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Abstract

Mammography associated with clinical breast
examination is the only effective method for
mass breast screening. Microcalcifications are
one of the primary signs for early detection of
breast cancer. Texture-analysis is a very pop-
ular method proposed in literature for detect-
ing clustered microcalcifications in digitized
mammograms. In this paper ! we propose
Gabor Filters for classification of difficult-to-
diagnose regions in mammographic images.
Textural features extracted by this method
are used for the classification of positive Re-
gion of Interest (ROI's) containing clustered
microcalcifications and negative ROI’s con-
taining normal tissue. A three-layer back-
propagation neural network is used as a classi-
fier, and a Receiver Operating-Characteristics
(ROC) analysis is used to evaluate the clas-
sification performance. The obtained results
show that Gabor Filters can be successfully
employed for detection of microcalcifications.
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1 Introduction

Screen-film mammography associated with
clinical breast examination and breast self-
examination is widely recognized as the only
effective imaging modality for early detection
of breast cancer in women [1], [2]. However,
the interpretation of X-ray mammograms is
very difficult because of the small differences
in the image densities of various breast tis-
sues, particularly for dense breast. The in-
terpretation of mammograms by radiologists
is performed by a visual examination of films
for the presence of abnormalities that indi-
cate cancerous changes. Computerized anal-
ysis to help decision making for biopsy rec-
ommendation, and diagnosis of breast can-
cer might be of significant value to improve
the true-positive rate of breast cancer detec-
tion. Among the early indicators of breast
cancer, microcalcifications are one of the pri-
mary signs [2]. They are tiny granule-like
depositum of calcium, and the presence of
clustered microcalcifications in X-ray mam-
mograms is considered a basical marker for
the early detection of breast cancer, espe-
cially for individual microcalcifications with
diameters up to about 0.7mm and with an
average diameter of 0.3mm [2]. Computer-
ized image analysis methods have been used
for the identification of circumscribed masses,
classification of suspicious areas and classi-
fication of microcalcifications using conven-



tional methods [3], [4] and using expert sys-
tems [3]. In the actual interpretation of mam-
mographic microcalcifications, the grey-level
values defining local structures in the micro-
calcification clusters play a significant role [2].
It has been demonstrated in clinical studies
described in [2], that the grouping of microcal-
cification regions, in order to define the shape
of the cluster, is highly dependent on the gray-
level-based structure and texture of the image.
Texture information plays an important role
in image analysis and understanding, with po-
tential applications in remote sensing, quality
control, and medical diagnosis. Texture is one
of the important characteristics used in iden-
tifying an object or a region of interest (ROT)
in an image [5].

In this paper we propose Gabor Energy Fil-
ters (GEFs) for microcalcifications detection;
Gabor functions have been introduced by Ga-
bor in 1946 [6], and have been later extended
to 2D [7]; by applying arguments from quan-
tum mechanics, Gabor demonstrated that this
class of functions is optimal in the sense that
it possesses the smallest product of spatial ex-
tent by effective frequency width. This prop-
erty suggested that these filters are appropri-
ate operators for tasks requiring simultaneous
measurements in these domains, such as tex-
ture discrimination. This technique has been
applied successfully in many texture analysis
and segmentation problems [8], [9], [10], [11].
Textural features extracted with GEFs were
used to classify Region Of Interests (ROI's)
into positive ROI’s containing microcalcifi-
cations and negative ROIs containing nor-
mal tissues. A feedforward, three-layer back-
propagation neural network was employed
as a classifier [12]; a Receiver Operating-
Characteristics (ROC) analysis [13] was used
to evaluate the classification performance of
the GEFs.

The paper is organized as follows: Gabor
Functions and GEFs are described in Section
2. The experimental results are presented
in Section 3; the three-layer backpropagation
neural network used as classifier is also de-
scribed in Section 3. Finally, conclusions are

given in Section 4.

2 Gabor Functions and

Gabor Filters

The Fourier Transform (FT) of a function
f(z) gives a measure of its irregularities (high
frequencies), but this information is not spa-
tially localized. For localizing the informa-
tion obtained by the FT, Gabor [6] defined a
new decomposition using a Gaussian window
in the Fourier integral. These functions have
been later extended to 2-D by Daugman [7],
[14]. A Gabor Function is given by

h(z,y) = g(',y) exp2mj(Uz + Vy)], (1)
with
(2',y") = (zcos + ysinh, —zsin § + y cos ).

