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hester, Ro
hester (NY), USAABSTRACTIn this 
ontribution we present how te
hniques from 
omputer graphi
s and 
omputer vision 
an be 
ombined to�nally navigate a robot in natural environment based on visual information. The key idea is to re
onstru
t an imagebased s
ene model, whi
h is used in the navigation task to judge position hypotheses by 
omparing the taken 
ameraimage with a virtual image 
reated from the image based s
ene model. Computer graphi
s 
ontributes to a methodfor photorealisti
 rendering in real{time, 
omputer vision methods are applied to fully automati
ally re
onstru
tthe s
ene model from image sequen
es taken by a hand{held 
amera or a moving platform. During navigation, aprobabilisti
 state estimation algorithm is applied to handle un
ertainty in the image a
quisition pro
ess and thedynami
 model of the moving platform.We present experiments whi
h proof that our proposed approa
h, i.e. using an image based s
ene model fornavigation, is 
apable to globally lo
alize a moving platform with reasonable e�ort. Using o�{the{shelf 
omputergraphi
s hardware even real{time navigation is possible.Keywords: robot navigation, parti
le �lters, image based rendering1. INTRODUCTIONIn the past three years it 
ould be observed that 
omputer vision and 
omputer graphi
s are moving 
lose together.Augmented reality is an a
tive resear
h area, where both 
ommunities need ea
h other. In this paper we presentanother area where topi
s usually found in 
omputer graphi
s | namely the so{
alled image based rendering te
hnique| are an important part of a 
lassi
al 
omputer vision task | namely visual navigation of an autonomous mobilesystem. The 
ontribution of our work is, that we show1. how an image based s
ene model 
an be used to 
reate syntheti
 but nevertheless photorealisti
 images inreal{time, taken from any virtual viewpoint,2. that our image based s
ene model is 
apable also to model spe
ular re
e
tion and geometri
 stru
ture in theworld, where the use of a geometri
 model (for example CAD model), is almost impossible, and3. how virtual views of the s
ene 
an be used to globally lo
alize a moving platform with high a

ura
y based onvisual information using a probabilisti
 lo
alization approa
h.The image based s
ene model that we use will allways need the position and proje
tion parameters of the hand{held
amera for ea
h frame of the input sequen
e. To get them, stru
ture from motion te
hniques 
an be applied. Inprevious works1,2 we have shown, how to extend the methods known from literature to be able to handle espe
iallythe 
ase of image sequen
es 
onsisting of hundereds of images, whi
h are ne
essary when re
ording light �elds.Our results 
an be used in several ways. First, the image based s
ene model 
an be used to predi
t the appearan
eof the s
ene assuming a 
ertain position of the 
amera in the world. This in
ludes also existen
e of 
ertain features(light straight line, 
orners, et
) dependent on the viewpoint, for example in the 
ase of spe
ular re
e
tions. In ourwork we 
on
entrate on the s
ene model; the features that are used for lo
alization of the robot are based on thewhole image, i. e. we 
ompare pixel by pixel the image whi
h has been predi
ted, with the image, whi
h is seenFurther author information: (Send 
orresponden
e to B. Heigl)B. Heigl: E-mail: heigl�informatik.uni-erlangen.deJ. Denzler: E-mail: denzler�
s.ro
hester.edu



by the 
amera. Se
ondly, be
ause of the s
alability of the quality and resolution of the s
ene model, the approa
h
an be used either for global lo
alization, when almost no information about the position of the robot is available,or for lo
al re�nement of an position estimate. The latter one might be ne
essary for navigating between doorsor a

