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Abstract 3-D object recognition has been tackled by passive appesaichthe
past. This means that based on one image a decision for incelgas and pose
must be made or the image must be rejected. This neglectadhtnbt some other
views might exist, which allow for a more reliable classifica. This situation
especially arises if certain views of or between objectsaarbiguous.

In this paper we present a classifier independent approagbivte the problem of
choosing optimals views (viewpoint selection) for 3—D albjeecognition. We for-
mally define the selection of additional views as an optitdraproblem and we
show how to use reinforcement learning for continuous vignptraining and se-
lection without user interaction. The main focus lies onabtomatic configuration
of the system, the classifier independent approach and titengous representa-
tion of the 3-D space.

The experimental results show that this approach is weiédub distinguish and
recognize similar looking objects in 3-D by taking a minimamount of views.

1 Motivation

The results of 3—D Object classification and localizatiopadel — as matter of course —
strongly on the images which have been taken of the objeste@®an ambiguities be-
tween objects in the data set some views might result in betieme other in worse
results. For difficult data sets usually more than one viemeisessary to decide reliably
for a certain object class. Problems with ambiguous viewmsespecially be observed for
objects in real world applications.

Viewpoint selection tackles exactly the problem of findingeqjuence of optimal
views to increase classification and localization reswtawoiding ambiguous views
or sequentially ruling out possible object hypotheses. gftenality is not only defined
with respect to the recognition rate but also with respettiéomumber of views necessary
to get reliable results. The number of views should be aslsmsgbossible to delimit
viewpoint selection from randomly taking a large numbenoéges.

In this paper a novel approach for viewpoint selection bageckinforcement learn-
ing is presented. The approach shows the following progeertirst, the sequence of best
views is learned automatically in a training step, where g@r interaction is necessary.
Second, the approach is classifier independent, so thab#draay classifier can be used.
This makes it applicable for a very wide range of applicatidrhird, the possible view-
points are continuous in 3-D, so that a discretization ofvibe/point space is avoided,
like it has been done before, for example in the work of [2]tuadly, our approach not
only allows to avoid ambiguous views. Such ambiguous viewgeesented in Figure 1.
Since itis classifier independent, views which are diffiéoita certain classifier can also
be detected.

* This work was partially funded by the German Science FouodgDFG) under grant SFB
603/TP B2. Only the authors are responsible for the content.



Object 0l: band Object 02: quiver Object 03: lamp  Object adt gObject 05: trumpet
Figure 1. Examples for ambiguities between objects.

Viewpoint selection has been investigated in the past irrsdapplications. Exam-
ples are 3—-D reconstruction [8] or optimal segmentationnzdige data [6]. In object
recognition also some active approaches have already beemsded. In [2] different
frameworks for handling uncertainty and decision makinglgabilistic, possibilistic
and Dempster—Shafer theory) have been compared with rtespeiewpoint selection.
But this approach can only handle discrete positions angpamts. The work of [11]
presents an active recognition approach for which a camest be moved around the
object. But this approach is not really a viewpoint selettibhe active part is the selec-
tion of a certain area of the image for feature selection. ¢lected part is also called
receptive field [11]. Compared to our approach, no cameraemewt is performed nei-
ther during training nor during testing. Thus, the modelifigiewpoints in continuous
3-D space is also avoided. The work of [5, 4] tackles the v@nipselection problem
from a knowledge based point of view. They use Bayesian mésvm decide for the
next view to be taken. Therefore, the approach is dedicatsgécial recognition algo-
rithms and to certain types of objects, for which the Bayesigwork has been manually
constructed. In other words, the approach is not classifagpendent and cannot be ap-
plied without user interaction. Finally, an approach fob2#ewpoint selection has been
presented in [3]. In contrast to the paper presented hezajefree of freedom for the
viewpoint selection is one, since the viewpoints were chdiserotating a turntable. Also,
only synthetic images have been used.

In the following we will present a formal statement of the lgeon and the goals of
viewpoint selection in Section 2. In Section 3 we show howfi@icement learning can
be used to solve the problem stated in Section 2. Also an sixteof the normal dis-
crete reinforcement learning is presented which makessgipte to model a continuous
viewpoint space. Thus viewpoint selection can be definedamtnuous optimization
problem. The experimental environment and results areepted and discussed in Sec-
tion 4. The paper concludes with a summary and an outlookttmdwvork in Section 5.

