi-ate anerous hanges. Computerized anal-ysis to help deision making for biopsy re-ommendation, and diagnosis of breast an-er might be of signi�ant value to improvethe true-positive rate of breast aner dete-tion. Among the early indiators of breastaner, miroali�ations are one of the pri-mary signs [2℄. They are tiny granule-likedepositum of alium, and the presene oflustered miroali�ations in X-ray mam-mograms is onsidered a basial marker forthe early detetion of breast aner, espe-ially for individual miroali�ations withdiameters up to about 0:7mm and with anaverage diameter of 0:3mm [2℄. Computer-ized image analysis methods have been usedfor the identi�ation of irumsribed masses,lassi�ation of suspiious areas and lassi-�ation of miroali�ations using onven-



tional methods [3℄, [4℄ and using expert sys-tems [3℄. In the atual interpretation of mam-mographi miroali�ations, the grey-levelvalues de�ning loal strutures in the miro-ali�ation lusters play a signi�ant role [2℄.It has been demonstrated in linial studiesdesribed in [2℄, that the grouping of miroal-i�ation regions, in order to de�ne the shapeof the luster, is highly dependent on the gray-level-based struture and texture of the image.Texture information plays an important rolein image analysis and understanding, with po-tential appliations in remote sensing, qualityontrol, and medial diagnosis. Texture is oneof the important harateristis used in iden-tifying an objet or a region of interest (ROI)in an image [5℄.In this paper we propose Gabor Energy Fil-ters (GEFs) for miroali�ations detetion;Gabor funtions have been introdued by Ga-bor in 1946 [6℄, and have been later extendedto 2D [7℄; by applying arguments from quan-tum mehanis, Gabor demonstrated that thislass of funtions is optimal in the sense thatit possesses the smallest produt of spatial ex-tent by e�etive frequeny width. This prop-erty suggested that these �lters are appropri-ate operators for tasks requiring simultaneousmeasurements in these domains, suh as tex-ture disrimination. This tehnique has beenapplied suessfully in many texture analysisand segmentation problems [8℄, [9℄, [10℄, [11℄.Textural features extrated with GEFs wereused to lassify Region Of Interests (ROI's)into positive ROI's ontaining miroali�-ations and negative ROIs ontaining nor-mal tissues. A feedforward, three-layer bak-propagation neural network was employedas a lassi�er [12℄; a Reeiver Operating-Charateristis (ROC) analysis [13℄ was usedto evaluate the lassi�ation performane ofthe GEFs.The paper is organized as follows: GaborFuntions and GEFs are desribed in Setion2. The experimental results are presentedin Setion 3; the three-layer bakpropagationneural network used as lassi�er is also de-sribed in Setion 3. Finally, onlusions are

given in Setion 4.2 Gabor Funtions andGabor FiltersThe Fourier Transform (FT) of a funtionf(x) gives a measure of its irregularities (highfrequenies), but this information is not spa-tially loalized. For loalizing the informa-tion obtained by the FT, Gabor [6℄ de�ned anew deomposition using a Gaussian windowin the Fourier integral. These funtions havebeen later extended to 2-D by Daugman [7℄,[14℄. A Gabor Funtion is given byh(x; y) = g(x0; y0) exp[2�j(Ux + V y)℄; (1)with(x0; y0) = (x os � + y sin �;�x sin � + y os �):They are rotated spatial- domain oordinates;(u; v) denote frequeny-domain oordinates,and (U; V ) represent a partiular 2-D fre-queny [15℄. The omplex exponential is a2-D omplex sinusoid at frequeny! = pU2 + V 2and � = artan(V=U);it spei�es the orientation of the sinusoid. Thefuntion g(x; y) is the 2-D Gaussiang(x; y) = 12��x�y �exp8<:�12 24� x�x�2 +  y�y!2359=; ; (2)where �x and �y are related with the spatialextent and bandwidth of the �lter. The Ga-bor funtion an thus be viewed as a Gaussianmodulated by a omplex sinusoid. It is possi-ble to demonstrate that the Fourier Transformof h(x; y) is H(u; v) =exp��12[(�x[u� U ℄0)2 + (�y[v � V ℄0)2℄� ;(3)