They are rotated spatial- domain coordinates;
(u,v) denote frequency-domain coordinates,
and (U,V) represent a particular 2-D fre-
quency [15]. The complex exponential is a
2-D complex sinusoid at frequency

w=VU%2+V?2
and
¢ = arctan(V/U);
it specifies the orientation of the sinusoid. The
function g(z,y) is the 2-D Gaussian
1
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where o, and o, are related with the spatial
extent and bandwidth of the filter. The Ga-
bor function can thus be viewed as a Gaussian
modulated by a complex sinusoid. It is possi-
ble to demonstrate that the Fourier Transform
of h(x,y) is

g9(z,y) =

H(u,v) =

exp {—%[(Um[u U + (o0 — V]’)Q]} ( |
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Figure 1: Four examples of ROIs containing
microcalcifications.

where
(u—U) = (u—U)cosf+ (v—V)sinb,
(v—V) =—=(u—U)sinf + (v—V)cosd.

This means that the frequency response of the
Gabor Function has the shape of a Gaussian;
its major and minor axis width will be deter-
mined by o, and oy, it will be rotated by an
angle f with respect to the u-axis, and it will
be centered about the frequency (U, V). Thus,
the Gabor functions can be viewed as band-
pass filters. In this paper we will assume that
0, = 0y = 0. This means that the parame-
ter # is not needed and the Gabor Function

becomes:
1 (2 + y?)
h = — 7 3.

exp[2mj(Ux + Vy)]. (4)
We can define now the Gabor Filter Gj,:

where I(z,y) is an image.

2.1 Gabor Filters for Texture
Analysis

Gabor Filters applied to texture analysis mea-
sure the similarity between neighbourhoods

Figure 2: GEFs for A\ =4, 60 =0,7/3,271/3

in an image and Gabor functions. A fam-
ily of Gabor functions can be generated for
varying frequencies (w) and Gaussian window
standard deviations (¢); remembering that

w=VvU2+V2,
® = arctan(V/U)

and expressing (U, V) by means of the orien-
tation 6 [15], we can write the Gabor function
as

 [z=z0)%+(y—yn)?

G(2,y|A, 0, ¢, 70, y0) = exp 202

sin(QTﬂ(x cosf — ysinf) + @), (6)
where (zo, o) specify the center of the Gaus-
sian.

For texture analysis purpose, we’ll compute
the GEF at each pixel for each combination of
wavelength and orientation, where the energy
is defined as the sum over the phases of the
squared filter values. That is

52($0ay0|)\a9) =

2
[ZG(%y|A,9,0,xo,y0)1(ﬂf,y)1 +

x!y

[ZG(:E,yA,9,7r/2,x0,y0)](x,y)r. (7)

.Y

Energy calculated using eq.(7) for each com-
bination of A and # may be used as textural
features [16].

3 Experimental Results

3.1 Data Selection

We tested the performance of GEFs for mi-
crocalcifications detection on a database of 81



Layers Number 3
Hidden Neurons 10
Output Neurons 1
Transfer Function Log-sigmoid
Learning Rule backpropagation
error goal 0.1

Figure 3: GFEs for A =8, 0 =0,7/3,27/3
Table 1: Network architecture and learning
parameters

| | GFE192 |  GFE256

A(pixels) || 32, 16, 8, 4 32, 16, 8, 4

f(rad) n/3,2r /3,7 | w/4,7/2,3w /4,

zo(pixels) || 16, 48, 80, 112 | 16, 48, 80, 112

yo(pixels) || 16, 48, 80, 112 | 16, 48, 80, 112

Table 2: Parameters of GEF192 and GEF256

images produced by the “Centro per la Cura e
la prevenzione dei Tumori” of the University
of Rome “La Sapienza”; each image was digi-
tized from film using a CCD camera operating
at a spatial resolution of 604 x 575 pixels for
image; the pixel rate was of 11,5M Hz, and
Figure 4: GEFs for A = 4, # = the pixel size of 10um x 15pum. From the 81
0,m/4,m/2,3m/4 images, 151 Region of Interest (ROI) were se-
lected by expert radiologists, each of 128 x 128
pixels. Among the selected 151 ROlIs, 75 were
positive and 76 were negative; four different
ROIs are shown in Figure 1. In a preprocess-
ing step, each extracted ROI was stretched to
the normalized gray-level range of 0-255 [5].

3.2 Feature Extraction

As shown in Section 2, a GEF set is specified
by the values of the parameters A, 6, zg, yo. In
this paper we used two filter sets: 4 frequen-
cies (wavelengths of 32,16, 8 and 4 pixels),
16 centers of the Gaussian (g = yo = 16,
48, 80, 112 pixels) and two different possible
choices for #: 0 = 0°,45°,90°,135° and 0 =
0%,60°,120°. So, in the first case we had 192
coefficients (we’ll call this set GEF192), and
Figure 5: GEFs for A = 8, f# = in the other case 256 coefficients (GEF256).
0,m/4,m/2,3m/4 These value parameters are summarized in
Table 2.




