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Abstract.
proximated by hybrid Bayesian networks. The basic idea ieake
a piecewise linear approximation with several base poirtigs ap-
proach is applied to an engineering domain and the accusamyni-

This paper shows how non-linear functions can be ap-2 BAYESIAN NETWORKS

BNs are used to model a distribution of random variables
P(X1, X5, - Xy,). (We use P for distributions of discrete random

pared to Gibbs sampling. Great accuracy is shown even at nor}ariables and p for continuous ones.) Using the Bayes reledm-

continuous functions. Due to the general underlying pplegiit is
possible to adapt this type of network to other domains.

1 INTRODUCTION

Bayesian networks are a flexible mean for modeling the miatiip
between different variables and several training algoréfare avail-
able for them, so that they are used e. g. in expert systenfoatice
purpose of data mining.

In the work done at our institute Bayesian networks (BN) a@du
for modeling of production processes. The aim is to modeldie
pendency between input and output parameters and usingtios
to calculate input parameters that guarantee an optimplibutith
a maximal probability. This can be done by entering the idéeh
output as evidence and calculating the probabilities ofrémeain-
ing input nodes. This approach, described in [1], was sisfols
tested with discrete Bayesian networks for the modelingjefcition
moulding.

In that paper we present the modeling of hydroforming. Thenma
idea of hydroforming is to form two blanks at the same timehwit
high pressure between them. In contrast to the modelingedtion
moulding we use hybrid Bayesian networks, i. e. BNs whichsegin
of both discrete and continuous nodes. The approach takeruise
hybrid BNs to calculate a piecewise linear approximatiohisTs
done by adding a discrete node as predecessor of the camsione.
Then the quantization error is calculated by an additiondenwhich
is a successor of both the discrete and the continuous nddg. T
means that the information of the continuous node is stédusnd
not thrown away which happens when only discrete valuessad.u

Hybrid Bayesian networks are introduced by Lauritzen in 8}
interesting development is the usage of discrete nodescasssors
of continuous nodes, presented in [6]. This type of node [dieq
for the first model described in this paper.

This article is structured as follows. In the first paragrapthort
review about hybrid Bayesian networks and variational exipna-
tion is given. After that the engineering domain is preseénfel-
lowed by the approach for modeling. The article closes witlvor:
clusion in which the most important results are summarized.
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plete distribution can be written as a product of conditigumababil-
ities. This equation is known as chain-rule, cf. e. g. [8]:
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where P(z1,22, -+ x,) is used as abbreviation foP(X;
z1,X2 = x2,---, X, = my,). Using conditional independencies
between the different random variables the chain rule’strigand
side simplifies to
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with pa(i) as the instantiations of all variables iRa(i) C
{X;_1, -+, X1}, the parents of nod&;. If Pa(:) is a proper sub-
set of {X;_1,---, X1}, conditional independencies may be used to
speed up calculation of the joint distributioX,; ¢ Pa(i), j < i
implies thatX; is conditionally independent froo¥;.

Normally a BN is written as a directed acyclic gragh= (E, W)
with W = {X, X»,---, X, } as the set of nodes, atfd;, X;) €
E, the set of edges, iX; € Pa(i). Normally an edge is drawn from
X; to X; if X; has an direct influence aii;. For a more detailed
introduction see [8] or [2].

2.1 Hybrid Bayesian networks

In the beginning of the development of BNs only networks wdith

crete nodes are used. That means that discretization ieddedall
continuous variables. Additionally a great number of pagtars is
required to describe exactly a BN with discrete nodes. If @an-
tinuous nodes are regarded, it is possible to use a Gaussiannk
instead, where normal distributions are associated wihyaandom
variable, whose mean is calculated as linear combinatiats qire-
decessor’s values. 1. e. the distributjeof a random variabl& with

parentsy” is

®)

with A/ as the one-dimensional normal distributign, is the nor-
mal distribution’s mean, whefi = 0, wx is the weight vector be-
tweenX andY'. Of course, it is possible to regaiXi also as a mul-
tidimensional random variable, but for the purpose of thielarit is

p(x|7) = N (ux, + @x7,0x)



sufficient to use a one-dimensional distribution. If notyoodntinu- 3 HYDROFORMING
ous variables are used or if non-linearities are requiteese needs ) ] )
are met by hybrid BNs as described in [3],[7],[5] and [4]. In hydroformlng sheet metql is formed by high pressure. .Updw