Figure 1: Four examples of ROIs ontainingmiroali�ations.where(u� U)0 = (u� U) os � + (v � V ) sin �;(v � V )0 = �(u� U) sin � + (v � V ) os �:This means that the frequeny response of theGabor Funtion has the shape of a Gaussian;its major and minor axis width will be deter-mined by �x and �y, it will be rotated by anangle � with respet to the u-axis, and it willbe entered about the frequeny (U; V ). Thus,the Gabor funtions an be viewed as band-pass �lters. In this paper we will assume that�x = �y = �. This means that the parame-ter � is not needed and the Gabor Funtionbeomes:h(x; y) = 12��2 exp(�(x2 + y2)2�2 ) �exp[2�j(Ux + V y)℄: (4)We an de�ne now the Gabor Filter Gh:Gh(I(x; y)) = jI(x; y) � h(x; y)j; (5)where I(x; y) is an image.2.1 Gabor Filters for TextureAnalysisGabor Filters applied to texture analysis mea-sure the similarity between neighbourhoods

Figure 2: GEFs for � = 4, � = 0; �=3; 2�=3in an image and Gabor funtions. A fam-ily of Gabor funtions an be generated forvarying frequenies (!) and Gaussian windowstandard deviations (�); remembering that! = pU2 + V 2;� = artan(V=U)and expressing (U; V ) by means of the orien-tation � [15℄, we an write the Gabor funtionasG(x; yj�; �; �; x0; y0) = exp� [(x�x0)2+(y�y0)2℄2�2 �sin(2�� (x os � � y sin �) + �); (6)where (x0; y0) speify the enter of the Gaus-sian.For texture analysis purpose, we'll omputethe GEF at eah pixel for eah ombination ofwavelength and orientation, where the energyis de�ned as the sum over the phases of thesquared �lter values. That isS2(x0; y0j�; �) ="Xx;y G(x; yj�; �; 0; x0; y0)I(x; y)#2+"Xx;y G(x; y�; �; �=2; x0; y0)I(x; y)#2 : (7)Energy alulated using eq.(7) for eah om-bination of � and � may be used as texturalfeatures [16℄.3 Experimental Results3.1 Data SeletionWe tested the performane of GEFs for mi-roali�ations detetion on a database of 81



Figure 3: GFEs for � = 8, � = 0; �=3; 2�=3

Figure 4: GEFs for � = 4, � =0; �=4; �=2; 3�=4

Figure 5: GEFs for � = 8, � =0; �=4; �=2; 3�=4

Layers Number 3Hidden Neurons 10Output Neurons 1Transfer Funtion Log-sigmoidLearning Rule bakpropagationerror goal 0.1Table 1: Network arhiteture and learningparameters GFE192 GFE256�(pixels) 32, 16, 8, 4 32, 16, 8, 4�(rad) �=3; 2�=3; � �=4; �=2; 3�=4; �x0(pixels) 16, 48, 80, 112 16, 48, 80, 112y0(pixels) 16, 48, 80, 112 16, 48, 80, 112Table 2: Parameters of GEF192 and GEF256images produed by the \Centro per la Cura ela prevenzione dei Tumori" of the Universityof Rome \La Sapienza"; eah image was digi-tized from �lm using a CCD amera operatingat a spatial resolution of 604� 575 pixels forimage; the pixel rate was of 11; 5MHz, andthe pixel size of 10�m � 15�m. From the 81images, 151 Region of Interest (ROI) were se-leted by expert radiologists, eah of 128�128pixels. Among the seleted 151 ROIs, 75 werepositive and 76 were negative; four di�erentROIs are shown in Figure 1. In a preproess-ing step, eah extrated ROI was strethed tothe normalized gray-level range of 0-255 [5℄.3.2 Feature ExtrationAs shown in Setion 2, a GEF set is spei�edby the values of the parameters �; �; x0; y0. Inthis paper we used two �lter sets: 4 frequen-ies (wavelengths of 32,16, 8 and 4 pixels),16 enters of the Gaussian (x0 = y0 = 16,48, 80, 112 pixels) and two di�erent possiblehoies for �: � = 00; 450; 900; 1350 and � =00; 600; 1200. So, in the �rst ase we had 192oeÆients (we'll all this set GEF192), andin the other ase 256 oeÆients (GEF256).These value parameters are summarized inTable 2.