3.3 Classifier

An artificial neural network is a computer
architecture consisting of a single intercon-
nected processing elements called neurons
[13], [17], [18]. A weight w;; (coupling
strength) characterizes the interconnections
between any two neurons ¢ and j. The in-
put to each neuron is a weighted sum of the
outputs incoming from the connected neu-
rons. Each neuron operates on the input sig-
nal using his activation function f and pro-
duces the output response. The typical acti-
vation functions are linear, threshold and sig-
moid [17], [18]. Normally the neurons are or-
ganized in an architecture with input nodes,
interfacing the neural network and the exter-
nal world, output nodes, producing the net-
work’s responses, and hidden nodes, having
the task of correlating and building up an “in-
ternal representation” of the analyzed prob-
lem. Network’s capacity and performance de-
pends on the number of neurons, on the acti-
vation functions used, and on the neurons’ in-
terconnections. Another important attribute
of artificial neural networks is that they can ef-
ficiently learn nonlinear mappings through ex-
amples contained in a training set, and use the
learned mapping for complex decision making
[17], [18].

A three-layer, backpropagation neural net-
work was employed as classifier in this re-
search. In Table 1 are summarized the net-
work architecture and the learning param-
eters; the initial weights are randomly se-
lected from [0.0,1.0]. The textural features
extracted by means of GEFs, as described in
section 3.2, are used as the input signals of
the input layer. There is a single output node
for classification into positive or negative ROI.
A non-linear sigmoid function with zero and
one saturation values is used as the activation
function for each neuron, and is defined as [13]

T s ®

0j

where o; is the output of the j-th neuron and
v; is the threshold value of the j-th neuron.
The network is trained to provide a 1.0 out-

Figure 6: Two examples of 2D Gabor func-
tions.

put value for a positive ROI and a 0.0 out-
put value for a negative ROI. In the training
process, the weights between the neurons are
adjusted iteratively so that the differences be-
tween the output values and the target val-
ues are minimized. In this study, the training
process is stopped when the error per training
case becomes smaller than 0.1.

3.4 Classification Results

The two sets of textural features obtained us-
ing the GEF's as described in section 3.2 were
used as input for the network described in sec-
tion 3.3. We used three different combinations
of training and test sets: 40 training cases and
111 test cases for the setl, 50 training cases
and 105 test cases for the set2, and 60 train-
ing cases and 95 test cases for the set3. For



every set, we randomly chose 10 different par-
titions of the data; this procedure should pre-
vent a dependency of the results on a particu-
lar partitioning of the data. The results of the
network for all the different partitions were
analysed by using ROC analysis [5]. ROC
analysis is based on statistical decision theory
and has been applied extensively to the eval-
uation of clinical diagnosis. The ROC curve
represents the relationship between the true-
positive fraction (TPF) and the false-positive
fraction (FPF) for variation of the decision
threshold. The TPF and the FPF denote the
fraction of patient actually having the disease
in question that are diagnosed as positive and
the fraction of patients actually without the
disease in question that are diagnosed as pos-
itive, respectively. The area under the ROC
curve A, is used as a measure of the classifica-
tion performance. A higher A, indicates bet-
ter classification performance because a larger
value of TPF is achieved at each value of FTF.
An ideal performance produces an area of 1.0.

ROC analysis was applied on the classifica-
tion results obtained for setl, set2 and set3,
for each of the 10 different partitions of the
data. In this way 10 different values of A,,
for each set, were obtained: the average A,
obtained for setl has been of 0.79 for GEF192
and of 0.84 for GEF256; the average A, ob-
tained for set2 has been of 0.83 for GEF192
and of 0.87 for GEF256; the average A, ob-
tained for set3 has been of 0.84 for GEF192
and of 0.89 for GEF256. These results are
summarized in Table 3.

The better performance achieved by both
the feature sets with set3 indicates that the
network has generalized better with the big-
ger training set; for every data partition, the
best results were obtained with the GEF256
representation.

4 Conclusion

In this paper we proposed GFs for detection
of microcalcifications in mammographic im-
ages. The extracted features constituted the
input of a neural network trained to clas-

| | GEF192 | GEF256 |

A (setl) | 0.79 0.84
A (set2) | 0.83 0.87
A, (set3) | 0.84 0.89

Table 3: Classification results.

sify between ROI’s containing microcalcifi-
cations and ROI’s containing normal tissue.
The performance of the network was evalu-
ated by means of a ROC analysis. The ob-
tained results show the effectiveness of this ap-
proach; future work will compare this method
with others already used in literature, such as
Wavelet Transform and statistical methods.
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