The set of nodes of a hybrid BN contains both discrete and con2Nly Nydroforming of tubes is used in large scale productiirthe
tinuous nodes. Discrete nodes having only discrete predeceare ~ Chair of Manufacturing Technology (LFT) at our Universityetus-
handled as usual. I.e. each nalie stores the conditional probabil- 29€ of sheet metal pairs is examined which has the additaaivain-
ities P(X;|Pa(i)) in a table which is used for calculation of joint t29€ that two blanks are formed at the same time.
and marginal distributions. Major changes are made foricoatis Hydroforming begins with the closing of the press. Afterdgthe
nodes having both discrete and continuous predecessoirs Gais- clamp forces pressing the blanks on top of each other are increased
sian networks the values of continuous nodes are still asgumbe  Until the selected clamp force of 200, 300, 400 or 500 kN istred.
normal distributed, but this time a mixture of normal distiion is After that the phase called preforming starts. Fluid is geekbe-
used withpy, the probability of the parents having configuratign ~ tWeen the two blanks and the pressure increases lineanfingthat
as the mixing coefficients. As defined in [2] a configurationdmet ~ Process the volumé’ of fluid between the blanks, the pressure
of nodesIV is a set of states with exactly one state for each vari-a"d the clamp force#” are recorded. The increasing pressure be-
able. Therefore, there are different means, [k], weightswx[k] tween the blanks causes a movement of the blanks into the form
and standard deviationsy [k] for every possible configuration. The 1hus the clamp forces has to be selected so that a movemere of t

distribution of nodeX given that the continuous pare¥ithas value ~ Planks is still possible, but that leaks are avoided, atlagthe be-
i and configuratiork for the discrete parents is ginning of the process. At the end the clamp forces are toottow

prevent leaks. In the data presented in figure 2 this effecbeano-
p(z]§, k) = peN (ux, [K] + @x [k] 7, o x [k]) (4) ticed at the end when the steepness of the curve decreases. dfth
. ] . the curves shown on that figure represent the data used foingra
_Ifacontinuous node has no discrete parents there is onlpasie 5, the forth is the prediction made by the hybrid BN. Firsikke
sible configuration and the equation is reduced to the putsSian 0, \when the volum# is about 450 dl. Please note that there is
case. It remains the problem whether discrete nodes awemllo g, seattering within the data, so that it is impossiblerto & per-
have continuous parents. Some authors, e.g. Lauritzem[3rd o ¢ fitting model. We didn't use the complete data for tragito
Olesen [7] assume, that there are no such nodes allowedy it o\, an equal number of data before and after the occarmgnc
plifies training of hybrid BNs. At the moment there are two mai |oax5. S0 the time distance between two data points at thierbeg
approaches discussed e.g. in [§] to dea_l with contlnuoudep_&s- is not equal to the time distance at the end.
sors of discrete nodes. A short introduction to the problemiven The compression is reduced when a predetermined volume is

in the next section. reached. Further increasing the amount of fluid between ltregké
o ) ) would have no effect, because more and more hydroformingumed
2.2 Variational approximation would escape. Then the pressure is released. This is to tavivitbr-

. . . rupt the calibration process and has technical reasons.phase is
When a discrete node is used as successor of a continuousanode

function is needed to calculate the probability of the défe states. nOthe):‘(;?;eLezt;(;hceaﬁs:thgs gtoat rgssf:efgaan:y :;?gee; are irsgddo
When only the two states 0 and 1 are used, the logistic-fonatan Y P

be used to calculate the probability that a random variabtedtate a large value, SO that any movement Of. the blanks is avglq&dr A
- . that the volume is increased a second time. Due to remairyidipoh
1, depending on its parents.

forming fluid between the blanks, the valuelofat the beginning is

P(X =1]7) = 1 ) not zero, but equal to the value where preforming stops. Hube
1+ exp(—n) clamp forces used for hydrocalibrating are equal, it i$ istiportant
n = a+WxYy (6) to keep the clamp forces used for preforming in mind, becalifse

. ) ferent clamp forces during preforming results in a difféeramount
The length ofuix describes the steepness of the slope and the past metal moved inside the form, which results in a differesivévior
rametera describes the location of the boundary between the twoduring hydrocalibration
different states.;l’he logistic function is implemented @S> ar_ld At the beginning of calibration shown at figure 3, there iseept
the BN-Toolbox", the software packages we used for modeling. If pressure increase until the preforming-pressure is appeigly

more than two state§ are used, the logistic function can pargled reached. This phase could be modeled by assuming an exfnent
to the softmax-function. increase’, but since such models cannot be realized with BNs we
did not pursue that approach.

