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Abstract. This paper shows how non-linear functions can be ap-
proximated by hybrid Bayesian networks. The basic idea is tomake
a piecewise linear approximation with several base points.This ap-
proach is applied to an engineering domain and the accuracy is com-
pared to Gibbs sampling. Great accuracy is shown even at non-
continuous functions. Due to the general underlying principle, it is
possible to adapt this type of network to other domains.

1 INTRODUCTION

Bayesian networks are a flexible mean for modeling the relationship
between different variables and several training algorithms are avail-
able for them, so that they are used e. g. in expert systems andfor the
purpose of data mining.

In the work done at our institute Bayesian networks (BN) are used
for modeling of production processes. The aim is to model thede-
pendency between input and output parameters and using thatmodel
to calculate input parameters that guarantee an optimal output with
a maximal probability. This can be done by entering the intended
output as evidence and calculating the probabilities of theremain-
ing input nodes. This approach, described in [1], was successfully
tested with discrete Bayesian networks for the modeling of injection
moulding.

In that paper we present the modeling of hydroforming. The main
idea of hydroforming is to form two blanks at the same time with
high pressure between them. In contrast to the modeling of injection
moulding we use hybrid Bayesian networks, i. e. BNs which consist
of both discrete and continuous nodes. The approach taken isto use
hybrid BNs to calculate a piecewise linear approximation. This is
done by adding a discrete node as predecessor of the continuous one.
Then the quantization error is calculated by an additional node which
is a successor of both the discrete and the continuous node. That
means that the information of the continuous node is still used and
not thrown away which happens when only discrete values are used.

Hybrid Bayesian networks are introduced by Lauritzen in [3]. An
interesting development is the usage of discrete nodes as successors
of continuous nodes, presented in [6]. This type of node is applied
for the first model described in this paper.

This article is structured as follows. In the first paragrapha short
review about hybrid Bayesian networks and variational approxima-
tion is given. After that the engineering domain is presented, fol-
lowed by the approach for modeling. The article closes with acon-
clusion in which the most important results are summarized.1 This work was funded by the ’Deutsche Forschungsgemeinschaft’ (DFG)
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2 BAYESIAN NETWORKS

BNs are used to model a distribution of random variablesP (X1; X2; � � �Xn). (We use P for distributions of discrete random
variables and p for continuous ones.) Using the Bayes rule the com-
plete distribution can be written as a product of conditional probabil-
ities. This equation is known as chain-rule, cf. e. g. [8]:P (x1; x2; � � � ; xn) = P (x1) � nYi=2 P (xijxi�1; � � � ; x1) (1)

where P (x1; x2; � � �xn) is used as abbreviation forP (X1 =x1; X2 = x2; � � � ; Xn = xn). Using conditional independencies
between the different random variables the chain rule’s right hand
side simplifies toP (x1; x2; � � � ; xn) = P (x1) � nYi=2 P (xijpa(i)) (2)

with pa(i) as the instantiations of all variables inPa(i) �fXi�1; � � � ; X1g, the parents of nodeXi. If Pa(i) is a proper sub-
set offXi�1; � � � ; X1g, conditional independencies may be used to
speed up calculation of the joint distribution.Xj =2 Pa(i), j < i
implies thatXj is conditionally independent fromXi.

Normally a BN is written as a directed acyclic graphG = (E;W )
with W = fX1; X2; � � � ; Xng as the set of nodes, and(Xj ; Xi) 2E, the set of edges, ifXj 2 Pa(i). Normally an edge is drawn fromXj to Xi if Xj has an direct influence onXi. For a more detailed
introduction see [8] or [2].

2.1 Hybrid Bayesian networks

In the beginning of the development of BNs only networks withdis-
crete nodes are used. That means that discretization is needed for all
continuous variables. Additionally a great number of parameters is
required to describe exactly a BN with discrete nodes. If only con-
tinuous nodes are regarded, it is possible to use a Gaussian network
instead, where normal distributions are associated with every random
variable, whose mean is calculated as linear combination ofits pre-
decessor’s values. I. e. the distributionp of a random variableX with
parentsY is p(xj~y) = N (�X0 + ~wX~y; �X) (3)

with N as the one-dimensional normal distribution.�X0 is the nor-
mal distribution’s mean, when~y = 0, ~wX is the weight vector be-
tweenX andY . Of course, it is possible to regardX also as a mul-
tidimensional random variable, but for the purpose of the article it is



sufficient to use a one-dimensional distribution. If not only continu-
ous variables are used or if non-linearities are required, these needs
are met by hybrid BNs as described in [3],[7],[5] and [4].