2 Viewpoint Selection in 3—D Object Recognition

The goal of this work is to provide a solution to the problenopfimal viewpoint selec-
tion for 3—D object recognition without making a priori asgptions about the objects
and the classifier. The problem is to determine the next vieanabject given a certain
decision about the class and the estimated pose of thattobjex problem can also be
seen as the determination of a function, which maps a clasgase decision to a new
viewpoint. Of course, this function should be estimatedmatically during a training
step. The estimation must be done by defining a criterionclvimeasures how useful
it is to choose a certain view given a classification and iaa#ibn result. Additionally,
the function should take uncertainty into account in thegsition process as well as in
the viewpoint selection. The latter one is important, simee views are usually taken by
moving a robot arm and the final position of the robot arm willays be error—prone.
Last not least, the function should be classifier indeperatiehshould handle continuous
viewpoint and object pose spaces as well.



A straight forward way to formalizing the problem is givenlbgking at Figure 2. A
closed loop between sensisgand actingz; can be seen. The choseationa; € IR?
corresponds to the executed camera movement, the setases; € {1,2,...,k} x R?
is class number and pose, returned by the classifier. Theipasedeled in our work as
the viewing positiona )7 on a sphere. Additionally, the classifier returns a so called
rewardr;, which measures the quality of the chosen viewpoint. Foeapbint, where
a correct decision for exactly one object class and posessilple, the reward should
have a large value. A small value will indicate that the viswinbiguous and no reliable
classification and pose estimation is possible. It is worting that the reward might
also include costs for the camera movement, so that largements of the camera are
punished. In our paper we neglect costs for camera moveroetitd time being.

Environment 1o At time ¢ during the decision process, i.e. the selec-
tion of a sequence of viewpoints, the goal will be to maxi-
mize the accumulated and weighted future reward, called
Figure 2. Principles of rein-

thereturn R;
forcement learning.

states;

actiona,
rewardr, |

Ry = Z Y 7e4ns1 With weighty € [0;1] (1)

n=0

The weighty defines, how much influence a future re-

ward at timet + n + 1 will have on the overall return
R;:. Of course, the future rewards cannot be observed at time stéus, the following
function, called theaction—value functioi)(s, a)

Q(s,a) = E{R:|s;t = s,ar = a} (2)

is defined, which describes the expected return, when rsgaati time steg in states

with actiona. In other words, the functiof)(s, a) models the expected quality of the
chosen camera movemedtfor the future, if the classifier has returned class and pose
s before. This functiorQ(s, a) is one of the key points in reinforcement learning and
will be described in the next section. Viewpoint selectiam eiow be defined as a two
step approach: First, estimate the functi@gs, a) during training. Second, if at any
time the classifier returnsas classification result, select that camera movemaevitich
maximizesQ(s, a), i.e. the expected accumulated and weighted rewards. Tdonde
step is treated by defining a so callgalicy =

7(s) = argmax Q(s, a) (3)

which returns the best action(s) to be performed while being in a stase During
training, this deterministic policy is often changed to ademized one, to make sure
that all state/action pairs are evaluated [12].

It is worth noting that this approach defines a classifierraelent way of viewpoint
selection, since the only classifier dependent comporettigireward;. The two step
approach described above makes no assumptions about thenctlassifier, unless the
classifier must return in some way an estimate of the reltgloi its result. For statistical
classifier a straight forward way exists to define such a gtyailb give one example,
assume the difference between the maximum a posterioriapiity and the second
maximum. In the case of an Eigenspace approach [7] for fieetsdn, also a natural
way for defining the reward is possible. A definition can benfdin Section 4.

For the estimation and learning of the functi@ts, a) reinforcement learning pro-
vides a bunch of algorithms and theoretical results on agevee. We will present one
algorithm, Monte Carlo learning, in the following section.



