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Abstract

This paper deals with an aspect of active object recogni-
tion for improving the classification and localization results
by choosing optimal next views at an object. The knowledge
of “good” next views at an object is learned automatically
and unsupervised from the results of the used classifier. For
that purpose methods of reinforcement learning are used in
combination with numerical optimization. The major ad-
vantages of the presented approach are its classifier inde-
pendence and that the approach does not require a priori
assumptions about the objects. The presented results for
synthetically generated images show that our approach is
well suited for choosing optimal views at objects.

1. Motivation

One important task in image analysis is the classification
and localization of objects. The classification rate and the
localization accuracy mainly depends — due to ambiguities
between objects — on the chosen viewpoint of the cam-
era. In the past 15–20 years, the realization of classification
systems, for example, statistical classifier, neural networks
etc., were based on apassive approachusing a single im-
age. This image was used for feature extraction followed
by a classification. If the information in the image was not
suited to decide for a certain class and pose, usually an error
in recognition occurred, or the object was rejected.

Think, for example, of several cups which differ only in
some kind of symbol on one side. They can only be dis-
tinguished by that symbol. In a passive approach the only
source of information is a single image of a cup, perhaps
with the symbol not visible. Thus, it is quite natural in
such a situation to collect additional information by choos-
ing new views, which might help in identifying the class of
the object more reliable. The problem of course is where to
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move the camera to and take an image of the next view.
As one wants to maximize the number of correct clas-

sifications without looking at the object from every possi-
ble position anactive approachis necessary which chooses
a minimum number of dedicated views at an object. The
advantage of such an active approach — in the following
called viewpoint selection— for object classification and
localization is obvious and has been discussed recently in
the literature. For example, [7] has presented an active ob-
ject recognition system based on a statistical measure, the
transinformation. Performing a statistical classification the
most promising viewpoint can be calculated for the com-
plete set of objects in a supervised training step in advance.
In [3] different frameworks for handling uncertainty and
decision making (probabilistic, possibilistic and Dempster–
Shafer theory) have been compared with respect to view-
point selection. But this approach can only handle discrete
positions and viewpoints. In [2] a knowledge based ap-
proach using semantic networks is used for active scene ex-
ploration.

In this contribution we will tackle the problem of optimal
viewpoint selection for object recognition without makinga
priori assumptions about the objects and the classifier. The
problem is to determine the next view at an object given
a certain decision concerning the class and the estimated
pose of the object. Therefore we need to construct a func-
tion, which maps the class and pose decision of a classifier
to an action, i.e. a movement of the camera to a new po-
sition, from which it is expected to improve the reliability
of classification and localization. The function, of course,
should be learned automatically by defining a quality mea-
sure for each class/pose and action pair, i.e. how useful it
is to choose a certain new view given a classification and
localization result. Further on, the method should be clas-
sifier independent and should handle continuous viewpoint
and pose spaces.

The description and characterization of the problem and
the demands lead directly to the so calledreinforcement
learningapproach, which is well known in the artificial in-
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Figure 1. Principles of reinforcement learning.
A system overview [8].

telligence community but which has not been used widely
in the area of computer vision. A short summary of the ba-
sics of reinforcement learning is presented in the next sec-
tion together with a detailed description, how we map this
framework to the problem of viewpoint selection for object
recognition. In section 3 we shortly describe the classifier
we used for our experiments. The results of our experiments
are presented in section 4.

2. Reinforcement Learning for Viewpoint Se-
lection

2.1 Principles of Reinforcement Learning

First we summarize briefly the general principle of rein-
forcement learning (RL), which can be seen in Figure 1 (fol-
lowing [8]). The agent observes at time stept thestatest of
the world and interacts with it by performing a so calledac-
tionat. Each action changes the state of the environment ac-
cording to a certain probability. The usefulness of an action
in a certain state is judged by a so calledrewardrt, which is
returned by the environment: high rewards for “good” ac-
tions and low rewards for “bad” actions. A more detailed
description and introduction into RL can be found in [8].

