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tMammography asso
iated with 
lini
al breastexamination is the only e�e
tive method formass breast s
reening. Mi
ro
al
i�
ations areone of the primary signs for early dete
tion ofbreast 
an
er. Texture-analysis is a very pop-ular method proposed in literature for dete
t-ing 
lustered mi
ro
al
i�
ations in digitizedmammograms. In this paper 1 we proposeGabor Filters for 
lassi�
ation of diÆ
ult-to-diagnose regions in mammographi
 images.Textural features extra
ted by this methodare used for the 
lassi�
ation of positive Re-gion of Interest (ROI's) 
ontaining 
lusteredmi
ro
al
i�
ations and negative ROI's 
on-taining normal tissue. A three-layer ba
k-propagation neural network is used as a 
lassi-�er, and a Re
eiver Operating-Chara
teristi
s(ROC) analysis is used to evaluate the 
las-si�
ation performan
e. The obtained resultsshow that Gabor Filters 
an be su

essfullyemployed for dete
tion of mi
ro
al
i�
ations.1This resear
h work was developed while B. Ca-puto was at the University of Rome \La Sapienza",as partial ful�lment of her laurea degree; the * indi-
ates the 
orresponding author

1 Introdu
tionS
reen-�lm mammography asso
iated with
lini
al breast examination and breast self-examination is widely re
ognized as the onlye�e
tive imaging modality for early dete
tionof breast 
an
er in women [1℄, [2℄. However,the interpretation of X-ray mammograms isvery diÆ
ult be
ause of the small di�eren
esin the image densities of various breast tis-sues, parti
ularly for dense breast. The in-terpretation of mammograms by radiologistsis performed by a visual examination of �lmsfor the presen
e of abnormalities that indi-
ate 
an
erous 
hanges. Computerized anal-ysis to help de
ision making for biopsy re
-ommendation, and diagnosis of breast 
an-
er might be of signi�
ant value to improvethe true-positive rate of breast 
an
er dete
-tion. Among the early indi
ators of breast
an
er, mi
ro
al
i�
ations are one of the pri-mary signs [2℄. They are tiny granule-likedepositum of 
al
ium, and the presen
e of
lustered mi
ro
al
i�
ations in X-ray mam-mograms is 
onsidered a basi
al marker forthe early dete
tion of breast 
an
er, espe-
ially for individual mi
ro
al
i�
ations withdiameters up to about 0:7mm and with anaverage diameter of 0:3mm [2℄. Computer-ized image analysis methods have been usedfor the identi�
ation of 
ir
ums
ribed masses,
lassi�
ation of suspi
ious areas and 
lassi-�
ation of mi
ro
al
i�
ations using 
onven-



tional methods [3℄, [4℄ and using expert sys-tems [3℄. In the a
tual interpretation of mam-mographi
 mi
ro
al
i�
ations, the grey-levelvalues de�ning lo
al stru
tures in the mi
ro-
al
i�
ation 
lusters play a signi�
ant role [2℄.It has been demonstrated in 
lini
al studiesdes
ribed in [2℄, that the grouping of mi
ro
al-
i�
ation regions, in order to de�ne the shapeof the 
luster, is highly dependent on the gray-level-based stru
ture and texture of the image.Texture information plays an important rolein image analysis and understanding, with po-tential appli
ations in remote sensing, quality
ontrol, and medi
al diagnosis. Texture is oneof the important 
hara
teristi
s used in iden-tifying an obje
t or a region of interest (ROI)in an image [5℄.In this paper we propose Gabor Energy Fil-ters (GEFs) for mi
ro
al
i�
ations dete
tion;Gabor fun
tions have been introdu
ed by Ga-bor in 1946 [6℄, and have been later extendedto 2D [7℄; by applying arguments from quan-tum me
hani
s, Gabor demonstrated that this
lass of fun
tions is optimal in the sense thatit possesses the smallest produ
t of spatial ex-tent by e�e
tive frequen
y width. This prop-erty suggested that these �lters are appropri-ate operators for tasks requiring simultaneousmeasurements in these domains, su
h as tex-ture dis
rimination. This te
hnique has beenapplied su

