Digital Mammography: Gabor Filters for Detection of Microcalcifications

Barbara Caputo¹, and Giovanni E. Gigante²

¹University of Erlangen, Chair for Pattern Recognition,
Martensstrasse 3, D-91058, Erlangen, Germany
e-mail: caputo@informatik.uni-erlangen.de
²University of Rome “La Sapienza”, Physics Department - CISB,
Piazza A. Moro 3, 00161 Rome, Italy
e-mail: gigante@caspur.it

To appear in Proceeding of Vision, Modeling and Visualization 2000, Germany

1 Introduction

Screen-film mammography associated with clinical breast examination and breast self-examination is widely recognized as the only effective imaging modality for early detection of breast cancer in women [1], [2]. However, the interpretation of X-ray mammograms is very difficult because of the small differences in the image densities of various breast tissues, particularly for dense breast. The interpretation of mammograms by radiologists is performed by a visual examination of films for the presence of abnormalities that indicate cancerous changes. Computerized analysis to help decision making for biopsy recommendation, and diagnosis of breast cancer might be of significant value to improve the true-positive rate of breast cancer detection. Among the early indicators of breast cancer, microcalcifications are one of the primary signs [2]. They are tiny granule-like depositum of calcium, and the presence of clustered microcalcifications in X-ray mammograms is considered a basic marker for the early detection of breast cancer, especially for individual microcalcifications with diameters up to about 0.7mm and with an average diameter of 0.3mm [2]. Computerized image analysis methods have been used for the identification of circumscribed masses, classification of suspicious areas and classification of microcalcifications using conven-

¹This research work was developed while B. Caputo was at the University of Rome “La Sapienza”, as partial fulfilment of her laurea degree; the * indicates the corresponding author.
tional methods [3], [4] and using expert systems [3]. In the actual interpretation of mamo-
graphic microcalcifications, the grey-level values defining local structures in the micro-
calcification clusters play a significant role [2]. It has been demonstrated in clinical studies
described in [2], that the grouping of microcalcification regions, in order to define the shape
of the cluster, is highly dependent on the gray-
level-based structure and texture of the image.

Texture information plays an important role
in image analysis and understanding, with poten-
tial applications in remote sensing, quality control, and medical diagnosis. Texture is one
of the important characteristics used in iden-
tifying an object or a region of interest (ROI)
in an image [5].

In this paper we propose Gabor Energy Filters (GEFs) for microcalcifications detection;
Gabor functions have been introduced by Ga-
bor in 1946 [6], and have been later extended
to 2D [7]; by applying arguments from quan-
tum mechanics, Gabor demonstrated that this
class of functions is optimal in the sense that
it possesses the smallest product of spatial ex-
tent by effective frequency width. This prop-
erty suggested that these filters are appro-
appropriate operators for tasks requiring simultaneous
measurements in these domains, such as tex-
ture discrimination. This technique has been
applied successfully in many texture analysis
and segmentation problems [8], [9], [10], [11].

Textural features extracted with GEFs were used to classify Region Of Interests (ROI’s)
into positive ROI’s containing microcalcifi-
cations and negative ROI’s containing nor-
mal tissues. A feedforward, three-layer back-
propagation neural network was employed as a classifier [12]; a Receiver Operating
Characteristics (ROC) analysis [13] was used to evaluate the classification performance of
the GEFs.

The paper is organized as follows: Gabor Functions and GEFs are described in Section
2. The experimental results are presented
in Section 3; the three-layer backpropagation
neural network used as classifier is also de-
scribed in Section 3. Finally, conclusions are
given in Section 4.

2 Gabor Functions and
Gabor Filters

The Fourier Transform (FT) of a function
\(f(x) \) gives a measure of its irregularities (high
frequencies), but this information is not spa-
tially localized. For localizing the informa-
tion obtained by the FT, Gabor [6] defined a
new decomposition using a Gaussian window
in the Fourier integral. These functions have
been later extended to 2-D by Daugman [7],
[14]. A Gabor Function is given by

\[
h(x, y) = g(x', y') \exp[2\pi j(Ux + Vy)], \tag{1}
\]

with

\[
(x', y') = (x \cos \theta + y \sin \theta, -x \sin \theta + y \cos \theta).
\]