The set of nodes of a hybrid BN contains both discrete and con-
tinuous nodes. Discrete nodes having only discrete predecessors are
handled as usual. I.e. each nodeXi stores the conditional probabil-
ities P (XijPa(i)) in a table which is used for calculation of joint
and marginal distributions. Major changes are made for continuous
nodes having both discrete and continuous predecessors. Asin Gaus-
sian networks the values of continuous nodes are still assumed to be
normal distributed, but this time a mixture of normal distribution is
used withpk, the probability of the parents having configurationk,
as the mixing coefficients. As defined in [2] a configuration for a set
of nodesW is a set of states with exactly one state for each vari-
able. Therefore, there are different means�X0 [k℄, weightswX [k℄
and standard deviations�X [k℄ for every possible configuration. The
distribution of nodeX given that the continuous parentY has value~y and configurationk for the discrete parents isp(xj~y; k) = pkN (�X0 [k℄ + ~wX [k℄ ~y; �X [k℄) (4)

If a continuous node has no discrete parents there is only onepos-
sible configuration and the equation is reduced to the pure Gaussian
case. It remains the problem whether discrete nodes are allowed to
have continuous parents. Some authors, e.g. Lauritzen [3] [4] and
Olesen [7] assume, that there are no such nodes allowed, which sim-
plifies training of hybrid BNs. At the moment there are two main
approaches discussed e.g. in [6] to deal with continuous predeces-
sors of discrete nodes. A short introduction to the problem is given
in the next section.

2.2 Variational approximation

When a discrete node is used as successor of a continuous nodea
function is needed to calculate the probability of the different states.
When only the two states 0 and 1 are used, the logistic-function can
be used to calculate the probability that a random variable has state
1, depending on its parentsY .P (X = 1j~y) = 11 + exp(��) (5)� = a+ ~wX ~y (6)

The length of~wX describes the steepness of the slope and the pa-
rametera describes the location of the boundary between the two
different states. The logistic function is implemented in BUGS3 and
the BN-Toolbox4, the software packages we used for modeling. If
more than two states are used, the logistic function can be expanded
to the softmax-function.P (X = ij~y) = exp(ai + ~wi ~y)Pj exp(aj + ~wj~y) (7)

For more details see [6]. We decided not to use softmax nodes,be-
cause they require observable predecessors. As this requirement is
not met by our models we circumvent their usage by linear approx-
imation. That means, that a discrete node is used as predecessor of
a continuous node, whose distribution is coupled to the continuous
node. Additionally a continuous node is inserted with the intention,
to calculate the quantization error. This idea is discussedin more de-
tail in section 4.2.3 Available at http://www.mrc-bsu.cam.ac.uk/bugs/4 The BN-Toolbox is an expansion of matlab and freely available at

http://www.cs.berkeley.edu/�murphyk/Bayes/bnt.html

3 HYDROFORMING

In hydroforming sheet metal is formed by high pressure. Up tonow
only hydroforming of tubes is used in large scale production. At the
Chair of Manufacturing Technology (LFT) at our University the us-
age of sheet metal pairs is examined which has the additionaladvan-
tage that two blanks are formed at the same time.

Hydroforming begins with the closing of the press. Afterwards the
clamp forcesF pressing the blanks on top of each other are increased
until the selected clamp force of 200, 300, 400 or 500 kN is reached.

After that the phase called preforming starts. Fluid is pressed be-
tween the two blanks and the pressure increases linearly. During that
process the volumeV of fluid between the blanks, the pressureD
and the clamp forcesF are recorded. The increasing pressure be-
tween the blanks causes a movement of the blanks into the form.
Thus the clamp forces has to be selected so that a movement of the
blanks is still possible, but that leaks are avoided, at least at the be-
ginning of the process. At the end the clamp forces are too lowto
prevent leaks. In the data presented in figure 2 this effect can be no-
ticed at the end when the steepness of the curve decreases. Three of
the curves shown on that figure represent the data used for training,
and the forth is the prediction made by the hybrid BN. First leaks
occur when the volumeV is about 450 dl. Please note that there is
some scattering within the data, so that it is impossible to find a per-
fect fitting model. We didn’t use the complete data for training, to
ensure an equal number of data before and after the occurrence of
leaks. So the time distance between two data points at the beginning
is not equal to the time distance at the end.