essfully in many texture analysisand segmentation problems [8℄, [9℄, [10℄, [11℄.Textural features extra
ted with GEFs wereused to 
lassify Region Of Interests (ROI's)into positive ROI's 
ontaining mi
ro
al
i�-
ations and negative ROIs 
ontaining nor-mal tissues. A feedforward, three-layer ba
k-propagation neural network was employedas a 
lassi�er [12℄; a Re
eiver Operating-Chara
teristi
s (ROC) analysis [13℄ was usedto evaluate the 
lassi�
ation performan
e ofthe GEFs.The paper is organized as follows: GaborFun
tions and GEFs are des
ribed in Se
tion2. The experimental results are presentedin Se
tion 3; the three-layer ba
kpropagationneural network used as 
lassi�er is also de-s
ribed in Se
tion 3. Finally, 
on
lusions are

given in Se
tion 4.2 Gabor Fun
tions andGabor FiltersThe Fourier Transform (FT) of a fun
tionf(x) gives a measure of its irregularities (highfrequen
ies), but this information is not spa-tially lo
alized. For lo
alizing the informa-tion obtained by the FT, Gabor [6℄ de�ned anew de
omposition using a Gaussian windowin the Fourier integral. These fun
tions havebeen later extended to 2-D by Daugman [7℄,[14℄. A Gabor Fun
tion is given byh(x; y) = g(x0; y0) exp[2�j(Ux + V y)℄; (1)with(x0; y0) = (x 
os � + y sin �;�x sin � + y 
os �):They are rotated spatial- domain 
oordinates;(u; v) denote frequen
y-domain 
oordinates,and (U; V ) represent a parti
ular 2-D fre-quen
y [15℄. The 
omplex exponential is a2-D 
omplex sinusoid at frequen
y! = pU2 + V 2and � = ar
tan(V=U);it spe
i�es the orientation of the sinusoid. Thefun
tion g(x; y) is the 2-D Gaussiang(x; y) = 12��x�y �exp8<:�12 24� x�x�2 +  y�y!2359=; ; (2)where �x and �y are related with the spatialextent and bandwidth of the �lter. The Ga-bor fun
tion 
an thus be viewed as a Gaussianmodulated by a 
omplex sinusoid. It is possi-ble to demonstrate that the Fourier Transformof h(x; y) is H(u; v) =exp��12[(�x[u� U ℄0)2 + (�y[v � V ℄0)2℄� ;(3)



Figure 1: Four examples of ROIs 
ontainingmi
ro
al
i�
ations.where(u� U)0 = (u� U) 
os � + (v � V ) sin �;(v � V )0 = �(u� U) sin � + (v � V ) 
os �:This means that the frequen
y response of theGabor Fun
tion has the shape of a Gaussian;its major and minor axis width will be deter-mined by �x and �y, it will be rotated by anangle � with respe
t to the u-axis, and it willbe 
entered about the frequen
y (U; V ). Thus,the Gabor fun
tions 
an be viewed as band-pass �lters. In this paper we will assume that�x = �y = �. This means that the parame-ter � is not needed and the Gabor Fun
tionbe
omes:h(x; y) = 12��2 exp(�(x2 + y2)2�2 ) �exp[2�j(Ux + V y)℄: (4)We 
an de�ne now the Gabor Filter Gh:Gh(I(x; y)) = jI(x; y) � h(x; y)j; (5)where I(x; y) is an image.2.1 Gabor Filters for TextureAnalysisGabor Filters applied to texture analysis mea-sure the similarity between neighbourhoods