urate do
king tasks. Third, our work 
an be used in any environment, where a 
lassi
al geometri
 model isdiÆ
ult to re
onstru
t or almost impossible. And �nally, the image based s
ene model 
an be ideally 
ombined withany other state estimation problem besides lo
alization and navigation, where some information extra
ted out of theimage must be 
ompared with the expe
tation given a 
ertain state estimate. Thus, the model �ts optimally intothe framework of probabilisti
 state estimation using parti
le �lters.The approa
h presented in this paper is related to and motivated by two previous publi
ations of other authorson probabilisti
 lo
alization and visual navigation. In the paper of Fox, e. a.3 an approa
h has been presented forprobabilisti
 self{lo
alization of a mobile system based on 
lassi
al roboti
 sensors. The approa
h was extended inthe work of Dellaert, e. a.4 to visual information from the 
eiling of a museum. In that 
lass of probabilisti
 methodsthe observation model | spoken in terms of statisti
s the likelihood of observing information given the 
urrent stateof the system | must be evaluated repeatedly. This means for visual navigation that features 
omputed in the
amera image must be 
ompared with features whi
h would have been observed if being at a 
ertain position. The
omparison in 
ombination with the a priori information of being at a 
ertain position leads to the a posterioriprobability of the position. Self{lo
alization then means maximizing the a posteriori probability with respe
t to theunknown position.In the work of Dellaert4 a map of the 
eiling is manually built and for ea
h position the 
orresponding 
ameraimage was rendered. This 
an be done without mu
h e�ort, be
ause the 
amera points perpendi
ular to the 
eiling.As a result the degree of freedom of the system is three, i. e. the movement in a plane parallel to the 
eiling androtating around an axis whi
h is parallel to the opti
al axis. Having su
h a 
on�guration, the rendered images dependonly on the position of the system and the rotation angle, sin
e the distan
e to the 
eiling is known and 
onstant.This makes rendering fast and map representation as simple as possible.In our work we extend this approa
h by using the idea of the so{
alled light{�eld or lumigraph approa
h.5,6 Inorder to represent a s
ene, no expli
it and 
omplete geometri
 model needs to be 
onstru
ted. In 
ontrast, the s
eneis represented by a 
ertain amount of images together with an in a

ura
y s
alable, lo
al geometri
 approximation. With this representation photo{realisti
 e�e
ts like mirroring or spe
ular re
e
tion 
an be modeled even for very
ompli
ated obje
ts, where geometri
 modeling is very diÆ
ult or nearly impossible. Having su
h an image basedmodel of a s
ene 
ertain algorithms exist for fast rendering of new and yet unsighted views. This means that given anarbitrary position in the world, the 
orresponding image whi
h would be seen by the 
amera 
an be 
omputed. Thisis exa
tly the demand for visual navigation, where no �xed or known relationships for the 
amera/s
ene 
on�gurationexist. Another advantage is that the light{�eld, i. e. the model of the s
ene, 
an be re
onstru
ted automati
allywithout user intera
tion by methods from stru
ture from motion.1The idea and the stru
ture of our paper is the following. First a light{�eld is re
onstru
ted by using only avery rough or no geometri
al approximation, 
omputed automati
ally by the approa
h des
ribed in a paper of Heigl,e. a.7 (Se
tion 2). During self{lo
alization, parti
le �lters are used whi
h propagate the 
onditional probability ofbeing at a position in the world given the observed data (Se
tion 3). Se
tion 4 des
ribes how to bring togetherthese two approa
hes for the task of visual navigation. In Se
tion 5 we present experimental results for do
king arobot to a 
ertain position in the world based only on visual information and a model of the world presented bythe automati
ally generated light{�eld. The results show at least, that our image based model is a

urate enoughto outperform lo
alization and navigation based on odometry information. The paper ends with a summary and anoutlook to future work (Se
tion 6).2. IMAGE BASED MODELING AND RENDERINGFor visual robot navigation, we need a powerful visualization model whi
h 
an be a
quired easily and whi
h 
an beused to render views in real{time. As we don't want to restri
t our environment to spe
ial geometri
, surfa
e, orillumination properties, we need a model whi
h is able to 
reate photo{realisti
 views in spite of 
omplex geometryand spe
ular e�e
ts.One 
on
ept ful�lling these requirements is the so{
alled light{�eld5 or lumigraph6 approa
h, whi
h is an imagebased method for visualizing s
enes in real{time. The main idea is the following. If a single view is taken from as
ene, it 
an be interpreted as a bundle of viewing rays 
oin
iding in the proje
tion 
enter of the 
amera. Having