3.3 Classi�erAn arti�ial neural network is a omputerarhiteture onsisting of a single interon-neted proessing elements alled neurons[13℄, [17℄, [18℄. A weight wij (ouplingstrength) haraterizes the interonnetionsbetween any two neurons i and j. The in-put to eah neuron is a weighted sum of theoutputs inoming from the onneted neu-rons. Eah neuron operates on the input sig-nal using his ativation funtion f and pro-dues the output response. The typial ati-vation funtions are linear, threshold and sig-moid [17℄, [18℄. Normally the neurons are or-ganized in an arhiteture with input nodes,interfaing the neural network and the exter-nal world, output nodes, produing the net-work's responses, and hidden nodes, havingthe task of orrelating and building up an \in-ternal representation" of the analyzed prob-lem. Network's apaity and performane de-pends on the number of neurons, on the ati-vation funtions used, and on the neurons' in-teronnetions. Another important attributeof arti�ial neural networks is that they an ef-�iently learn nonlinear mappings through ex-amples ontained in a training set, and use thelearned mapping for omplex deision making[17℄, [18℄.A three-layer, bakpropagation neural net-work was employed as lassi�er in this re-searh. In Table 1 are summarized the net-work arhiteture and the learning param-eters; the initial weights are randomly se-leted from [0:0; 1:0℄. The textural featuresextrated by means of GEFs, as desribed insetion 3.2, are used as the input signals ofthe input layer. There is a single output nodefor lassi�ation into positive or negative ROI.A non-linear sigmoid funtion with zero andone saturation values is used as the ativationfuntion for eah neuron, and is de�ned as [13℄oj = 11 + ePi wijoi+vj (8)where oj is the output of the j-th neuron andvj is the threshold value of the j-th neuron.The network is trained to provide a 1:0 out-

Figure 6: Two examples of 2D Gabor fun-tions.put value for a positive ROI and a 0.0 out-put value for a negative ROI. In the trainingproess, the weights between the neurons areadjusted iteratively so that the di�erenes be-tween the output values and the target val-ues are minimized. In this study, the trainingproess is stopped when the error per trainingase beomes smaller than 0.1.3.4 Classi�ation ResultsThe two sets of textural features obtained us-ing the GEFs as desribed in setion 3.2 wereused as input for the network desribed in se-tion 3.3. We used three di�erent ombinationsof training and test sets: 40 training ases and111 test ases for the set1, 50 training asesand 105 test ases for the set2, and 60 train-ing ases and 95 test ases for the set3. For



every set, we randomly hose 10 di�erent par-titions of the data; this proedure should pre-vent a dependeny of the results on a partiu-lar partitioning of the data. The results of thenetwork for all the di�erent partitions wereanalysed by using ROC analysis [5℄. ROCanalysis is based on statistial deision theoryand has been applied extensively to the eval-uation of linial diagnosis. The ROC urverepresents the relationship between the true-positive fration (TPF) and the false-positivefration (FPF) for variation of the deisionthreshold. The TPF and the FPF denote thefration of patient atually having the diseasein question that are diagnosed as positive andthe fration of patients atually without thedisease in question that are diagnosed as pos-itive, respetively. The area under the ROCurve Az is used as a measure of the lassi�a-tion performane. A higher Az indiates bet-ter lassi�ation performane beause a largervalue of TPF is ahieved at eah value of FTF.An ideal performane produes an area of 1:0.ROC analysis was applied on the lassi�a-tion results obtained for set1, set2 and set3,for eah of the 10 di�erent partitions of thedata. In this way 10 di�erent values of Az,for eah set, were obtained: the average Azobtained for set1 has been of 0.79 for GEF192and of 0.84 for GEF256; the average Az ob-tained for set2 has been of 0.83 for GEF192and of 0.87 for GEF256; the average Az ob-tained for set3 has been of 0.84 for GEF192and of 0.89 for GEF256. These results aresummarized in Table 3.The better performane ahieved by boththe feature sets with set3 indiates that thenetwork has generalized better with the big-ger training set; for every data partition, thebest results were obtained with the GEF256representation.4 ConlusionIn this paper we proposed GFs for detetionof miroali�ations in mammographi im-ages. The extrated features onstituted theinput of a neural network trained to las-
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