Figure 2: GEFs for � = 4, � = 0; �=3; 2�=3in an image and Gabor fun
tions. A fam-ily of Gabor fun
tions 
an be generated forvarying frequen
ies (!) and Gaussian windowstandard deviations (�); remembering that! = pU2 + V 2;� = ar
tan(V=U)and expressing (U; V ) by means of the orien-tation � [15℄, we 
an write the Gabor fun
tionasG(x; yj�; �; �; x0; y0) = exp� [(x�x0)2+(y�y0)2℄2�2 �sin(2�� (x 
os � � y sin �) + �); (6)where (x0; y0) spe
ify the 
enter of the Gaus-sian.For texture analysis purpose, we'll 
omputethe GEF at ea
h pixel for ea
h 
ombination ofwavelength and orientation, where the energyis de�ned as the sum over the phases of thesquared �lter values. That isS2(x0; y0j�; �) ="Xx;y G(x; yj�; �; 0; x0; y0)I(x; y)#2+"Xx;y G(x; y�; �; �=2; x0; y0)I(x; y)#2 : (7)Energy 
al
ulated using eq.(7) for ea
h 
om-bination of � and � may be used as texturalfeatures [16℄.3 Experimental Results3.1 Data Sele
tionWe tested the performan
e of GEFs for mi-
ro
al
i�
ations dete
tion on a database of 81



Figure 3: GFEs for � = 8, � = 0; �=3; 2�=3

Figure 4: GEFs for � = 4, � =0; �=4; �=2; 3�=4

Figure 5: GEFs for � = 8, � =0; �=4; �=2; 3�=4

Layers Number 3Hidden Neurons 10Output Neurons 1Transfer Fun
tion Log-sigmoidLearning Rule ba
kpropagationerror goal 0.1Table 1: Network ar
hite
ture and learningparameters GFE192 GFE256�(pixels) 32, 16, 8, 4 32, 16, 8, 4�(rad) �=3; 2�=3; � �=4; �=2; 3�=4; �x0(pixels) 16, 48, 80, 112 16, 48, 80, 112y0(pixels) 16, 48, 80, 112 16, 48, 80, 112Table 2: Parameters of GEF192 and GEF256images produ
ed by the \Centro per la Cura ela prevenzione dei Tumori" of the Universityof Rome \La Sapienza"; ea
h image was digi-tized from �lm using a CCD 
amera operatingat a spatial resolution of 604� 575 pixels forimage; the pixel rate was of 11; 5MHz, andthe pixel size of 10�m � 15�m. From the 81images, 151 Region of Interest (ROI) were se-le
ted by expert radiologists, ea
h of 128�128pixels. Among the sele
ted 151 ROIs, 75 werepositive and 76 were negative; four di�erentROIs are shown in Figure 1. In a prepro
ess-ing step, ea
h extra
ted ROI was stret
hed tothe normalized gray-level range of 0-255 [5℄.3.2 Feature Extra
tionAs shown in Se
tion 2, a GEF set is spe
i�edby the values of the parameters �; �; x0; y0. Inthis paper we used two �lter sets: 4 frequen-
ies (wavelengths of 32,16, 8 and 4 pixels),16 
enters of the Gaussian (x0 = y0 = 16,48, 80, 112 pixels) and two di�erent possible
hoi
es for �: � = 00; 450; 900; 1350 and � =00; 600; 1200. So, in the �rst 
ase we had 192
oeÆ
ients (we'll 
all this set GEF192), andin the other 
ase 256 
oeÆ
ients (GEF256).These value parameters are summarized inTable 2.



3.3 Classi�erAn arti�
ial neural network is a 
omputerar
hite
ture 
onsisting of a single inter
on-ne
ted pro
essing elements 
alled neurons[13℄, [17℄, [18℄. A weight wij (
ouplingstrength) 
hara
terizes the inter
onne
tionsbetween any two neurons i and j. The in-put to ea
h neuron is a weighted sum of theoutputs in
oming from the 
onne
ted neu-rons. Ea
h neuron operates on the input sig-nal using his a
tivation fun
tion f and pro-du
es the output response. The typi
al a
ti-vation fun
tions are linear, threshold and sig-moid [17℄, [18℄. Normally the neurons are or-ganized in an ar
hite
ture with input nodes,interfa
ing the neural network and the exter-nal world, output nodes, produ
ing the net-work's responses, and hidden nodes, havingthe task of 
orrelating and building up an \in-ternal representation" of the analyzed prob-lem. Network's 
apa
ity and performan
e de-pends on the number of neurons, on the a
ti-vation fun
tions used, and on the neurons' in-ter
onne
tions. Another important attributeof arti�
ial neural networks is that they 
an ef-�
iently learn nonlinear mappings through ex-amples 
ontained in a training set, and use thelearned mapping for 
omplex de
ision making[17℄, [18℄.A three-layer, ba
kpropagation neural net-work was employed as 
lassi�er in this re-sear
h. In Table 1 are summarized the net-work ar
hite
ture and the learning param-eters; the initial weights are randomly se-le
ted from [0:0; 1:0℄. The textural featuresextra
ted by means of GEFs, as des
ribed inse
tion 3.2, are used as the input signals ofthe input layer. There is a single output nodefor 
lassi�
ation into positive or negative ROI.A non-linear sigmoid fun
tion with zero andone saturation values is used as the a
tivationfun
tion for ea
h neuron, and is de�ned as [13℄oj = 11 + ePi wijoi+vj (8)where oj is the output of the j-th neuron andvj is the threshold value of the j-th neuron.The network is trained to provide a 1:0 out-