The compression is reduced when a predetermined volume is
reached. Further increasing the amount of fluid between the blanks
would have no effect, because more and more hydroforming medium
would escape. Then the pressure is released. This is to avoidto inter-
rupt the calibration process and has technical reasons. This phase is
not of interest, the data are not used for any model.

Before hydro calibration starts the clamp forces are increased to
a large value, so that any movement of the blanks is avoided. After
that the volume is increased a second time. Due to remaining hydro-
forming fluid between the blanks, the value ofV at the beginning is
not zero, but equal to the value where preforming stops. Evenif the
clamp forces used for hydrocalibrating are equal, it is still important
to keep the clamp forces used for preforming in mind, becausedif-
ferent clamp forces during preforming results in a different amount
of metal moved inside the form, which results in a different behavior
during hydrocalibration.

At the beginning of calibration shown at figure 3, there is a steep
pressure increase until the preforming-pressure is approximately
reached. This phase could be modeled by assuming an exponential
increase5, but since such models cannot be realized with BNs we
did not pursue that approach.

Calibration is done to make sure that the edges of the workpiece
are formed correctly. So it makes sense to use a maximal volume,
respectively pressure. But there is of course a maximal threshold. If
the pressure exceeds this threshold the blanks burst, the workpiece is
damaged. This is the steep decrease of the pressure at the end. Fur-
ther increasing the volume after burst has no effect on the pressure.
Therefore, a good model helps to predict this point, such that a max-
imal possible pressure can be used at the one hand and bursting is
avoided at the other hand. The BN-models are discussed and com-
pared with the results in BUGS, where Gibbs Sampling is used for
inference, in section 4.3.5 It was tested using a BUGS model



4 MODELING

4.1 Preforming

In the model shown in figure 1 a logistic nodeSw is used to model
the decision whether leaks in the system occur or not. Besidethe
observable nodesD, F andV there are two hidden nodesSw and�V . The first hidden node named�V is successor of the volumeV
and the clamp forcesF . Since the volume, where the first leaks occur
depends on the clamp-forcesF , this node can be used to calculate the
difference between the current volume and the volume where leaks
occur. This difference is used to trigger the logistic nodeSw (switch)
which has the task to switch between the two lines used to model the
relation between volumeV and pressureD shown in figure 2. ToV F

�V
Sw

D

Discrete, observable nodeDiscrete, observable node

Continuous, observable nodeContinuous, observable node

Hidden, discrete nodeHidden, discrete node

Figure 1. Model for preforming with logistic node

control the learning behaviorn � 1 values are entered as evidence,
wheren stands for the length of the data vector containing values forF ,V andD. Then the marginal distribution of the remaining random
variableX 2 fF; V;Dg is computed whose mean, respectively its
maximal probable state, is taken as estimationX̂ ofX and compared
with the exact value ofX. Then the relative error is calculated.RelError(X) = jX̂ �XjX (8)

E. g.V andF are given as evidence, and the marginal distribution
of D is calculated and compared to the original value. A very good
result is obtained by the hybrid BN, the pressureD is predicted with
an relative error of 1.95% (see table 1). Figure 2 shows a comparison

Table 1. Accuracy of the preforming models.

Predicted Random Rel. error Rel. errorUsed Model
Variable BUGS BN-Toolbox

Logistic node Pressure 10.24% 1.95%

of the training data and the predicted values of the hybrid BN. At
the beginning, where there is only a low dispersion in the data, there
is nearly no difference between the predicted values and thedata.
After first leaks occur the dispersion in the training data increases.
Regarding the predicted data a change in the slope can be observed,
which means that the switch is working as intended. Additionally the

predicted data are between the three datasets of observed data, so that
the relative error gets a minimal value.

Besides the pure approximation, BNs have the ability to calculate
the most probable input parameters for given output parameters with-
out changing or re-learning the parameters or the structureof the net,
i. e. they are able to compute a kind of inverse function. For the pre-
forming model the clamp forcesF are predicted with an relative error
of 7,93% when givenV andD and the relative error of predictingV
is 3.76% givenD andF .
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Figure 2. Results for modeling of preforming (200kN)

On of the great advantages of BNs is that the values can be in-
terpreted easily. That means that relationships between process pa-
rameters can be evaluated using a Bayesian network. For the dis-
cussed model it gets clear, that there is a linear dependencybe-
tween the clamp forceF and the steepnessm if Sw has state 0,
i. e.m � 
onst � F .