st
uvFigure 1. The light{�eld data stru
ture. A viewing ray is parameterized by a quadruple (u; v; s; t). For ea
h viewingray a 
olor value is stored.many of su
h s
ene views, one gets a more or less dense sampling of all possible viewing rays within the s
ene. Torender new virtual views, the required viewing rays must be interpolated from the dis
rete sampling. If informationabout s
ene geometry is known, it 
an be used to improve the interpolation. In 
ontrast to geometry based methods,this approa
h impli
itly handles non{Lambertian e�e
ts like mirroring and spe
ularities and even 
omplex geometrieslike fur and hair.The light{�eld data stru
ture provides a dis
rete 4{D parameterization of viewing rays by 
onne
ting dis
retegrid positions on two �xed parallel planes. Figure 1 shows su
h a 
on�guration. On ea
h plane, a lo
al 
oordinatesystem is de�ned, whi
h is able to address ea
h point by two 
oordinates s; t or u; v, respe
tively. A quadruple(u; v; s; t) spe
i�es one point on ea
h of the two planes. The interse
tion line between those points 
orresponds tothe a

ording viewing ray. Usually, these 
oordinates are integer values and therefore only �xed dis
rete samples ofviewing rays 
an be stored in a given data stru
ture of this type. There exists a spe
ial interpretation of the twoplanes whi
h is useful when 
reating a light{�eld from real 
amera images. Suppose the 
ase that the grid points onthe st-plane are proje
tion 
enters of 
ameras. By 
onne
ting one st-point with any grid point in the uv-plane, allviewing rays of the 
amera view are spe
i�ed whi
h 
orrespond to a pixel 
olor value.This �xed spatial arrangement requires either that the 
amera view points are ordered in a grid or that this �xeddata stru
ture has to be resampled from arbitrary views. The �rst alternative is diÆ
ult to a
hieve, as it requires a
ompli
ated te
hni
al equipment for moving the 
amera. The se
ond has the disadvantage, that image informationhas to be resampled twi
e: �rst for resampling the data stru
ture and se
ond to render a virtual view. Furthermore,one has to 
hoose a �xed sampling resolution for all images, whi
h leads to subsampling or oversampling e�e
ts.To avoid all these disadvantages 
aused by using the light{�eld data stru
ture, we have developed a new methodfor rendering virtual views dire
tly from real 
amera views.7 Depth information given by lo
al depth maps 
an be
onsidered to improve rendering quality in an adjustable quality.The basi
 prin
iple of the method is the possibility to proje
t points of a plane into a 
amera by a single 3� 3proje
tive mapping matrix B. This pro
ess also 
an be reverted so that ea
h pixel of an image is proje
ted onto aplane by multipli
ation of its 
oordinates with B�1. Having a real 
amera (subs
ribed with the image number i)and a virtual 
amera (subs
ribed with V ), the whole mapping from the real 
amera to the virtual one via a givenplane 
an be 
al
ulated by the multipli
ation with the 3� 3 matrix BVB�1i . Figure 2 visualizes this pro
edure.If the s
ene surfa
e 
orresponds to this plane and the surfa
e is Lambertian, this mapping will result in an optimalrendered view. Noti
e, that if the virtual view point is near the view point of the real 
amera, even spe
ularitiesand small deviations of the plane from the true geometry a�e
t the rendered view just slightly. This e�e
t 
an beexploited when having many real views from many di�erent view points by suitably weighting those real 
ameraviews whi
h are most adja
ent to the virtual view.



