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Computers are used more and more in medical applications. Well-known
examples are the analysis of radiographs or MR images [12, 9]. A special
field is the analysis of human faces and facial features. Already realized
applications exist e.g. for face recognition [1, 2] or face analysis [13, 6].

With the presented system we consider the problem of diagnosis support
of patients with facial paresis. Approximately 350 patients per year are
registered in the Department of Otorhino-Larygology of the University of
Erlangen with new occurrences of this type of paresis (cf. [17] as an overview).
The current way to diagnose the paresis is a subjective judgement of the
functionality of the face muscles by a physician. The patient performs mimic
exercises such as closing the eyes or showing the teeth, while he is observed by
the physician. The subjective observations of the physician are then graded
by means of two medical indexing systems [8, 14].

One part of the rehabilitation of the patients is to perform specific mimic
exercises with the face’s musculature. The success of the therapy is also
observed by a physician or educated clinic personal. For every observation
the patient has to travel to the clinics. Furthermore, educated personal is
needed for the diagnosis and rehabilitation observation of the paresis.

The applications of our system are on the one hand diagnosis support
in the clinics. We want to improve the subjective judgments of a physician
by objective measurements and numerical features from the face. On the
other hand the supervision of the rehabilitation process of the patient will
be enhanced by placing the system to the patient’s home. The patient can
use the system in a convenient environment and does not have to travel
to the clinics. The patient does not have to pay for the more convenient
observation environment by wearing any artificial markers inside the face
and he is allowed to move in front of the system’s camera.

We present two different approaches for the analysis of facial features
which will measure the face during the performance of mimic exercises. The
result is a value for every picture with the level of asymmetry of the eye and
mouth region which can be used to classify the facial paresis. The asymmetry
of the face can be used as we handle just patients with paresis in one half
of the face. This class of patients is the most frequent class. Patients with



double sided pareses are approximately 1% of the face paresis patients.
This contribution is organized as follows: In Sect. 1.1 we compare the use
of different data sources (2-D vs. 3-D images). A survey about related work
on the field of facial image processing is given in Sect. 1.2. The localization
of facial features will be described in detail in Sect. 1.3. It is followed by
the description of the analysis approaches (Sect. 1.4). In Sect. 1.5 we show
how the analysis results can be used to classify the facial paresis inside the
observed regions. Results are shown in Sect. 1.6. Finally, Sect. 1.7 will
recapitulate the contents of this paper with the main results in a short way.

1.1 Sensor Selection

The analysis of facial images can be performed using either the frontal view in
a 2-D projection, or taking into account the 3—D structure of the head. The
first approach can be motivated by human perception. For human interaction
and human interpretation of mimics, 2—D information seems to be sufficient.
We can clearly tell whether a person smiles, frowns, or whether his eyes
fixate ours, even when we close one eye. Paralyzed parts in the face are less
perceived when they are in the lateral part of the cheeks. In the following
we concentrate on 2-D images and use a model of the projected face.

Three—dimensional information on the face is available when stereo infor-
mation is taken into account. However, it is disparity is difficult to estimate
for facial images, since these images exhibit neither significant texture —
except for areas with facial hair — for area based matching, nor many lines
or prominent points. Traditional stereo algorithms on the face thus result in
sparse or coarse depth data.

1.2 Related Work

In this section we give a survey of related areas of the field of face image
processing.

Face Localization and Tracking One of the basic components of many
systems which process face images is a face localization module. Different
approaches can be found in the literature. In the following we present exem-
plary two different approaches.

One approach was introduced by De Silva et al. [4]. A person is expected
to sit in front of a homogenous background. A gray-level image of the head



and the shoulders is captured. The edge strength representation of the image
(cf. Sect. ?7?) is used to find an elliptic region containing a high amount of
edge strength which is supposed to be the face.

Another approach was introduced by Oliver et al. [11] and bases on
the segmentation of blobs. A blob is a “compact set of pixels that share a
visual property that is not shared by the surrounding pixels”[11, p. 123],
and is thus a special kind of region segmentation (Sect. ??). Oliver et al.
use the normalized color as the visual property of a pixel. Every image
coordinate is combined with color and brightness information by generating
a vector (i, j, ﬁ, ﬁh)T' A model for skin color was trained by thousands
of samples that is valid for a broad spectrum of users. With an adaptive
strategy, face color regions are grown on the complemented image data. The

classification accuracy is close to 100%.