3 Reinforcement Learning Applied to Viewpoint Selection

3.1 General Approach

In the previous section viewpoint selection has been defiseah optimization problem.
The key issue of course is the estimation of the functigs, a) which is the basis for
the decision process in equation (3). One of the demandsedefinSection 1 is that
the selection of the most promising view should be learngdawit any user interaction.
Reinforcement learning provides many different algorishim estimate the action value
function based on a trial and error method [12]. Trial andremeans that the system
itself is responsible for trying certain actions in a certstiate. The result of such a trial,
i.e. the returnRy, is then used to update the functi@nand to improve its policyr (see
equation (3)).

In reinforcement learning a seriesefisodesre performed; each episodle€onsists
of a sequence of state/action pafes, a:),t € {0,1,...,T}, where the actiom; =
7 (s¢) in states; results in a new state;;,. A final statesy is called the terminal
state, where a predefined goal is reached and the episoddmriods case, the terminal
state is that state, where classification and localizasgossible with high confidence.
The definition of high confidence is application dependeot.dach episodk the policy
7 (8), which has been estimated up to episédis fixed. During the episode new returns

Rik) are collected for these state/action p&is, a¥), which have been visited at tinte
during the episodé. After the end of the episode the action—value function dated.
In our case the so called Monte Carlo learning is appliedth& action—value function

is updated by Zk D ()
; — i i R
V(s,a): Q™ (s,a)=FE.{Ri|s;=s,a;=a}~ ;;1 {t\.stfs,atfa} t
2i1 {tlsi = s,a; = a}|

In other words, the functiof) is estimated by the mean of all collected retuﬂﬂé) for
the state/action pais, a) for all episodes — which is the fraction on the right hand side
of (equation 4).

As aresult for the next episode one gets a new decisionrule, which is now com-
puted by maximizing the updated action value function. Finecedure is repeated until
the action—value function converges@ and as a consequence the final and optimal
decision ruler* it returned.

The reader is referred to a detailed introduction to recdarent learning [12] for a
description of other ways for estimating the functi@nConvergence proofs for several
algorithms can be found in [1].

(4)

3.2 Function Approximation for Continuous Reinforcement Learning

Most of the algorithms in reinforcement learning treat ttetess and actions as discrete
variables. Of course, in viewpoint selection parts of tla¢esspace (the pose of the object)
and the action space (the viewpoints of the object) is cantis. The idea of continuous
reinforcement learning can be summarized as follows:

1. collect returns for a finite set of state/action pdisa) € Q and use them to com-
puteQ(s, a) for these state/action pairs by methods of discrete reiefoent learn-
ing. Q(s) denotes the set of all state/action pdis§ a’) € Q whose stata’ has the
same estimated class #is

2. approximate)(s, a), which is continuous in its parameters by a function

>, d(s.a, s a’)-Q(s',a’)
e oy (8.a)EQ()

Q(s,a)

; (5)

d(s,a,s',a’)
(s',a")€Q(s)



which is the weighted average of the valuegXxi’, a’) of all (s’,a’) € Q(s).

This two step approach is called function approximation] [A2d has been pro-
posed in [10]. The weight functiod(s, a, s’, a’), which measures some kind of dis-
tance, defines how much influence the observed retysiat’) € Q has on an arbitrary

state/action paits, a). Obviously, the functiorQ(s, a) is continuous ins anda. The
key point for viewpoint selection is the choice of the wegft, -, -, -). We have chosen
the product form

d(s,a,s',a’) = K(¢(5,8)) - Ku(u(s, s)) (6)

for the weight function, wheré&, and K, are two kernel functions, for example Gaus-
sian kernels. The following two functions-, -) andu(-, -) are defined:

— The functiony(-,-) measures the distance between the expected destination
states(s, §') of two state-action pairés, a) and(s’, a’). Assuming that the actions

a anda’ lead to two new destination stat@ands’: s — 5, s’ a5
The closer the two destination states are to each other,dheadaptable iQ(s’, a’)

for the estimation of) (s, a). For calculating the expected destination states we are
currently assuming that the pose estimation of statecorrect and that actiom is
affecting the environmentin an ideal way. For example efélstimated position of
is 200° and an actiom moves the camere)0° the pose of the expected destination
states will be 300°.