Figure 2. Mapping a 
amera im-age into a virtual view via a givenplane.
scene geometry

approximative
plane

recording
positions

virtual cameraFigure 3. Drawing triangles of neighboring proje
ted 
amera 
enters. Thes
ene geometry is approximated by a single plane.To determine these neighboring real 
ameras, their proje
tion 
enters are proje
ted into the virtual 
amera andtransformed to a net of triangles by Delauny{Triangulation. Within one su
h triangle, parts of those images aresuperimposed whi
h 
orrespond to the triangle 
orners. In the implementation ea
h triangle is drawn for ea
h
ontributing image on
e, therefore three times. To get the 
orresponding pixels, the upper des
ribed transformationis applied ba
kwards resulting in the transformation matrix BiB�1V . The weighting fa
tor of ea
h overlayed triangleis 1 at the 
orner whi
h 
orresponds to the 
ontributing image and 0 at the others. In between the weighting fa
torsbuild a 
at ramp, similar to Gouraud Shading.In the simplest 
ase we 
an use a single plane to approximate the s
ene surfa
e for the upper des
ribed mappingpro
ess. This may result in ghosting artifa
ts at those parts of the surfa
e, where the s
ene geometry largely deviatesfrom this plane. To redu
e this e�e
t, approximating triangles 
an be used instead of one single plane.The 
orners of these triangles 
an be 
al
ulated from a depth value whi
h is available by a simple look{up in thedepth map 
orresponding to a real 
amera. The prin
iple 
an be seen in Figure 3. The 
onne
tion lines of the virtual
amera 
enter with ea
h 
amera 
enter of the re
ording positions are interse
ted with the s
ene surfa
e resulting ina 
orner of an approximating triangle. To get this interse
tion point, we 
an use the distan
e of a re
ording 
amerato the s
ene in that viewing dire
tion whi
h is given by the upper noti
ed 
onne
tion line. This distan
e 
an bedetermined by a simple look-up in the depth map 
orresponding to the real 
amera view.The single triangles of the proje
ted net may be
ome very large if the virtual 
amera is situated very 
lose tothe re
ording positions and as a 
onsequen
e, the 3-D triangles also 
over large parts of the s
ene surfa
e and theapproximation of the s
ene geometry be
omes worse. To avoid this e�e
t ea
h triangle 
an be subdivided further byinserting three new points at the medians of the sides.By this pro
edure, the re
onstru
ted s
ene surfa
e 
hanges with the 
hange of the virtual view point. Thisapproximation 
overs adaptively exa
tly all those parts of the s
ene geometry whi
h are relevant to the a
tual view.For example, invisible 
on
avities are not re
onstru
ted. So the 
osts to render the triangles are redu
ed enormously
ompared to the 
ase, when using a 
onsistent geometri
al model for all virtual viewing points 
ommonly.Noti
e, that the whole method also is appli
able without any 
hanges, when the virtual 
amera is situated betweenthe re
ording positions and the s
ene. In this 
ase, the same formulas for mapping are applied. The 
amera 
entersof the re
ording positions are proje
ted by the usual multipli
ation with the proje
tion matrix, ignoring the fa
t,that the proje
ted point then lies behind the virtual 
amera, resulting in a mirrored proje
ted triangle net. Thistriangle net exa
tly re
e
ts whi
h real views 
ontribute to a given image pixel in the same sense as mentioned above.3. PROBABILISTIC SELF{LOCALIZATION AND NAVIGATIONIn the this se
tion, we summarize a framework for probabilisti
 lo
alization, basi
ally in a

ordan
e with the workof Dellaert, e.a..4 Knowing the position of the robot in world 
oordinate system, a sequen
e of small motions of



the robot to a prede�ned goal position 
an be done followed again by a self{lo
alization. We will denote this loop oflo
alization and movement as do
king me
hanism.3.1. The FrameworkIn the previous se
tion we have introdu
ed an image based s
ene model. The s
ene model is now applied to visionbased lo
alization of a mobile platform. Vision based lo
alization means, that based on an image ot taken at timestep t the position and heading xt of the moving platform is estimated. An advantage of lo
alization of a movingplatform is, that information of the relative 
hange of position and heading mt is available, too. This relativemovement information usually 
omes from the odometry of the moving platform. Odometry is a very a