The goal is now, to perform a sequence of actions
to reach a final state and maximize the accumulated and
weighted rewards — thereturn Rt — during a sequence
of state–action pairs:

Rt =

∞∑

k=0

γkrt+k+1 with weightsγ ∈ [0; 1]. (1)

One of the central terms of reinforcement learning is the
action–value functionQ(s, a) which describes theexpected
return, starting from states and taking the actiona:

Q(s, a) = E{Rt | st=s, at=a}. (2)

How can the action–value function for each state–action
pair be computed? One simple method (known as Monte

Carlo learning [8]) is to define the action–value function as
the average over all returns which were observed for a state–
action pair. These action–values are used to compute the
agent’sdecision policyπ(·). As the agent wants to choose
actions that maximize the return, an optimal policy can be
written as

π(s) = argmax
a

Q(s, a). (3)

In practice, one is choosing the optimal policy only with
a certain probability and a random policy otherwise. This
allows the agent to choose random actions and enables him
to evaluate state–action pairs that have not been visited be-
fore so that it can be assured that the agent is improving and
adapting continuously.

We now transfer this general principle to our viewpoint
selection problem. In the approach presented in this paper
we allow camera movements on a circle around the object,
i.e. we have one degree of freedom for the viewing position.
The statess ∈ IN × [0; 360) correspond to the estimated
class-number of the object and its estimated pose — the
viewing position on the circle. The actionsa ∈ [0; 360)
correspond to the relative movement of the camera on the
circle around the object.

The reward is given by the uniqueness of the classifica-
tion result, i.e. the difference between the first and the sec-
ond best hypothesis for the object’s class (c.f. section 3).
A large distance means, that the object’s class has been es-
timated reliably. Of course, other definitions of the reward
are possible, for example, adding costs for moving the cam-
era. The reward is the interface to the classifier’s results and
its definition is the only classifier dependent portion which
has to be adapted upon the replacement of the classifier.

2.2 Function Approximation for Continuous Re-
inforcement Learning

If the environment is restricted to discrete and finite sets
of states and actions, learning a “perfect” behavior is sim-
ply a task of collecting enough returns for each possible
state–action pair and searching tables of action–values. But
dealing with real–world viewpoint selection, one has to take
into account, that neither the states nor the actions are dis-
crete. The continuous state and action space makes it im-
possible to collect all possible state–action combinations.
For that reason, an estimation function̂Q(s, a) is intro-
duced which approximates the expected rewardQ(s, a) for
arbitrary, continuous state–action pairs. This estimation is
based on the collected returnsQ(s, a) of the previously vis-
ited state–action pairs. It has to provide some properties:

• the function represented bŷQ(s, a) has to be smooth
without discontinuities

• only very few collected returnsQ(s, a) should be ne-
cessary for calculatinĝQ(s, a)
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Figure 2. Source states (s, s′), executed ac-
tions (a, a′) and resulting expected destina-
tion states (s̄, s̄′). The distance d(s, a, s′, a′)
between the expected destination states is
denoted as <)(s̄, s̄′) = ϕ.

• a priori assumptions about the objects must not be ne-
cessary

From a general point of view an approximation of an
action–value can be written as a weighted average over all
previously collected returns [6]:

Q̂(s, a) =

∑

(s′,a′)∈Q

K(d(s, a, s′, a′)) · Q(s′, a′)

∑

(s′,a′)∈Q

K(d(s, a, s′, a′))
, (4)

whereQ denotes the set of all visited state–action pairs
for the current class,K(di) a suitable kernel function (e.g.
Gauss) for weighting the distanced(s, a, s′, a′) of the state–
action pairs(s, a) and (s′, a′). State–action pairs that are
“close” to each other shall be rated high in the weighted av-
erage because these are the valuable pairs. Their informa-
tion can contribute a lot to the approximation. The model-
ing of the distance function was influenced by the following
idea: The distanced(s, a, s′, a′) between the twoexpected
destination statesof the state–action pairs(s, a) and(s′, a′).

Assuming that the actionsa anda′ lead to two new des-
tination states̄s ands̄′:

s
a

−→ s̄, s′
a′

−→ s̄′ (5)

The closer the two destination states are to each other, the
more adaptableQ(s′, a′) for the estimation of̂Q(s, a). For
calculating the expected destination states we are currently
assuming that the pose estimation of the states is correct
and that the actiona is affecting the environment in an “op-
timal” way. For example, if the estimated position ofs is
200◦ and an actiona moves the camera100◦ the pose of
the expected destination states̄ will be 300◦.