Figure 6: Two examples of 2D Gabor fun
-tions.put value for a positive ROI and a 0.0 out-put value for a negative ROI. In the trainingpro
ess, the weights between the neurons areadjusted iteratively so that the di�eren
es be-tween the output values and the target val-ues are minimized. In this study, the trainingpro
ess is stopped when the error per training
ase be
omes smaller than 0.1.3.4 Classi�
ation ResultsThe two sets of textural features obtained us-ing the GEFs as des
ribed in se
tion 3.2 wereused as input for the network des
ribed in se
-tion 3.3. We used three di�erent 
ombinationsof training and test sets: 40 training 
ases and111 test 
ases for the set1, 50 training 
asesand 105 test 
ases for the set2, and 60 train-ing 
ases and 95 test 
ases for the set3. For



every set, we randomly 
hose 10 di�erent par-titions of the data; this pro
edure should pre-vent a dependen
y of the results on a parti
u-lar partitioning of the data. The results of thenetwork for all the di�erent partitions wereanalysed by using ROC analysis [5℄. ROCanalysis is based on statisti
al de
ision theoryand has been applied extensively to the eval-uation of 
lini
al diagnosis. The ROC 
urverepresents the relationship between the true-positive fra
tion (TPF) and the false-positivefra
tion (FPF) for variation of the de
isionthreshold. The TPF and the FPF denote thefra
tion of patient a
tually having the diseasein question that are diagnosed as positive andthe fra
tion of patients a
tually without thedisease in question that are diagnosed as pos-itive, respe
tively. The area under the ROC
urve Az is used as a measure of the 
lassi�
a-tion performan
e. A higher Az indi
ates bet-ter 
lassi�
ation performan
e be
ause a largervalue of TPF is a
hieved at ea
h value of FTF.An ideal performan
e produ
es an area of 1:0.ROC analysis was applied on the 
lassi�
a-tion results obtained for set1, set2 and set3,for ea
h of the 10 di�erent partitions of thedata. In this way 10 di�erent values of Az,for ea
h set, were obtained: the average Azobtained for set1 has been of 0.79 for GEF192and of 0.84 for GEF256; the average Az ob-tained for set2 has been of 0.83 for GEF192and of 0.87 for GEF256; the average Az ob-tained for set3 has been of 0.84 for GEF192and of 0.89 for GEF256. These results aresummarized in Table 3.The better performan
e a
hieved by boththe feature sets with set3 indi
ates that thenetwork has generalized better with the big-ger training set; for every data partition, thebest results were obtained with the GEF256representation.4 Con
lusionIn this paper we proposed GFs for dete
tionof mi
ro
al
i�
ations in mammographi
 im-ages. The extra
ted features 
onstituted theinput of a neural network trained to 
las-

GEF192 GEF256Az(set1) 0.79 0.84Az(set2) 0.83 0.87Az(set3) 0.84 0.89Table 3: Classi�
ation results.sify between ROI's 
ontaining mi
ro
al
i�-
ations and ROI's 
ontaining normal tissue.The performan
e of the network was evalu-ated by means of a ROC analysis. The ob-tained results show the e�e
tiveness of this ap-proa
h; future work will 
ompare this methodwith others already used in literature, su
h asWavelet Transform and statisti
al methods.A
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