urate 
uein the sense of small, relative motions, but highly ina

urate in a global sense.The des
ribed lo
alization problem 
an also be seen as a state estimation problem of a dynami
 system. Thedynami
 is given by the performed motionmt at time step t. The state is the position and heading xt of the platform.The observation is the image taken at time step t. Sin
e ea
h of these quantities, i.e. the motion and the observation,are usually disturbed by noise, we de�ne them as random variables. The main goal is to estimate the position of arobot given a sequen
e of a
tionsmt ea
h of them followed by observations ot. Written in a probabilisti
 frameworkwe seek for the most likely positionx�t = argmaxxt p(xtjHt) (1)= argmaxxt 1
 p(otjxt)Zxt�1p(xtjxt�1;mt)p(xt�1jHt�1)dxt�1 (2)where Ht = fmt;ot;mt�1;ot�1; : : : ;m0;o0g is denoted as the history at time t. The step from (1) to (2) arisesfrom applying the Bayes rule (with 
 being a normalizing 
onstant independent of the argument xt) and assuminga Markov state for xt, i.e. the state xt only depends on the previous state xt�1 and the 
urrently 
hosen a
tionmt. More details 
on
erning this step 
an be found, for example, in the original paper about Condensation8 or intextbooks about state estimation.9The right hand side of equation (2), whi
h involves a re
ursion from time step t�1 to time step t, 
an be dividedinto two steps for interpretation reasons: First, given a probability measure over the possible positions at time stept�1, p(xt�1jHt�1) and a 
ertain movement a
tionmt, from whi
h we know the statisti
al properties p(xtjxt�1;mt),we 
an update the a priori probability for being at a 
ertain position xt at time t. In the se
ond step, the robotsenses observations at position xt, modeled by p(otjxt) whi
h allows for updating the belief p(xtjHt) for being atthat position at time step t.Most approa
hes to the problem of lo
alization of a mobile platform di�er in the treatment of the likelihoodfun
tion p(otjxt). Feature based approa
hes use a manually 
reated s
ene map, for example CAD models, to mat
hthe observed features in the image with expe
ted ones in the map. High 
orresponden
e in the feature mat
hingpro
ess then means 
on�den
e in the estimated position xt. Landmark based algorithms work in a similar way.In our approa
h, the light�eld provides an image based s
ene model, whi
h is the most general 
ase, sin
e su
h amodel also allows a feature mat
hing strategy in the pro
ess of 
omputing the likelihood fun
tion. Additionally, themodel is generated automati
ally as des
ribed in the previous se
tion and 
an model spe
ular re
e
tions, whi
h areviewpoint dependent. Su
h artifa
ts 
annot be treated by pure geometri
 s
ene models.3.2. Parti
le FiltersThe problem is now, how to 
ompute and propagate p(xtjHt) over time. Sin
e in general the probability densityfun
tions involved in this pro
ess 
annot be given in 
losed forms, espe
ially the likelihood fun
tion whi
h dependson the sensed data, one 
annot solve (2) dire
tly. The famous Kalman �lter10 and the extensions of it (for example,the extended Kalman �lter11) has been used over 20 years in 
omputer vision and roboti
 for state estimation.The Kalman �lter is an adequate way for solving (1), if the underlying assumptions (Gaussian noise, linear statetransition, unimodal state distribution for xt) are ful�lled. In most 
ases, when working with images in naturals
enes | whi
h means high ba
kground 
lutter and ambiguities | at least the treatment of the state distribution asa unimodal Gaussian one is violated. Espe
ially in the beginning of the lo
alization pro
ess, when several positionsand headings xt are plausible, the approximation of p(xt�1jHt�1) by any kind of multimodal distribution is more