As pose estimation is not done with absolute coordinates
in space, but with angles on the circle, calculating distances

between states can be done by measuring the angle between
the vector to the points of the circle given by the states (see
Figure 2):

d(s, a, s′, a′) =<)(s̄, s̄′) with d(s, a, s′, a′) ≤ 180◦ (6)

This distance leads to our approximationQ̂(s, a) of any
action–value (eq. (4)) with the kernel functionK(·) defined
as

K(d) = exp

(

−
d2

D2

)

(7)

The parameterD describes how local (for a smallD) or
global (for a largeD) the approximation is working. “Lo-
cal” means, that faraway states have only a slight influence
on the approximated action–value resulting in a very de-
tailed approximation. This is very useful if you have a lot
of state–action pairs. On the contrary, a “global” approx-
imation includes data over a wide area of distances and is
suitable, if only a very limited set of collected action–values
is available.

2.3 Calculating the Optimal Action

Returning to our reinforcement learning problem and the
calculation of an optimal decision policy,π(s) can now be
formulated in a very similar way to the original, discrete
reinforcement learning approach (see eq. (3)), by solving

π(s) = argmax
a

Q̂(s, a) (8)

with one of the many well-known numerical techniques.
Given a states (the current class and pose estimation)
searching for the action that maximizeŝQ(s, a) will lead
to the optimal camera movement.

In our approach we are currently using Adaptive Ran-
dom Search ARS [9] combined with a local simplex for
solving eq. (8).

3 Classifier used for Viewpoint Selection

Currently we are evaluating our approach for viewpoint
selection with an implementation [2] of a classifier based on
the eigenspace approach introduced by [4].

Object recognition is dealing with assigning a class num-
ber κ to an object found in an image of sizeN × M

which is represented by the column vectorf ∈ IR(N ·M).
This image vectorf is transformed into a feature vector
c = (c1, c2, . . . , cK)T ∈ IRK by a linear transformation

c = Φ
κf ∈ IRK×(N ·M), Φ

κ = (φκ
1 , φκ

2 , . . . , φκ
K)T .

Theφκ
i correspond to theK largest eigenvectors of the

covariance matrix of then training imagesfκ
1 , fκ

2 , . . . , fκ
n
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Figure 3. Examples of synthetical images of five cups showing the viewing angles 0◦, 50◦, 270◦, 320◦,
130◦, 270◦ and the cups’ coordinate system with the handle at 90◦ and the digit at 270◦.

of classκ. During the training each training imagefκ
i is

projected into the object’s eigenspace building the model
databasecκ

i . For pose estimation the known pose parame-
ters of each imagefκ

i are stored together with the feature
vectorcκ

i .
Classification of an imagef in eigenspace is done by

searching for the feature vector with minimum distanced to
the image:

κ = argmin
κ

d(f |κ) = argmin
κ

min
i

||Φκf − cκ
i ||

2

︸ ︷︷ ︸

d(f |κ)

(9)

In our reinforcement learning problem we are using this
distance measure for calculating the rewardrt (see eq. (1)):

r = min
λ,λ6=κ

(

min
κ

d(f |κ) − d(f |λ)
)

︸ ︷︷ ︸

difference between the first and
the second best hypothesis

(10)

Calculating the reward does not consider whether or not
the classification is correct. This is not relevant for our ex-
periments as we are working with synthetically generated
images (see the following section for details). Reconsid-
ering the definition of the reward may be necessary when
using real images with a weak classifier.

4 Experiments and Results

The experiments we performed to evaluate the capacity
of our approach are based on synthetically generated (“ray-
traced”) images of the cups shown in Figure 3. These cups
are completely the same except a unique digit from 1 to 5
on the front side of the cup. This digit can be seen — i.e. the
cups can be distinguished — if the cups are viewed from a
position from215◦–330◦. Since we concentrate on the clas-
sifier independent viewpoint selection aspect using RL, we
are currently interested in a fast image acquisition which is
provided by the synthetical images generated by the ray-
tracer POV-Ray [1]. This allowed us to change the RL
method quickly for comparison without the need to spend
a lot of time for taking new views at the object.