Face Recognition There are two major classes of face recognition oper-
ations. On the one hand there are methods using geometrical features or
template-matching and on the other hand there is the processing on grey—
level information.

The techniques basing on features or templates where analyzed in detail
by Brunelli and Poggio [3]. They show the extraction of features or the
template-matching with the goal of recognition. The results achieved by
template-matching were better.

A prominent technique which bases on the processing of grey—level infor-
mation is the Eigenface approach (e.g. [16]). The basic idea of the Eigenface
approach is to encode a face image, and compare one face encoding with a
database of models encoded similar. The encoding is done in the following
way: A face image of size N x N is interpreted as a point in an N2?-dimensional
space. A set of training images of faces with similar overall configuration (e.g.
face as the dominant image region) can be described by a relatively low di-
mensional subspace of the huge image space. Principal Component Analysis
used with different images of one person gives vectors that best account for
the distribution of face images within the entire image space. Those vectors
are called eigenfaces (cp. the eigenspaces approach in Sect. 77).

For recognition, a new face image is transferred into its eigenface compo-
nents and assigned to the eigenface with minimal distance.



Face Coding The principal component representation of face images can
also be used to encode faces, transmit the encoded information via a relative
slow line, and decode and view them at the destination. Moghaddam and
Pentland [10] propose this proceeding for the video telephony task.

Another model-based approach for this task was presented by Tao and
Huang [15]. A basic articulation model can be influenced by articulation pa-
rameters such as facial action coding system (FACS) parameters of MPEG-4
facial animation parameters (FAPs).

Medical Applications In [7] a system for the automatic diagnosis of cran-
iofacial dysmorphic signs is presented. Different multi—layer perceptrons were
trained with a training set of 31 images using back-—propagation as learning
algorithm. The classification of a face whether craniofacial dysmorphic signs
were present or not was done with a correct classification rate of 95%.

1.3 Localization and Tracking of Faces and Face Fea-
tures

In the application presented in this contribution facial asymmetries are judged
by means of asymmetries in the eyes, nose and mouth regions. The ap-
proaches we chose for the analysis of the facial paresis base on the localiza-
tion of the mentioned facial features and of their surrounding (in case of the
eyes the surrounding covers eyebrows and zygomatic). In our system the lo-
calization is done with a parametric face model, which is fitted to the image
data by an energy—minimization process.

Face Model We assume that the patient’s face is the dominant region in-
side the image. The background is expected to be either homogeneous or
a background image is captured prior to the analysis which is used to part
foreground from background. The localization is executed by calculating pa-
rameters of the face model shown in Figure 1. All calculations are performed
on the edge strength part eg of a Sobel filtered image f(Sect. ?7).

Localization The localization is performed as a four—step process. The
first step is to localize the upper arc of the head. A ring segment with
fixed width CR is found in the image which is expected to be the top of the
patient’s head. There are three parameters which have to be estimated: the
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Figure 1: Parametric Face Model. All shown parameters are optimized dur-
ing face localization.

r—coordinate z}, and the y—coordinate yp, of the origin g}, and the radius Ry,
of the arc. We expect much edge energy between patient and background.
That lets us find the parameters of the circle and of the following part of the
model in the edge strength representation of the original image. Equation 1
gives the edge—energy inside the head arc in the image:

= TR
Ey :/ / es(zy, + rcos @,y + rsin @) drde. (1)
0 R
h

To get the optimal model parameters the ratio of edge energy inside the head
arc and the area of the head arc must be optimized. This optimization is
done by the following maximization process:

(:ch*, Uh Rh*) = argmax Ey (2)

9 2y Cr. °*
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The constant C}, influences the energy to area ratio. The values of the
constants are CR = 20 and C}, = 1.4.
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The optimization is performed by an adaptive random search with a sub-
sequent local simplex method [5]. To speed up the optimization there are
restrictions for plausible parameters: The parameter z}, can vary form Ny /4
to 3 Ny/4, yy, form M /4 to M/2, and Ry, from Ny /10 to Ny/3.