natural and useful. Then of 
ourse, the problem is how to evaluate the integral in (2), whi
h 
an be done in a straightforward way for Gaussian densities.During the past years so{
alled parti
le �lters got an enormous interest in 
omputer vision12,8 and roboti
s.3Parti
le �lters allow to estimate and propagate moments of 
ertain probability density fun
tions without having anexpli
it formulation of the density. They are also denoted as Monte Carlo Methods13 or Condensation algorithm.12Without going into detail (see for example the paper on original paper about the Condensation12 for a deepdis
ussion), parti
le �lters 
an be brie
y summarized as follows. We approximate p(xtjHt) by a set of m so{
alledparti
les. Ea
h parti
le 
onsists of a state value, xt;i 2 IRn; 0 � i < m�1, and a probability or plausibility, pxt;i 2 [0:1℄,of being in this state. The number m of parti
les has a dire
t in
uen
e on how a

urate the density p(xtjHt) isapproximated by this parti
le set. It 
an be shown that for m ! 1 the parti
le set 
onverges weakly towards thedensity p(xtjHt).12To propagate the density over time, i.e. to evaluate (2), the 
orresponding parti
le set must be propagated, whi
hin
ludes the appli
ation of the dynami
 model p(xtjxt�1;mt) to the state set and the evaluation of the likelihoodfun
tion p(otjxt). For this, parti
les xt;i are drawn from the parti
le set with probability proportional to pxt;i , andpropagated by drawing a sample xt+1;i from p(xt+1;ijxt;i;m). The probability pxt+1;i of the new parti
le is thenupdated by p(otjxt+1;i), in
luding a �nal normalization su
h thatPi pxt+1;i = 1. Problems, whi
h have to be solved,are the sampling me
hanism (likelihood weighted sampling, fa
tored sampling, importan
e sampling13), i.e. howto draw samples from a probability distribution, and the number of parti
les to approximate the density with thene
essary a

ura
y.The main point of our approa
h is, that this frameworks 
an be used in an ideal manner with the image baseds
ene model. Every parti
le xt+1;i in the parti
le set represents a hypothesis for the position and heading of themobile platform together with a probability pxt+1;i , whi
h measures the likelihood that the platform is at positionxt+1;i. The probability pxt+1;i is updated by p(otjxt+1;i), whi
h makes it ne
essary to 
ompare the expe
ted imagewith the taken one. Having the image based s
ene model, for an arbitrary position and heading xt+1;i the expe
tedimage 
an be rendered eÆ
iently as des
ribed in the previous se
tion. In the next se
tion we will explain the wholepro
ess in more detail.4. BRINGING TOGETHER COMPUTER VISION AND COMPUTER GRAPHICSThe last two se
tions have shown how 
omputer vision and 
omputer graphi
s grow together. For self{lo
alizationusing parti
le �lters the likelihood in (2) must be evaluated repeatedly. This means that from an environmentalmap virtual views of the s
enes must be rendered very qui
kly. This is a 
lassi
al 
omputer graphi
s task. Sin
ethe rendered images shall be 
ompared with images of the s
ene taken by a 
amera, photo{realisti
 rendering isne
essary. Both demands are ful�lled by the light{�eld approa
h. On the other side for re
onstru
ting the light{�eldof a s
ene automati
ally 
lassi
al 
omputer vision algorithms (stru
ture from motion) are ne
essary, whi
h 
loses theloop: 
omputer vision needs 
omputer graphi
s and vi
e versa. The 
omplete approa
h for lo
alization of a mobileplatform, for whi
h we show experiments in the next se
tion, 
an be summarized as follows:1. A light{�eld is re
onstru
ted automati
ally based on the method des
ribed in Se
tion 2. The light{�eld servesas environmental map of the s
ene.2. In the s
ene a do
king position is de�ned in world 
oordinates.3. The moving platform is initialized arbitrarily in the s
ene, whi
h means no a priori information about itsposition in world 
oordinates is provided. As a result p(x0) is uniformly distributed.4. The system then moves through the following steps until it rea
hes a high 
on�den
e of being at the �naldo
king position:� 
ompute the maximum of p(xt�1jHt�1) to get the estimated position xt�1� 
ompute a small movement mt based on the di�eren
e to the �nal do
king position (translation in thex=y{plane and rotation around the z{axis)� take an image from the s
ene