— The functionpu(-, -) measures the distance between the $eorce states ands’.
The fundamental idea for this distance is that close sotiatesare suitable for using

Q(s', a’) for the estimation of)(s, a) because close source states imply less exter-
nal influences as e.g. precision of camera positioningsifleation and localization
results.

As pose estimation is not done with absolute coordi-
90° nates in space, but with angles on the sphere, calculating
distances between states can be done by measuring the
angle between the vectors on the sphere given by the
states (see figure 3):

¢(5,8) = arccos (ﬂ) -

18] - 1]
Figure 3. Source states s( " (s,8)
s'), executed actionsa( a’), ls, ') = arccos <|s|| T (8)

resulting expected destination
states gg §’)PAIso shown are Substituting equations (7), (8) and (6) in equation (5)

the distances and . leads to the approximation of any action-value
Yd(s.a,8',a)Q(s'a)) YK, (p(5,8))Ku(u(s, s)Q(s . a)
Q(S (],) :(s’,a’)GQ(s) :(s’,a’)EQ(s) {9)
’ Z d(35a73/aa,) Z KSD( (‘§5 gl))Kﬂ(M(sasl)) :
(s',a')€Q(s) (s',a")€Q(s)

with the two kernel functiond(,,(z) = exp (—z?/D2) andK,,(z) = exp (—2?/D?).
The parameterd, andD,, descnbe how local (for smaﬂ)) or global (for largeD) the
approximation is Work|ng “Local” means that faraway ssdtave only a slight influence
on the approximated action-value resulting in a very detkéipproximation. This is very
useful if there are a lot of state-action pairs. On the contia “global” approximation
includes data over a wide area of distances and is suitabl@yfa very limited set of
collected action-values are available.



[object  rec.ratg] o1] 02] o3 o4] o5  [object  |rec.ratgol[o2/o3[04]05]

ol:band [68.0%][100] 40] 7[ O] O ol:band | 92.0%[[46] 2] 2] O] O
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o3: quiver | 94.7%|| 8] 0]143 O O 03: quiver | 98.0%(| O 1|49 O O
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Table 1. Classification results (in percent) and confusion matrigs¢dute numbers) for the
Eigenspace approach: Left, without viewpoint selectiandiomly chosen views). Right, with
viewpoint selection

3.3 Viewpoint Selection by Function Optimization

Viewpoint selection, i.e. the computation of the poliey(see equation (3)), is now an
optimization problem R
7m(s) = argmax (s, a) = argmax Q(s, a). (20)

Up to now, we have not looked for a closed form solution of thexiimum of this or
any other kind of parameterized function. Instead, we appliumerical optimization
algorithms to the optimization problem in equation (1®Relthe adaptive random search
algorithm, followed by a simplex step (cf. [13]).

4 Experimental Evaluation

For the experiments presented in this section we have dibéidean appearance based
classifier using the Eigenspace approach [7]. As alreadyiored, the proposed view-
point selection is independent of the used classifier. Theaassifier dependent part is
the reward function as used in (1). We use the following fiomct

ri= min ((mind(01|B,)) ~ d(01]B,)) (11)
with d(O;|B,) being the distance of the pictué2 to the object clas®, measured in
the Eigenspace (for an explanation of the Eigenspace agpeoad how classification is
usually done see for example [7]). In other words, we defineeapoint to be useful if
the difference between the best and second best objecthegest is large. It is worth
noting that of course other definitions of the reward are ibtessNevertheless such a
discussion is not the focus of this paper.

Our data set consists of five toy manikins (shown in Figur@d groups of manikins
have been selected in a way that they are strongly ambiguithisihe group: for the
first group they only differ by the band, the lamp and the quiVke objects in the second
group can only be distinguished by the gun and the trumpethwthe manikins hold in
their hands. The reader should note that there does notesinique viewpoint, which
allows to distinguish all five objects.