The next step is to localize the ears which are modeled as rectangles
positioned below the arc of the head. The parameters which have to be
determined are the position of the origin gey, the width Wega and height
Hegy of the ears, and the distance 2Degy between the two ears. The equation
to calculate the edge—energy inside the ears’ region is

Wea Hea

Eea = / / {es(zea + w + Dea, Yea + h)+
0 0
+es(zea + w — Dea, Yea + h)} dh dw (3)

and similar to 2 the calculation of the optimal ear parameters bases on the
ratio of edge energy inside the ears regions and the area of this regions. They
can be determined as

Eea Dea) 2
(zea”, yea", Dea”, Wea™, Hea") = argmax (Eea Dea) 2

(4)
(zea-vea-Pea.Wea Hea) (Wea Hea)

with the ratio influencing constant Cey = 1.4. Additionally the distance
between the left and right ear region is involved in the optimization as they
are used as the horizontal boundaries of the face and therefore the distance
D¢y should be as big as posible.

There are anatomic restrictions for the ear parameters. The origin of
the ears gey must have a lower horizontal distance than R}, /3, the vertical
position of gey must be below the origin of the head arc gy, but with a lower
distance than Ry /2. Dea must be between 0.9Rj and Ny/3.

The eyes, which are found in the third step, are modeled as ellipses. The

parameter gey = (xey,yey)T is the position of the origin of the eyes, Aey
and Bey the length of the ellipses axis, 2Hey the vertical and 2Dey the
horizontal distance of the eye centers to each other. We use the following
equation to calculate the edge energy inside the eyes’ regions:

2w 1
Eey = //es(xey + Aeyr cos ¢ + Dey, yey + Beyr sin ¢ + Hey) +
00

+es(zey + Aeyrcos ¢ — Dey, Yey + Beyrsin ¢ — Hey) drdé.  (5)
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With the following optimization we get the eye parameters:
Eey

zev™, yev", Dev”, Aev”, Beyv", Hey" ) = argmax

( ey yey", Dey", Aey”, Bey", Hey ) (zey,yey,gey,Aey,Bey) (Aey2 N Bey2)

(6)

with a constant Cey = 1.4 influencing the ratio of energy to area of the eyes’
regions.

The anatomic restrictions here are: The horizontal distance of the origin
of the eyes gey must be less than Ry /3, the vertical position must be greater
than y; but lower than y, + Rj,. Aey and Bey must be lower than 0.4Ry,
and Dey lower than Dey. The two eye regions must not overlap and the eye
regions must not overlap the ears’ regions.

Finally the nose/mouth region is to be found. It is modeled as a triangle
stump with parameters: origin g = (Tnm, ynm)?, height Hpm, length of
base line Wnm and the length of top line Thm.

The amount of edge strength in the nose mouth region can be determined
by the following equation:

Cey

Hnm 1
h
Enm = / / eg (xnm+w (an - H (an _Tnm))) ynm+Hnm) dw dh
0 -1 nm

(7)

The optimal parameters are found as
(znm*, ynm™, Wnm”*, Tnm”, Hnm™) =

(Enm)“"™ Hpm
argmax

(znmynm-Wnm,Tnm-Hnm) Wnm + Tnm

(8)

Here the constant to influence the ratio of edge energy to area is Chym = 1.2.
The height of the nose/mouth region appears in the numerator of the ratio
in (8) to avoid that the optimization result is a region that covers just the
nostrils or the mouth and not both of them.

The horizontal distance of the origin gy, must be lower than Dey /3 from
ey- The vertical position must be between yey + 2Dey and yey + 3Dey-.
Wnm must be between 2Dey and 3Dey, Thm between Dey and 2Dey, and
Hnm between Dey and 3Dey.

All the restrictions to the optimized parameters were imposed because
of observations of anatomic facts. The constants CR, C},, Cea, Cey, and
Chm which were used for the calculations were determined experimentally by
localization and tracking of patient faces and facial features in 1000 images.
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Tracking When the face and the facial features are localized in one image
(i.e. the parameters of the face model are calculated) the face and features
can be found in the following image in approximately the same position as
we postprocess a video stream with 25 frames per second and a relatively
slow moving patient.

We initialize the simplex optimization with the parameters from image ¢
and a set of parameters which are normal distributed with mean old param-
eter and variance depending on the expected parameter variation.