Figure 4. The robot's s
ene environment. In thetest sequen
e, the robot starts from the left andmoves towards the left elevator button. Figure 5. The autonomous moving platform witha mounted stereo head. We only use one of the 
am-eras.� update the estimate of the position as des
ribed in Se
tion 3In the next se
tion we show an experiment whi
h illustrates the 
apabilities of this approa
h by lo
alizing a robotduring its movement towards an elevator button.5. EXPERIMENTAL RESULTSIn this se
tion we des
ribe experiments whi
h use the idea of our approa
h but performs no a
tive movement yet.Our s
ene for testing was a wall with three elevator doors as Figure 4 shows.Before doing lo
alization, an image based s
ene model must be generated, whi
h is 
apable to render new, virtuals
ene views. For this task, we moved our robot (see Figure 5) in front of the s
ene and took 28 images with the robot's
amera. In this example instead of applying our stru
ture from motion approa
h, we used the robot's odometry todetermine the 
amera movement, be
ause this example is not enough textured to extra
t and tra
k enough pointfeatures to get a robust motion estimation. The s
ene geometry has been approximated by a single plane, whi
h hasroughly been estimated to be similar to the wall.To test the lo
alization 
apability of our approa
h and to simulate the navigation task, we let the robot movetowards the elevator button between the two left elevator doors. The movement en
losed translation and rotationwithin the plane of motion. During this movement we re
orded 20 frames with the robot's 
amera. We used theinformation of the robot's odometry to get a rough estimate for the 
amera movement between ea
h image pair.In ea
h of the following expermients, we initialized the position of 195 parti
les in a large area in front of theelevators randomly with arbitrary orientations in the range from 0 to 2�. In the left top image of Figure 6 a topview of the area in front of the elevators is shown with the positions of the parti
les after initialization, whi
h aredrawn as gray dots.In a �rst experiment, we used the robot's odometry as the a
tionsmt, whi
h des
ribe the relative 
hanges of theposition and heading. Figure 6 shows a 
omparison of the real 
amera view with the rendered views of the estimatedposition and the position whi
h is given by odometry. The initial position of the odometry was adjusted manuallysu
h that it is very 
lose to the true position of the robot.As the estimation of the robot's position is modeled as a whole density, we have the problem to de
ide for a singlepose estimation. For eÆ
ien
y reasons we 
hose the parameters of that parti
le number i as estimation whi
h has themaximum probability pxt;i . This approximation in theory 
orresponds to a maximum likelihood estimation insteadof to a maximum a posteriori estimation. Being aware of this, we found the position estimates always suÆ
ientlya

urate.



parti
les real estimation odometry

Figure 6. An experiment for testing the lo
alization 
apability of our approa
h when using the robot's odometry.The left images show a s
hemati
 top view of the area in front of the wall (gray area) with the elevator doors (bla
kre
tangles). The positions of the parti
les are drawn as gray dots, the moving path as given by odometry is drawnas dark line, the a
tual position of the robot is drawn as a small bla
k square. The right three images show the
omparison of real 
amera views (left) with rendered images at the estimated most likely position (middle) and atthe position whi
h is given by odometry (right). From top to bottom, the situation at the 1st, 10th, and 20th frameof the test sequen
e is shown.parti
les real estimation odometry

Figure 7. An experiment similar to the one shown in Figure 6 ex
ept that the used information about the robot'smovement is a perturbation of the odometry. This path is drawn as a gray line. The initialization step was the sameas in Figure 6, the two rows here show the situation at the 10th and the 20th frame of the test sequen
e.