During the training of the Eigenspace classifier for eactedbglass 1200 images
have been taken covering the sphere around the object i st&yine degree for the az-
imuthal angle and three degree for the colatitude angle.different lighting conditions
have been used. After the configuration of the classifier weagaoverall recognition
rate of81.6%. The single results are shown in Table 1, on the left sidesttagy with the
confusion matrix on the right. As expected the objects withie two groups (01/02/03
and o04/05) are sometimes mixed up. This is caused by the aitibigythat cannot be
resolved in any case having only one view. These resultsampared in the following
with the viewpoint selection approach. The functi@fs, a) (compare equation (2) and
equation (9)) has been estimated by performing for eaclcb random movements



of the camera around the object. The valukas been set to zero, i.e. only the current
reward is taken into account in the computatiof)gk, a). Being in states;, i.e. having

a class and pose estimate for the object, a random cameramante, is chosen. The
resulting view is used to classify the object. As a result,riiward is returned, which is
stored inQ(s;, a;). It is worth mentioning that this is a unsupervised trairsiep. This
means also that the system is not told whether or not a cleetiifin result is correct.

During the test of our viewpoint selection approach the garhas been positioned
randomly on the sphere. An image is taken and based on thsifedason result the
decision for the next view is made based on equation (3). Ex¢ view is taken and
used to classify the object. Thus, only one new viewpoinseLin this case. One reason
is that these two images allow in almost all cases for a ridielassification with respect
to the reward defined in (11).

The classification rates for the five objects using viewpeglection are shown in
Table 1, right. We got an overall classification rat®68% compared to a rate &fl.6%
with a strategy which randomly chooses next views. The ifleason rate 0f81.6% is
calculated from the rates of the training set where only camgliews were produced. As
the tests of our viewpoint selection approach start frondoamy chosen positions on
the sphere, the two classification rates are well comparallgxpected, the number of
confusions between objects within one group is noticeaddaced.

In Figure 4, two estimated functior@(& a) for object o1 (band) are shown. One
can see that there are several significant views. The beshanabrst view for object o1

based on the estimated functi@fts, a) are shown in Figure 4. As one can see by means

of the plots, choosing low values fd?», and D, results in a more detaile@(s, a) but
comes along with many local maxima.

The computation of oné)(s, a) takes abous - 10~3 seconds on a SG)? (R10000
150 MHz). The optimization algorithm needs an average off8@@tion evaluations of

Q(s, a) which results in a total time needed for one viewpoint s@eadf 2.4 seconds.

5 Summary and Future Work

In this paper we have presented a general framework of viewpelection that is inde-
pendent of the chosen classifier that can be trained autcaligtivithout user interac-
tions, and that results in a continuous space for the p@ssiblvpoints. We claim that
these three properties have not been provided by any otpevagh up to now. The ex-
perimental results using an Eigenspace approach for fitaggin show that even with
just one, optimally chosen additional view, recognition t& improved fron81.6% to
96.8%.

Currently, some valid objections are possible: first, wehegido sensor data fusion
for the two views nor fusion of the classification resultsislis the reason, why we can
use the parameter = 0. Of course, if we do sensor data fusion, i.e. we combine the
information of two images and more general methods of recgiment learning, like Q—
learning [12], can be applied. This is one important goalwffature work. Second, we
have only used five classes. The reason was to show the peimcpour approach, and
how it works in practice. Currently, we have started experits in an office scene, where
more objects and a more difficult environment is found. Tlaésy the whole framework
of reinforcement learning becomes more important, wheisoeps and final states must
be taken into account. This was not necessary for the fives&tam our experiments,
since almost always after the second view a correct claagsdit was possible. Never-
theless, the classification rate could be improved &$%. Third, we have only tested
one classifier in our experiments. Of course, to show theiflasindependency, we have
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Figure 4. Results of viewpoint selection for object 01 (band), &e= (o1, o, 3). The two plots

show the estimated functio®(s, a) for the state represented by the picture in the center. Left
picture: The action which leads to the worst view (no digior possible to object 02). Right
picture: The best action and the resulting view. The actibitlvleads to this view is found by the
optimization algorithm.

to show results for other classifier, too. Actually, we hakaiminary results for the sta-

tistical classifier, which has been described in [9]. Finalle have not evaluated pose
estimation for the results neither with nor without viewptaselection. This is our near
future work, to show that not only classification but alsceli@ation can be improved.
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