That reduces the search area very much and we initialize the simplex
optimization with less parameter sets (instead of 5000 we use 500) to get the
optimal parameter in a reliable way. The reduction of the initialization set
also results in a noticeable decrease of calculation time (instead of 40 sec we
need 8 sec per image).

1.4 Analysis of Facial Paresis

As written in the introduction we operate with patients with single sided
facial pareses. In this case asymmetries can occur in the eye and mouth
region when specific mimic exercises are performed. This asymmetries are
considered to be symptoms for the present paresis. We will give two different
data driven analysis methods for the analysis of the eye region and mouth
region of a human face.

The first mimic exercise is to lift up the eyebrows such that wrinkles will
appear on the forehead. In the following we will call this exercise “frowning”.
Depending on the grade of paresis, some patients are not able to lift the
eyebrow. This will result in certain asymmetries in the eye/eyebrow—region.
Also the second exercise, the closing of the eyes, can generate asymmetries in
this face area, as some patient are not able or have severe problems to close
their eyes.

The other two exercises tell us something about the patient’s mouth re-
gion. Asymmetries can arise when patients try to point their mouth or when
they show the teeth. We record images of the patient while he is performing
the mentioned exercises. To grade the asymmetries we need an additional
view, the relaxed face.

Comparison of Intensity Values and Edge Strength The first at-
tempt is the direct comparison of gray—level values of mouth and eyes. To



get a feature of the eye region, we take the gray—values of the left eye, mir-
ror the single lines and match the gray—levels with the right eye by varying
the z— and y—coordinate to find the minimal absolute sum Dj of the pixel
differences.

Di=min [ |(f(2,9)~f(2(Bey—Dey)~a-+1,y—2 Hey+y) du dy. (9)

right Eye

The absolute sum divided by the area of the right eye (in our face model
both eyes have the same size) is taken as feature ¢;.

Di
(AeyBey)’

To analyze the mouth region we find the row index r,,;, inside the mouth
region that will give the minimal sum of absolute differences when matching
the pixels on the left of row r,,; with those on the right side. Row 7,

represents the vertical symmetric axis of the mouth which is the elongation
of the nasal labial fold.

(10)

C1 =

T Hnm
Dy=min [ [ [(f(z.9) - f2r —2,y)|dedy (11)
Mouthleft 0

D; is devided by the area of the analyzed region to get a feature for the
asymmetry of the mouth region.

D3

e 12
T'min Hnm ( )

Cy =
To keep the following more predictable: Odd-indexed features cy; ;1 result
from comparisons of the eye regions, even—indexed features co; result from
the mouth region. As mentioned before interesting areas inside the face are
often regions where changes of the gray-values occur. Such regions appear
emphasized in the edge—strength representation of the image. For that reason
we additionally applied the methods not only on the gray—levels f but also
on the edge—strength part eg of the Sobel-filtered image. That gives us the
next two features cs for the eye region and c4 for the mouth region.



Using averaging filter responses for face analysis The second class
of approaches for the analysis of facial asymmetries arises from the theory of
steerable filters [18]. We use the response of averaging rotated wedge filters
to characterize the direction information in the environment of certain key
points (Figure 2). The key points here are the corners of the eyes and the
mouth and the extracted information contains the opening angle of those
facial features (Figure 3). The disadvantage of this approach is that the
positions of the angles of the eyes and the mouth have to be determined as
exact as possible. This additional localization is of course another source
for errors. The localization of these features can be very hard even for a
exercised person and it is often the case that just an unprecise estimation
can be performed.

To get an estimate for the position of the angles of eyes and mouth we
use the columns of the surrounding boxes of eyes and the mouth. We noticed
that the angles often appear noticeable darker than the surrounding intensity
values. The search for the angle positions is started at the columns of the
outer borders of the localized facial feature regions (cf. Sect. 1.3). We calcu-
late the average intensity value of one column, and compare the minimum of
the column to it. If the quotient is below a threshold 6, of 6,,, we stop the
process and consider the angle as found. This simple method gives useful
results which are used in the analysis process.

We take the localized eye angles and mouth angles as the key points of
the wedge filters. The filters are rotated not the whole 27 but only 7 over
the face feature in 2 degree steps which gives 91 averaged gray-values for
every localized four facial feature angle. The opening angle of the wedge is
6 degree.