In this experiment, the rendered view for the position whi
h is given by the odometry is very similar to the real
amera view. Therefore, the estimation of the true position is just a small adjustment in 
omparison to the real
amera view. But the initial position of the robot has been determined totally automati
ally and very a

urate. Thea

ura
y 
an be ver�ed by 
omparing the rendered images related to the estimation with the real 
amera image,whi
h are both shown in the �rst row of Figure 6.To test the 
apability of our approa
h for the 
ase when the odometry is erroneous, we made a se
ond experimentby perturbing the odometry information and using this perturbed information as a
tions mt. Figure 7 shows thelo
alization results for this experiment in the same wise as Figure 6. The initialization step there was the same as inFigure reff:ergreal and therefore is omitted.It 
an be seen, that the parti
les are ordered not as 
ompa
tly as in the �rst experiment, so be
ause of theerroneous odometry, an additional un
ertainty has been introdu
ed. But nevertheless, the estimation of the robot'spose is 
omparable to the �rst experiment as 
an be ver�ed by 
omparing the rendered images for the estimation.Noti
e that in this example the used odometry was so erroneous that in the 20th frame, the elevator button evenwas not visible any more.The 
omputation time using software rendering was 0:14 se
onds for ea
h parti
le. A 
oarse estimation of the
omputation time using hardware a

elerated rendering with o�{the{shelf graphi
s a

elerator boards, whi
h hasnot been installed in our mobile platform, is approximately 0:0088 se
onds per parti
le. Thus, in our experiments,every 1:73 se
onds we get an update of the position estimate whi
h seems to be fast enough to lo
alize a robot.6. SUMMARYThe idea of 
ombining the photo{realisti
 and very eÆ
ient visualization 
apabilities of 
omputer graphi
s withprobabilisti
 self{lo
alization approa
hes known from 
omputer vision enables global robot lo
alization in arbitrarynatural environments. The 
omplete framework, starting from light�eld re
onstru
tion and ending with robot navi-gation, 
ould only be brie
y des
ribed in this paper. Due to la
k of spa
e, we 
ould not go into detail des
ribing� the stru
ture from motion approa
h we usually use for light�eld re
onstru
tion. This is des
ribed elsewhere.1,2In our experiments we have used a simpi�ed method for re
onstru
ting the ligh�eld, for reasons, we havedes
ribed in the experimental se
tion.� some general problems of the parti
le �lter approa
h, like the in
uen
e of the number of parti
les on the stateestimation results.� how we de
ide for a movement while having an a posteriori distribution over the position of the mobile system.This makes in general path planing me
hanisms ne
essary, whi
h is beyond the s
ope of the paper.Nevertheless we 
laim, that image based s
ene models are a promissing alternative to 
lassi
al geometri
 basedmodels. More than that, image based s
ene models in 
ombination with eÆ
ient hardware a

elerated rendering arethe more general 
ase of a s
ene modeling, be
ause the appearan
e of the s
ene is modeled. The experiments haveshown, that even with a simple measure for 
omparing two images (in our 
ase, the pixel wise di�eren
e between two
olor images) probabilisti
 state estimation algorithms, like parti
le �lters, return a higly a

urate position estimatein reasonable time.The bene�ts of our approa
h lie in the modeling te
hnique, whi
h allows to handle s
enes or re
e
tan
e proper-ties, that are diÆ
ult to model with pure geometri
 approa
hes. Additionally, the model 
an be 
onstru
ted fullyautomati
ally. One of the main probleme of image based s
ene models is the amount of image data whi
h must bestored. Although 
ompression te
hniques for light�elds exits14 a smart way must be found to devide the world ofthe robot into small areas, ea
h area being represented by a smaller light�eld. In a 
oarse lo
alization step, for oneof these areas must be de
ided.In our future work we will 
on
entrate on showing lo
alization and also navigation in a more 
omplex environment.Also more experiments with quantitative evaluations will be performed. Finally we will prove in future experiments,that our s
ene model allows su
h an a

urate position estimation, that even navigation in narrow spa
es is possible,for example passing through a door.
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