Our RL system is modelled in the way described in sec-
tion 2.1. The states represent the classifier’s estimated class
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Figure 4. The approximation Q̂(s, a) of the
action–value function for state s = (1, 0◦)T .
The rhombs are showing the collected 20
action–values Q(s′, a′) for cup 1.

and localization parameters ({1, 2, 3, 4, 5}× [0; 360)). The
actions are the intended relative changes of the viewing an-
gle ([0; 360)). This means. e.g., taking action180 is moving
the camera to the current contrary position. The reward ex-
presses the significance of the current view and is defined
as described in eq. (10).

Training was done by collecting the rewards of 100 and
1000 (20 and 200 for each cup) random state–action pairs.
This means, starting at a randomly chosen viewing angle,
and taking a random action, the resulting reward was stored
asQ(s′, a′) for this state–action pair. As we are working
with synthetical images, we added uniform noise to both the
reward (± 10%) and the pose estimation (± 5◦). As training
is simply a task of collecting rewards for state–action pairs,
the CPU time needed depends mainly on the speed of the
raytracer and the classifier. In our case, executing one action
and storing the resulting reward takes approx. 10 seconds
on a SGIO2 (R10000, 195MHz). This results in a total time
needed for training of 17 resp. 170 minutes.

After collecting the training action–valuesQ(s′, a′), we
are able to approximatêQ(s, a) for arbitrary, continuous
state–action pairs(s, a). In Figure 4 and 5 approximations
of Q̂(s, a) for the states = (1, 0◦)T with different settings
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Figure 5. The approximation Q̂(s, a) of the
action–value function for state s = (1, 0◦)T .
The rhombs are showing the collected 200
action–values Q(s′, a′) for cup 1.

of the parameterD (see eq. (7)) are shown. This means, the
plots show the usefulness of a specific action — the relative
movement of the camera — if the camera is having the view
at the leftmost picture in Figure 3 to cup 1. The high action
values in the plots between215◦ and330◦ are indicating
significant viewpoint positions. This is the area of the cups
from where the digit is visible. The smaller the parameterD

the more detailed the approximation. But if the number of
collected state–action pairs is too small, an approximation
with many local maxima may occur as it is shown in Fig-
ure 4 forD = 5. An important point in our approach is, that
we are only interested in a correct position of the maximum
of Q̂(s, a) and not a minimal approximation error.

The evaluation of our system was done by performing
approx. 400 viewpoint selections for randomly chosen start-
ing classes and viewing angles. The system’s task was to
find an action that changes the viewing angle to a position
where the digit is visible. A viewpoint selection was classi-
fied as correct, if the chosen action lead to a viewing angle
between215◦ and330◦. We performed our viewpoint se-
lections on the two training sets described above:

• 100 action–values: all chosen actions resulted in
viewing angles that made an unique identification of
the cups possible. This means that 100% of the view-
point selections are correct.

• 1000 action–values:as expected after the result for
100 action–values, correct viewing angles were found
always.

We want to emphasize that a correct viewpoint does not nec-
essarily imply a correct classification.

The CPU time required for one viewpoint selection (i.e.
finding the estimation function’s maximum) is0.14 resp.
1.15 seconds for the training set with 100 resp. 1000 state–
action pairs. The approximation of onêQ(s, a) takes ap-
proximately8 · 10−4 resp.6 · 10−3 seconds.

5 Conclusion

We have presented an approach for classifier indepen-
dent optimal viewpoint selection based on the ideas of re-
inforcement learning. Our method extends the primarily
discrete techniques of reinforcement learning to a continu-
ous optimization problem for finding the optimal next view-
point. Therefore the expected significance of the images
taken from an arbitrary viewpoint is approximated. The ex-
periments have proven the suitability and advantages of the
proposed method. The system was always able to chose
a view at the object that enables the classifier to make an
unique classification.

Our future work will concentrate on the use of other sta-
tistical classifiers, e.g. [5], the extension of our approach to
2-D viewpoint selection and the handling of multiple ambi-
guities within single objects.
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