They are rotated spatial-domain coordinates;
\((u, v)\) denote frequency-domain coordinates,
and \((U, V)\) represent a particular 2-D fre-
quency [15]. The complex exponential is a
2-D complex sinusoid at frequency

\[
\omega = \sqrt{U^2 + V^2}
\]

and

\[
\Phi = \arctan(V/U);
\]

it specifies the orientation of the sinusoid. The
function \(g(x, y) \) is the 2-D Gaussian

\[
g(x, y) = \frac{1}{2\pi \sigma_x \sigma_y} \exp \left\{ -\frac{1}{2} \left[\frac{x}{\sigma_x} \right]^2 + \frac{y}{\sigma_y} \right\}, \tag{2}
\]

where \(\sigma_x \) and \(\sigma_y \) are related with the spatial
extent and bandwidth of the filter. The Ga-
bor function can thus be viewed as a Gaussian
modulated by a complex sinusoid. It is possi-
bile to demonstrate that the Fourier Transform
of \(h(x, y) \) is

\[
H(u, v) = \exp \left\{ -\frac{1}{2} \left[\sigma_x |u - U| \right]^2 + (\sigma_y |v - V|)^2 \right\}, \tag{3}
\]
\[(u - U)' = (u - U) \cos \theta + (v - V) \sin \theta, \]
\[(v - V)' = -(u - U) \sin \theta + (v - V) \cos \theta. \]

This means that the frequency response of the Gabor Function has the shape of a Gaussian; its major and minor axis width will be determined by \(\sigma_x \) and \(\sigma_y \), it will be rotated by an angle \(\theta \) with respect to the \(u \)-axis, and it will be centered about the frequency \((U, V) \). Thus, the Gabor functions can be viewed as band-pass filters. In this paper we will assume that \(\sigma_x = \sigma_y = \sigma \). This means that the parameter \(\theta \) is not needed and the Gabor Function becomes:

\[h(x, y) = \frac{1}{2\pi\sigma^2} \exp \left\{ \frac{-x^2 + y^2}{2\sigma^2} \right\} \cdot \exp[2\pi j(Ux + Vy)]. \tag{4} \]

We can define now the Gabor Filter \(G_h \):

\[G_h(I(x, y)) = [I(x, y) * h(x, y)], \tag{5} \]

where \(I(x, y) \) is an image.

2.1 Gabor Filters for Texture Analysis

Gabor Filters applied to texture analysis measure the similarity between neighbourhoods in an image and Gabor functions. A family of Gabor functions can be generated for varying frequencies (\(\omega \)) and Gaussian window standard deviations (\(\sigma \)); remembering that

\[\omega = \sqrt{U^2 + V^2}, \]
\[\Phi = \arctan(V/U) \]

and expressing \((U, V) \) by means of the orientation \(\theta \) [15], we can write the Gabor function as

\[G(x, y|\lambda, \theta, \phi, x_0, y_0) = \exp^{-\frac{(x-x_0)^2 + (y-y_0)^2}{2\sigma^2}} \cdot \sin(\frac{2\pi}{\lambda}(x \cos \theta - y \sin \theta + \phi)), \tag{6} \]

where \((x_0, y_0)\) specify the center of the Gaussian.

For texture analysis purpose, we’ll compute the GEF at each pixel for each combination of wavelength and orientation, where the energy is defined as the sum over the phases of the squared filter values. That is

\[S^2(x_0, y_0 \lambda, \theta) = \left[\sum_{x,y} G(x, y|\lambda, \theta, 0, x_0, y_0)I(x, y) \right]^2 + \left[\sum_{x,y} G(x, y|\lambda, \theta, \pi/2, x_0, y_0)I(x, y) \right]^2. \tag{7} \]

Energy calculated using eq.\,(7) for each combination of \(\lambda \) and \(\theta \) may be used as textural features [16].

3 Experimental Results

3.1 Data Selection

We tested the performance of GEFs for microcalcifications detection on a database of 81
images produced by the "Centro per la Cura e la prevenzione dei Tumori" of the University of Rome "La Sapienza"; each image was digitized from film using a CCD camera operating at a spatial resolution of 604 × 575 pixels for image; the pixel rate was of 11,5 MHzz, and the pixel size of 10μm × 13μm. From the 81 images, 151 Region of Interest (ROI) were selected by expert radiologists, each of 128 × 128 pixels. Among the selected 151 ROIs, 75 were positive and 76 were negative; four different ROIs are shown in Figure 1. In a preprocessing step, each extracted ROI was stretched to the normalized gray-level range of 0-255 [5].

3.2 Feature Extraction

As shown in Section 2, a GEF set is specified by the values of the parameters λ, θ, x₀, y₀. In this paper we used two filter sets: 4 frequencies (wavelengths of 32, 16, 8 and 4 pixels), 16 centers of the Gaussian (x₀ = y₀ = 16, 48, 80, 112 pixels) and two different possible choices for θ: θ = 0⁰, 45⁰, 90⁰, 135⁰ and θ = 0⁰, 60⁰, 120⁰. So, in the first case we had 192 coefficients (we'll call this set GEF192), and in the other case 256 coefficients (GEF256).