The results are the four vectors w;,i = 1,...,4 of filter responses with
91 entries each w; = [w; 1, ..., wi,gl]T. Feature w; results from the filtering
of the corner of the right eye, w; from the left eye, w3 from the right corner
of the mouth, and w, from the left corner. The filters are also applied to
the edge-strength part eg of a Sobel-filtered image. That gives another 4
vectors ws to wg resulting from the respective facial feature corners. With
these eight vectors we can calculate another eight features values to analyze
the facial asymmetry. c5 is the absolute component difference sum of w; and
wsy.

(13)

91
Cs = Z |w1,i — Wy,
i=1
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Figure 2: a) an averaging mask centered at key point p}.. b) the response of
the individual wedge filters. c) the reconstructed (Gaussian smoothed) filter
response

6

The same is done with w3 and w, to calculate the feature cg, c; with ws
and wg, and cg with w; and wg. The feature cg is generated after matching
w; to wy. This is done by translations (¢;) and scalings (s1) of the vector
components of ws:
91
cog = miIll 3w — s1 Wit (14)
=1

81,81 4
1=

Analog to the feature cg the features cyg, ¢11 and ¢ can be calculated.

1.5 Classification of Facial Paresis

To classify a face whether a paresis is present or not, we proceed as follows.
First we calculate the features c; to c;5 while the person’s face is in the
following states:

1. relaxed face: all face muscles in a relaxed state

2. lifting up the eyebrows: the result of this motion are wrinkles on the
forehead
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Figure 3: Smoothed responses of the wedge filters applied to the angles of
the eyes and the mouth

3. closing the eyes: patients with paresis in the eye region have problems
to do this
4. pointing of the mouth

5. showing the teeth: the last two exercises give information about a
potential paresis in the mouth region

That gives five sets of the twelve parameters each which are used for classi-
fication:

L. Cinorms - Ci2.norm: €xtracted parameters while the face is in a relaxed
state

2. Ci,frown, -+, C12,frown: €xtracted parameters while frowning

3. Cicloses -+ C12,close: €Xtracted parameters while closing the eyes

4. ci tipy -, C12,point: €xtracted parameters while pointing the mouth
5. C1teeth, s C12,teeth: €Xtracted parameters while showing the teeth

To analyze the facial paresis we are interested in asymmetries which are
caused by the performation of the mimic exercises. To subtract the asymme-
try information from the extracted features which is caused not by the paresis
but other factors like the illumination or anatomic reasons, all the parameters

Ci,frowns »++» C12,frowns Ci,closes +-+y C12,closes Cl,tips -5 C12,tip, and C1,teethy «+-3 C12 teeth
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are normalized by the parameters ¢i norm, ---, Ci2,norm, Which mainly contain
asymmetry information not generated by the mimic exercises.
This normalization is done by calculating the ratios

1 Cl,frown C12,frown

' Cl,norm ”my C12,norm '
2 Cl,close C12,close

' Cl,norm n C12,norm '
3 C1,tip C12,tip

’ Cl,norm LA C12,norm '

4 Cil,teeth C12,teeth

Cl,norm [ C12,norm '

The four sets of normalized parameters with 12 values each are finally
used to detect a facial paresis. Again, the odd-indexed normalized param-
eters contain information about the eye region, even—indexed normalized
parameters about the mouth region. In the present state of the system the
normalized features are thresholded to get the information whether facial
paresis exists or not. For every set of features we calculate if facial pare-
sis is present. E.g. if e Cimon? Tramms OF cclli—oty’; are greater than the
thresholds 61, trown; 01,closes 01,frown, OF 01 cl0se We consider a paresis in the eye
region. If ey gy OT ;2:‘”’1 are over the thresholds 602 frouwn,
02 close B2,points OF 02 1eetn facial paresis in the mouth region is supposed.

This gives six ways to detect facial paresis in the eyes region and another
six ways to diagnose the mouth region. The classification results of all twelve

feature sets are presented in Sect. 1.6.

C1,frown Cl,close Cl,point

C2, frown C2,close C2,point

1.6 Experimental Results

The evaluation of the whole diagnosis support system was performed with
16 patients with different grades of paralysis and 4 healthy persons. In this
section we present the results of all our experiments.