Table 2. Steepness for different clamp forces

Clamp forces SwitchSw Steen. BUGS Steepn. BN-Toolbox
0 17.5 17.6200 kN
1 8.21 8.25
0 18.88 18.87300 kN
1 4.82 2.49
0 20.19 20.37400 kN
1 1.73 15.08
0 21.32 21.14500 kN
1 11.27 10.57

Additionally the valuesa andw of the logistic nodeSw can be
used to predict where first leaks occur by calculating where the prob-
ability that the switchSw has state 1 is 0.5. This makes sense because
there is a very steep change between the two states.P (Sw = 1ja; w; V ) = 11 + exp(��(a;w; V )) = 0:5 (9)) �(a; w; V ) = a+ w � V = 0 (10)) V = � aw (11)

The results of this calculation are shown in the table 3.



Table 3. First occurrence of leaks during preforming

Clamp forces Leaks BUGS Leaks BN-Toolbox
200 kN 4.53 dl 3.66 dl
300 kN 4.45 dl 4.02 dl
400 kN 6.89 dl 3.83 dl
500 kN 5.00 dl 4.85 dl

Here differences between the two models occur. Since the max-
imal volume reached during preforming for a clamp force ofF =
400 kN is 5.3 dl a meaningful result must be between 0 and 5.3 dl.
Larger values mean that only one line is used for modeling. That
has happened for the BUGS model and is also an explanation forthe
different steepness in table 2 for F = 400 kN andSw = 1.

4.2 Linear approximation

For modeling hydrocalibrating two lines are insufficient. Using more
than one logistic node failed due to convergence problems inthe
training process. So we tried a model which makes a discretization to
learn nonlinearities and uses the information stored in thecontinuous
nodes to make a linear approximation between discrete points.

In this section we explain how a linear approximation̂f(x) off(x) between several base pointsxk can be calculated, e. g. a lin-
ear approximation for the pressureD given the volumeV . This is
done by adding a discrete nodeXd, e. g.Vd, for the selection of a
suitable base point. Beside that a nodeQe that calculates the error
made by approximatingX with Xd is needed. (See figure 4).

Now we will describe possible weights for the calculation ofan
linear approximation, but it should be clear that these are not the
only ones. The comparison between learnt and suggested weights is
presented in section 4.4. The formula to get an estimationf̂(x) off(x) is f̂(x) = f(xk) + f 0(xk) � (x� xk) (12)

wheref 0 is the first derivative off . This formula is compared to
the calculation of the mean of a continuous nodeY in a Bayesian
network withZ as its continuous parent, e.g. the calculation ofD
depending onV : �Y [k℄ = �Y0 [k℄ + wY [k℄ � z (13)

Setting�Y0 [k℄ = f(xk) and the weightwY [k℄ = f 0(xk), in our
example�D0 [k℄ = D(Vk) andwD[k℄ = D0(Vk), it can be seen
that a Bayesian network is able to calculate a linear approximation
given the differencex� xk. The differencexk � x between the se-
lected base pointxk and the current value ofX is calculated by a
continuous, hidden nodeQe which is a successor ofX and a hidden,
discrete nodeXd, used to select the correct base point. Setting the
mean�Qe0 [k℄ = xk and the weight betweenX andQe = �1 sup-
plies the correct result. The selection of the correct base point has to
be insured by setting�X0 [k℄ = xk. This results in�Qe[k℄ = �Qe0 [k℄ + wQe[k℄ � x = xk � x (14)

The wrong sign has to be compensated by changing the sign of the
weightwY towY [k℄ = �f 0(xk) assuming thatY is the node repre-
sentingf(x). Of course piecewise linear approximation is not limited
to only one dimension, due to the fact that Taylor progression works
also in a multidimensional space. But the reader should keepin mind
that the number of parameters to be learnt for the output nodeis pro-
portional to the product of the number of base-points selected for the
input variables.