Calibration is done to make sure that the edges of the warkpie
are formed correctly. So it makes sense to use a maximal wlum
respectively pressure. But there is of course a maximasiioid. If
the pressure exceeds this threshold the blanks burst, ttkisoe is
damaged. This is the steep decrease of the pressure at thEwend
ther increasing the volume after burst has no effect on thesprre.
Therefore, a good model helps to predict this point, suchamaax-
imal possible pressure can be used at the one hand and busstin
avoided at the other hand. The BN-models are discussed and co
pared with the results in BUGS, where Gibbs Sampling is used f
3 Available at http://www.mrc-bsu.cam.ac.uk/bugs/ inference, in section 4.3.

4 The BN-Toolbox is an expansion of matlab and freely avaiaht
http://iwww.cs.berkeley.eds/murphyk/Bayes/bnt.html 5 |t was tested using a BUGS model

exp(a; + 7 §)
>, exp(a; + ;)
For more details see [6]. We decided not to use softmax ndudes,
cause they require observable predecessors. As this eetrit is
not met by our models we circumvent their usage by linear@ppr
imation. That means, that a discrete node is used as predecss
a continuous node, whose distribution is coupled to theicoatis
node. Additionally a continuous node is inserted with thertion,
to calculate the quantization error. This idea is discugsedore de-
tail in section 4.2.

P(X =ily) = @)




4 MODELING
4.1 Preforming

In the model shown in figure 1 a logistic nodev is used to model
the decision whether leaks in the system occur or not. Basiele
observable node®, F andV there are two hidden node&w and
AV . The first hidden node namesll” is successor of the volunié

predicted data are between the three datasets of obseneedadthat
the relative error gets a minimal value.

Besides the pure approximation, BNs have the ability toutate
the most probable input parameters for given output paensetith-
out changing or re-learning the parameters or the strucofittes net,

i. e. they are able to compute a kind of inverse function. Rergre-
forming model the clamp forces are predicted with an relative error

and the clamp forceB. Since the volume, where the first leaks occur 0f 7,93% when givert” and D and the relative error of predictirig
depends on the clamp-forcés this node can be used to calculate the is 3.76% givenD and F'.

difference between the current volume and the volume whestiesl
occur. This difference is used to trigger the logistic néde(switch)

which has the task to switch between the two lines used to htioele
relation between volum& and pressuréD shown in figure 2. To

0 F Discrete, observable node

\

@ Q Continuous, observable node

Hidden, discrete node
Sw

Figurel. Model for preforming with logistic node

control the learning behavior — 1 values are entered as evidence,
wheren stands for the length of the data vector containing values fo
F,V andD. Then the marginal distribution of the remaining random
variableX € {F,V, D} is computed whose mean, respectively its

maximal probable state, is taken as estimaftoof X and compared
with the exact value oKX . Then the relative error is calculated.
_ X -X]

RelError(X) = — (8)

E. g.V and F are given as evidence, and the marginal distribution
of D is calculated and compared to the original value. A very good| 400 kN

result is obtained by the hybrid BN, the pressiirés predicted with
an relative error of 1.95% (see table 1). Figure 2 shows a aoisgn

Table1l. Accuracy of the preforming models.

Predicted Random Rel. error Rel. error
Used Model .
Variable BUGS BN-Toolbox
Logistic node || Pressure 10.24% 1.95%

of the training data and the predicted values of the hybrid BN
the beginning, where there is only a low dispersion in thedhere
is nearly no difference between the predicted values andialte.
After first leaks occur the dispersion in the training dateréases.
Regarding the predicted data a change in the slope can besetise
which means that the switch is working as intended. Addétilyrthe

Pressure [bar]
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Figure2. Results for modeling of preforming (200kN)

On of the great advantages of BNs is that the values can be in-
terpreted easily. That means that relationships betweereps pa-
rameters can be evaluated using a Bayesian network. Forighe d
cussed model it gets clear, that there is a linear dependeecy
tween the clamp forcé” and the steepness if Sw has state O,

i.e.m ~ const - F.