These value parameters are summarized in Table 2.
3.3 Classifier

An artificial neural network is a computer architecture consisting of a single interconnected processing elements called neurons [13], [17], [18]. A weight \(w_{ij} \) (coupling strength) characterizes the interconnections between any two neurons \(i \) and \(j \). The input to each neuron is a weighted sum of the outputs incoming from the connected neurons. Each neuron operates on the input signal using its activation function \(f \) and produces the output response. The typical activation functions are linear, threshold and sigmoid [17], [18]. Normally the neurons are organized in an architecture with input nodes, interfacing the neural network and the external world, output nodes, producing the network’s responses, and hidden nodes, having the task of correlating and building up an “internal representation” of the analyzed problem. Network’s capacity and performance depends on the number of neurons, on the activation functions used, and on the neurons’ interconnections. Another important attribute of artificial neural networks is that they can efficiently learn nonlinear mappings through examples contained in a training set, and use the learned mapping for complex decision making [17], [18].

A three-layer, backpropagation neural network was employed as classifier in this research. In Table 1 are summarized the network architecture and the learning parameters; the initial weights are randomly selected from \([0.0,1.0] \). The textural features extracted by means of GEFs, as described in section 3.2, are used as the input signals of the input layer. There is a single output node for classification into positive or negative ROI. A non-linear sigmoid function with zero and one saturation values is used as the activation function for each neuron, and is defined as [13]

\[
o_j = \frac{1}{1 + e^{\sum_i w_{ij} o_i + v_j}}
\]

where \(o_j \) is the output of the \(j \)-th neuron and \(v_j \) is the threshold value of the \(j \)-th neuron. The network is trained to provide a 1.0 output value for a positive ROI and a 0.0 output value for a negative ROI. In the training process, the weights between the neurons are adjusted iteratively so that the differences between the output values and the target values are minimized. In this study, the training process is stopped when the error per training case becomes smaller than 0.1.

3.4 Classification Results

The two sets of textural features obtained using the GEFs as described in section 3.2 were used as input for the network described in section 3.3. We used three different combinations of training and test sets: 40 training cases and 111 test cases for the set1, 50 training cases and 105 test cases for the set2, and 60 training cases and 95 test cases for the set3. For
every set, we randomly chose 10 different partitions of the data; this procedure should prevent a dependency of the results on a particular partitioning of the data. The results of the network for all the different partitions were analysed by using ROC analysis [5]. ROC analysis is based on statistical decision theory and has been applied extensively to the evaluation of clinical diagnosis. The ROC curve represents the relationship between the true-positive fraction (TPF) and the false-positive fraction (FPF) for variation of the decision threshold. The TPF and the FPF denote the fraction of patient actually having the disease in question that are diagnosed as positive and the fraction of patients actually without the disease in question that are diagnosed as positive, respectively. The area under the ROC curve \(A_z \) is used as a measure of the classification performance. A higher \(A_z \) indicates better classification performance because a larger value of TPF is achieved at each value of FFP. An ideal performance produces an area of 1.0.

ROC analysis was applied on the classification results obtained for set1, set2 and set3, for each of the 10 different partitions of the data. In this way 10 different values of \(A_z \), for each set, were obtained: the average \(A_z \) obtained for set1 has been of 0.79 for GEF192 and of 0.84 for GEF256; the average \(A_z \) obtained for set2 has been of 0.83 for GEF192 and of 0.87 for GEF256; the average \(A_z \) obtained for set3 has been of 0.84 for GEF192 and of 0.89 for GEF256. These results are summarized in Table 3.

<table>
<thead>
<tr>
<th></th>
<th>GEF192</th>
<th>GEF256</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_z (set1))</td>
<td>0.79</td>
<td>0.84</td>
</tr>
<tr>
<td>(A_z (set2))</td>
<td>0.83</td>
<td>0.87</td>
</tr>
<tr>
<td>(A_z (set3))</td>
<td>0.84</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Table 3: Classification results.

The better performance achieved by both the feature sets with set3 indicates that the network has generalized better with the bigger training set; for every data partition, the best results were obtained with the GEF256 representation.

4 Conclusion

In this paper we proposed GFs for detection of microcalcifications in mammographic images. The extracted features constituted the input of a neural network trained to classify between ROI's containing microcalcifications and ROI's containing normal tissue. The performance of the network was evaluated by means of a ROC analysis. The obtained results show the effectiveness of this approach; future work will compare this method with others already used in literature, such as Wavelet Transform and statistical methods.

Acknowledgments

We would like to thank Prof. V.Virno and the staff of the Radiology Department of the “Centro per la Cura e la Prevenzione dei Tumori” of the University of Rome “La Sapienza” for their cooperation.

References