4.3 Hydrocalibrating

For the modeling of hydrocalibrating we used linear approximation.
The special problem is that the data we got stems from provingthe
stability of the blanks. That means that the volume is increased un-
til one blank bursts. So the curve for hydrocalibration in figure 3
has an non-continuous point. We tried to model hydrocalibrating us-
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Figure 3. Modeling hydrocalibrating (200kN) with BNs

ing linear approximation with 6 different base points. The accuracy,
presented in table 4, is below the models for preforming. There are

Table 4. Accuracy of the calibration models.

Predicted Random Rel. error Rel. errorUsed Clamp force
Variable BUGS BN-Toolbox

200 kN Pressure 31.19% 28.6%
300 kN Pressure 26.87% 23.38%

two reasons for that behavior. Firstly it is not possible to predict the
steep slope, where the blanks bursts, due to dispersion in the data.
This causes a great relative error when the hybrid BN predicts a high
value and the exact value is very low. The second is the methodused
for prediction. To calculate the prediction for the pressure the vol-
ume was entered as evidence. Then, after passing the distribute and
collect-messages, the marginal distribution of the pressure node is
calculated. That means that not only one, but all six states for the
discrete volume are taken into account, of course weighted accord-
ing to their probability. The normal distribution for the six states of
V are shown in figure 3, multiplied for optical reasons with a factor
25. Shortly before or after the burst there are two differentdistribu-
tions having a high probability. One is predicting a high value, the
other is predicting a low one. So it is not possible to model a real
non-continuous point, but the hybrid BN shows an acceptableper-
formance.
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Figure 4. Model for modeling the calibration process

4.4 Analysis of the weight

This section shows which means and weights are learnt by the
Bayesian network. Comparing the results in table 5 with the sug-
gested values shows great differences. According to section 4.2�Qe0 [k℄ should be equal to the base point used and thus�Qe0 [k℄
= �V0 [k℄. Additionally the node Qe should calculate the difference
between the used base point�Qe0 [k℄ and the current value ofV
and thus get the value -1. Regarding the following equationsexplains

Table 5. Weights in the model for linear approximation

Var. 1 2 3 4 5 6� 6.106 6.68 8.28 10.03 10.79 11.38V � 0.056 0.31 0.74 0.47 0.16 0.34� 22.18 99.2 149.6 170.1 7.448 10.42D w -1.012 1.47 -0.968 -0.425 1.226 0.075� 3235.4 -161 68.1 -25.5 816.9 48.4Qe w -533.93 27.2 -9.33 2.68 -73.52 -3.89

why the learnt network is able to make exact predictions, even if the
selected values are different from the suggested ones. According to
section 2.1 the mean forP depending onQe respectively the mean
for Qe depending onV is:�D = �D0 + wD �Qe (15)�Qe = �Qe0 + wQe � V (16)

Thus, dropping the difference between�Qe andQe, that is identi-
fying the expectation with the actual value, the mean forD can be
calculated as�D = �D0 + wD � (�Qe0 + wQe � V ) (17)= �D0 + wD � �Qe0 + wD � wQe � V (18)

Of course, there is no single representation for�D, our suggested
solution with�D0 = D(V0); wD = �D0(V0); �Qe0 = V0 andwQe = �1 is only one possible. Using the data from table 5 equation
17 shows another possible solution.�D = 22:18 � 1:012 � (3235:4 � 533:93 � V )= �3245:2 + 539:3 � V:

To bring the equation above into a form, so thatD(V0) and the slope
at this point can be identified we introduceV0 = 6:106 which results
in �D = 45:2 + 540 � (V � V0).

Similar calculations can be done for the other base points. The
results show how the weights of a hybrid Bayesian network canbe
interpreted in the sense of calculating a linear approximation at mul-
tiple points. It cannot be expected that the values�D0 andwD repre-
sent exactly the functional value and the value of the first derivative
due to multiple degrees of freedom.

5 CONCLUSION

In the previous sections it was shown that BNs are suitable means
for the modeling of technical processes. On one side they areable
to make exact predictions and on the other side their interpretation
is easy, so BNs can be used to gain additional insight in the techni-
cal process. To model nonlinearities there are two possibilities, either
logistic nodes or linear regression. The latter has the advantage that
this kind of model is available in all Bayesian network toolsbeing
able to deal with hybrid BNs and that no special training algorithms
are necessary, which speeds up the training. At the moment wehave
not tested whether the training process of linear approximation takes
advantage from a suitable initialization which might come from clas-
sical algorithms calculating a linear approximation.
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