Table2. Steepness for different clamp forces

Clamp forces || SwitchSw | Steen. BUGS| Steepn. BN-Toolbox|
0 175 17.6
200 kN 1 8.21 8.25
0 18.88 18.87
300 kN 1 4.82 2.49
0 20.19 20.37
1 1.73 15.08
0 21.32 21.14
500 kN 1 11.27 10.57

Additionally the values: andw of the logistic nodeSw can be
used to predict where first leaks occur by calculating whezgtob-
ability that the switchSw has state 1 is 0.5. This makes sense because
there is a very steep change between the two states.

1
P(Sw = 1|a,w,V) = T o w V) — 0.5 (9)
= na,w,V) = a+w V=0 (20)
v = -2 (11)
w

The results of this calculation are shown in the table 3.



Table 3. First occurrence of leaks during preforming

4.3 Hydrocalibrating

Clamp forces || Leaks BUGS | Leaks BN-Toolbox For the modeling of hydrocalibrating we used linear appration.
200 kN 4.53dl 3.66dl The special problem is that the data we got stems from praiag
288 ::m g'gg g: g'gg g: stability of the blanks. That means that the volume is ineedaun-
500 kKN =00 di 285l til one blank bursts. So the curve for hydrocalibration irufig 3

has an non-continuous point. We tried to model hydrocdiitgaus-

Here differences between the two models occur. Since the max pressure [bar]

imal volume reached during preforming for a clamp forceFof 180 ‘
400 kN is 5.3 dl a meaningful result must be between 0 and 5.3 dl1g9 4
Larger values mean that only one line is used for modelin@t Th i
has happened for the BUGS model and is also an explanatighefor
different steepness in table 2 for F = 400 kN & = 1. 1201 2 X 7
100 [ % .
. . . | o
4.2 Linear approximation 80 ’L% 3; |
For modeling hydrocalibrating two lines are insufficiensity more 60 1% X i
than one logistic node failed due to convergence problenthén D“ ' 5;
training process. So we tried a model which makes a disetéiizto 40 ¢, - % ]
learn nonlinearities and uses the information stored ictmtinuous 208 l\ o ‘2%/2 N
nodes to make a linear approximation between discretegoint ?L =T T Tt = ﬁ-gé' B
In this section we explain how a linear approximatiﬁ(m) of %% 7 8 9 10 11 Volume [dI]
f(z) between several base points can be calculated, e. g. a lin- Datasetl o Normal distripution 1 — — -
. . . . Dataset2 + Norma| distripution 2 - - -
ear approximation for the pressufe given the volumel’. This is PredicindgSelS 2 Normal distriution 3 — —
. . . Yy X ormal distribution 4
done by adding a discrete nodg;, e. g.Vy, for the selection of a Norma gistripution 8 — -

suitable base point. Beside that a nage that calculates the error
made by approximating with X, is needed. (See figure 4).

Now we will describe possible weights for the calculationaof
linear approximation, but it should be clear that these aretime
only ones. The comparison between learnt and suggestethtsésy
presented in section 4.4. The formula to get an estima;f(m of

f(z)is

Figure3. Modeling hydrocalibrating (200kN) with BNs

ing linear approximation with 6 different base points. Tleewaacy,
presented in table 4, is below the models for preforming.rdtzse

fl@) = fzw) + ' (2x) - (= 1) (12)
where f' is the first derivative off. This formula is compared to
the calculation of the mean of a continuous ndden a Bayesian
network with Z as its continuous parent, e.g. the calculationof
depending oV

Table4. Accuracy of the calibration models.

vkl = uy, [k] + wy k] - 2z 13 Predicted Randon| Rel. error Rel. error
v k] = b 4 ¥ (13) Used Clamp force Variable BUGS BN-Toolbox
Settinguy, [k] = f(zx) and the weightwy [k] = f' (), in our 200 kN Pressure 31.19% | 28.6%
exampleup, (k] = D(Vi) andwp(k] = D'(V}), it can be seen 300 kN Pressure 26.87% | 23.38%

that a Bayesian network is able to calculate a linear appration
given the difference: — x.. The differencer;, — x between the se-