We started with the generation of image sequences of the 20 persons. The
persons performed mimic exercises in front of a homogeneous background.
and the image series including 20 images were taken when the extremal po-
sitions of the exercises described in the last section were reached. That gives
five image sequences of length 20 of every person.

In every first image of the series the face was located by means of the
parametric face model and tracked in the remaining 19 images. In Figure 4
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Figure 4: Localization example of face and facial features

Head: (o yp* Ry") (191,123,65)
Ears: (xea*,yea*,Dea*,Wea*,Hea*) (192,144,20,62,93)
Eyes: (l‘ey*, yey*, Dey*, Aey*, Bey*, Hey*) (194, 153, 31, 26, 22, 1)

NOSG/MOUth (J‘Jnm*, ynm*, an*, Tnm*, Hnm*) (190,229, 63, 31, 43)

Table 1: Computed parameters (see Figure 1) for real face

the localization results are shown graphically. In that example the input
image was of size 384x288. The calculated parameters are shown in Table 1.
Totally the localization was successful in 82% of the eyes and in 73% of the
mouth and whenever the facial features where localized correctly the tracking
was done error—free.

The localization of the eye and mouth angles (cf. Figure 5) was performed
correctly with a rate of 50% for the eye angles and 45% for the mouth angles.
In the case of an error the correct position was hand-segmented.

With the localized facial features the classification of the facial paresis

|

Figure 5: Localization example of the eye angle and mouth angle
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a) Patient
50 50

01'2'345 012345

b) Healthy Person
50 50

4l—|—'—'7
H

012345 012345

Figure 6: Results of face analysis: a) Patient, left: feature ¢; (eye), right:
feature ¢ (mouth); b) Healthy Person, left: feature ¢; (eye), right: feature
¢z (mouth)

was performed.

In Figure 6 characteristical evaluations of the features ¢; (eye region)
and ¢y (mouth region) are shown. The features were calculated while the
observed person performed the five mimic expressions described in the last
section. The numbers at the z—axis show the exercise which was performed
to calculate the feature. A patterned entry shows a change of asymmetry
that might be originated by a facial paresis.

Then we generate the ratio of the parameters belonging to the relaxed
face with the corresponding other ones. That produces for every of the twelve
features c¢; to ¢ four ratios. The ratios are compared with a threshold and if
a certain number of ratios are greater than the threshold the face is classified
to contain paresis or not.

The extracted features were used to classify face images into healthy
persons and patients with facialis paresis. The selected threshold for all
ratios was # = 0.7. Table Table 2 shows the classification results. The
correctness of a classification was ermittelt by comparation with the grading
of a medical specialist.
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Eye

C1 C3 Cs Cr Cg C11
healthy 0.75 0.75 0.75 0.50 0.75 0.25
paresis 0.6 0.6 0.67 0.67 0.73 0.73

Mouth

Co C4 Ce Cs C10 C12
healthy 1.0 1.0 0.25 0.25 0.50 0.50
paresis 0.87 0.87 0.73 0.73 1.0 0.93

Table 2: Classification results

1.7 Conclusion

We presented the basics of a system for diagnosis support and rehabilitation
supervision of patients with facial paresis. The advantages of this system are
an objective method to diagnose facial paresis. This is performed by means
of measurements and numerical features from the face.

In a first step we localized the face and facial features using a dynamic
face model and a energy maximization Simplex approach. The segmented
model parameters where used to analyze the eye and mouth regions of the
face towards asymmetries as asymmetries are symptoms for facial paresis.
The extracted numerical features made us grade the facial paresis in mouth
and eye regions. We evaluated the system by 15 patients and 5 healthy
persons.
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Cey Constant for eyes page.6

gnm Origin nose mouth page.7

znm Origin page.7

ynm Origin page.7

Hpm Height of nose/mouth page.7
Wnm Width of nose/mouth page.7
Tnm Width of nose/mouth (top) page.7

Enm Nose/Mouth energy term page.7

Cnm Constant for mouth/nose page.7

D7 Pixel difference page.8

Dy Pixel difference eyes page.9

c Face Feature page.9

D3 Pixel difference mouth page.9

w  Wedge filter feature vector page.11
w  Wedge averaged value page.11
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