lected base point;. and the current value o is calculated by & g reasons for that behavior. Firstly it is not possible rtedict the
continuous, hidden nodge which is a successor 6f and a hidden,  gieep siope, where the blanks bursts, due to dispersioreidata.
discrete nodeXy, used to selec_t the correct base point. Setting therpis causes a great relative error when the hybrid BN predittigh
meanuq., [k] = z; and the weight betweel andQe = —1SUp-  y5je and the exact value is very low. The second is the mathed
plies the correct result. The selection of the correct bag#pas 0 for prediction. To calculate the prediction for the presstire vol-
be insured by settingx, [k] = z«. This results in ume was entered as evidence. Then, after passing the distehd
collect-messages, the marginal distribution of the pmessode is
calculated. That means that not only one, but all six staieshie
The wrong sign has to be compensated by changing the sigre of thdiscrete volume are taken into account, of course weightedrd-
weightwy to wy [k] = —f'(2)) assuming thal” is the node repre- ing to their probability. The normal distribution for thexsitates of
sentingf (z). Of course piecewise linear approximation is notlimited v/ are shown in figure 3, multiplied for optical reasons witraatbr
to only one dimension, due to the fact that Taylor progresgiorks 25 Shortly before or after the burst there are two diffedistribu-
also in a multidimensional space. But the reader should kesyind  tions having a high probability. One is predicting a highuelthe
that the number of parameters to be learnt for the output isopi®-  other is predicting a low one. So it is not possible to modeta r
portional to the product of the number of base-points setefdr the  non-continuous point, but the hybrid BN shows an acceptpbte
input variables. formance.

pQelk] = pqeo (k] + woelk] -z =z — = (14)
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Figure4. Model for modeling the calibration process

4.4 Analysisof theweight

This section shows which means and weights are learnt by th

Bayesian network. Comparing the results in table 5 with ting- s
gested values shows great differences. According to seetid
1Loe, [k] should be equal to the base point used and fiws, [k]

To bring the equation above into a form, so tB¥{1;) and the slope
at this point can be identified we introdugg = 6.106 which results
inup =45.2 + 540 - (V — V).

Similar calculations can be done for the other base poirtte. T
results show how the weights of a hybrid Bayesian networkhEn
interpreted in the sense of calculating a linear approxonait mul-
tiple points. It cannot be expected that the valugg andwp repre-
sent exactly the functional value and the value of the firsivdgve
due to multiple degrees of freedom.

5 CONCLUSION

In the previous sections it was shown that BNs are suitablensie
for the modeling of technical processes. On one side theyplale
to make exact predictions and on the other side their indé&ation
is easy, so BNs can be used to gain additional insight in tttenie
cal process. To model nonlinearities there are two po#sisil either
logistic nodes or linear regression. The latter has theradge that
this kind of model is available in all Bayesian network tobking
able to deal with hybrid BNs and that no special training ethms
are necessary, which speeds up the training. At the momehawe
Qot tested whether the training process of linear approkimaakes
advantage from a suitable initialization which might comenf clas-
sical algorithms calculating a linear approximation.

= uv, [k]. Additionally the node Qe should calculate the difference ACKNOWLEDGEMENTS

between the used base poja.,[k] and the current value of
and thus get the value -1. Regarding the following equatiompains

Table5. Weights in the model for linear approximation

Var. 1 2 3 4 5 6

v u | 6.106 6.68 8.28 10.03 10.79 11.38
o | 0.056 031 0.74 0.47 0.16 0.34

D uw | 22.18 99.2 149.6 170.1 7.448 10.42
w | -1.012 1.47 -0.968 -0.425 1.226 0.075

Qe w 3235.4 -161 68.1 -25.5 816.9 48.4
w | -633.93 27.2 -9.33 2.68 -73.52 -3.8p

why the learnt network is able to make exact predictionsn évthe
selected values are different from the suggested ones.réiogoto
section 2.1 the mean fd? depending orQe respectively the mean
for Qe depending o1V is:

(15)
(16)

1D, +wp - Qe
PQeo + wqe -V

UD
Qe =

Thus, dropping the difference betwegn. and Qe, that is identi-

fying the expectation with the actual value, the meanZfocan be

calculated as

7

(18)

©o By +wp - (f1Qey + wqe - V)

1Dy + WD * f1Qep + WD - WQe + V

Of course, there is no single representation fder, our suggested
solution withup, = D(Vo),wp = —D'(Vo), uge, = Vo and

Thanks to the Chair of Manufacturing Technology for pramisf
the data and the reviewers for valuable discussion whichshed
improve the paper.
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wqge = —1isonly one possible. Using the data from table 5 equation

17 shows another possible solution.

22.18 — 1.012 - (3235.4 — 533.93 - V)
—3245.2 +539.3 - V.

pp =



