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Abstract

In this paper we discuss and compare di!erent approaches to appearance-based object recognition and pose
estimation. Images are considered as high-dimensional feature vectors which are transformed in various manners: we use
di!erent types of non-linear image-to-image transforms composed with linear mappings to reduce the feature dimensions
and to beat the curse of dimensionality. The transforms are selected such that special objective functions are optimized
and available image data provide some invariance properties. The paper mainly concentrates on the comparison of
preprocessing operations combined with di!erent linear projections in the context of appearance-based object recogni-
tion. The experimental evaluation provides recognition rates and pose estimation accuracy. ( 1999 Pattern Recogni-
tion Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Even up to these days, the e$cient and robust recogni-
tion and localization of arbitrary 3-D objects in gray-
level images is a generally open problem. There exists no
uni"ed technique which allows the reliable recognition of
arbitrary-shaped objects in cluttered scenes. The avail-
able algorithms are mostly restricted to special types of
objects. Standard identi"cation and pose estimation
techniques use segmentation operations in order to de-
tect geometrical features like corners or lines [1]. The
classi"cation itself is based on geometrical relationships
between observations and suitable models like geometric
representations which use, for instance, wire frame or

CAD models [1]. The main problems of these ap-
proaches are due to the automatic generation of models
using training samples, and the robust detection of
geometric features.

Recently, appearance-based methods have become more
and more popular, and are used to deal with object
recognition tasks [2,3]. These techniques consider the
appearance of objects in sensor signals instead of the
reconstruction of geometrical properties. This overcomes
quite a lot of problems related to standard approaches
as, for example, the geometric modeling of fairly complex
objects and the required feature segmentation. Prelimi-
nary comparative studies prove the power and the com-
petitiveness of appearance-based approaches to solve
recognition problems [2] and suggest further research
and experiments. Now well-known and classical pattern
recognition algorithms can be used for computer vision
purposes: feature selection methods [4,5], feature trans-
forms [4,6], or even more recent results from sta-
tistical learning theory [7]. This paper will consider
and compare di!erent transforms of high-dimensional
feature vectors for object recognition and pose estima-
tion purposes.
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2. Contribution and organization of the paper

Appearance-based approaches treat images as feature
vectors. If we consider M]N images, the dimension of
associated feature vectors is m :"NM. Obviously, these
high-dimensional feature vectors will not allow the im-
plementation of e$cient recognition algorithms [8] and
the curse of dimensionality will prohibit classi"cation
[5]. For that reason, transforms are necessary to reduce
the dimensions of features. Commonly used transforms
are the principal component analysis [9}11] or in more
recent publications the Fisher transform [12]. Variations
of feature vectors dependent on di!erent illumination or
pose parameters are modeled by interpolating between
di!erent feature vectors and considering the resulting
manifolds as object models [9]. These models are called
eigenfaces or Fisherfaces } dependent on the chosen
transform.

This work extends the existing appearance-based
methods with respect to di!erent linear transforms of
feature vectors. The considered linear transformations
are based on optimization criteria which are basically
known from standard pattern recognition literature [8].
In addition, we also consider various types of non-linear
preprocessing operations which eliminate, for instance,
noise or dependencies of illumination. The main contri-
bution of this paper is therefore twofold and includes

f the comparison of di!erent preprocessing operations,
and

f the application of various feature transforms for the
reduction of dimensions.

The experimental evaluation provides an extensive char-
acterization of distinct feature transforms. We summarize
several methods for improving the recognition rates and
pose estimation accuracy of existing algorithms for 3-D
object recognition. The "nal judgement of methods de-
pends on recognition rates and pose estimation errors.

The paper is organized as follows: the next section
gives a brief overview of related work and discusses
parallels and di!erences to the main contributions of this
paper. Before we introduce mathematical and technical
details, we clarify and specify the general formal frame-
work (Section 4). The restriction of already published
approaches to the principal component analysis for the
reduction of features' dimensions motivates to consider
and to compare experimentally di!erent types of linear
projections from high-dimensional image into lower-
dimensional feature spaces. Feature transforms and the
e$cient solution of optimization problems related to
these projections form the main part of Sections 5 and 6.
Instead of using gray-level images as features, some non-
linear image transforms, which can be applied within
a preprocessing stage, are summarized in Section 5.2.
Computational aspects of the involved algorithms are

included in Section 7. The experimental evaluation of
introduced concepts is summarized in Section 9: the
recognition and pose estimation experiments are evalu-
ated with various combinations of image transforms. The
paper ends with a summary, draws some conclusions,
and gives several hints to further unsolved research prob-
lems concerning appearance-based recognition. Math-
ematical details, which are less essential for the basic
understanding of the proposed techniques, are provided
in the appendix.

3. Related work

Appearance-based approaches discussed in the litera-
ture are mostly restricted to the principal component
analysis to map gray-level images to low-dimensional
feature vectors and neglect preprocessing operations [2].
Here, the considered feature transforms are incorporated
into an optimization-based framework, which allows geo-
metrical interpretations within the feature space. The
mathematical tools which are required for a practical
implementation are provided by Murase and Linden-
baum [13]. Fields of application are medical image pro-
cessing, face recognition [14], or 3-D object recognition
and pose estimation. The major problems related to
appearance-based methods are due to unknown back-
ground objects and occlusion. Classi"cation in cluttered
scenes is discussed and su$ciently solved in Ref. [15].
The application of appearance-based methods in the
presence of occlusion is considered in Ref. [16], whereas
the in#uence of varying illumination to eigenfaces is
experimentally evaluated in Ref. [17]. The authors of
Ref. [17] show that 5-D vectors in the eigenspace are
su$cient for modeling di!erent lighting conditions. For
that reason, this work does not discuss various methods
which work with cluttered background and occlusion,
but concentrates on the comparison of di!erent optim-
ization criteria with respect to the computation of linear
projections.

4. General framework

A digital image f is mathematically represented by
a matrix [ f

i,j
]
1xixN,1xjxM

, where the range of f
i,j

is
determined by the quantization of intensity values. The
parameters N and M denote the number of rows and
columns. Let us assume, we have K di!erent classes
)

1
, )

2
,2, )

K
of objects. Examples of di!erent objects

are shown in Fig. 1. These objects are assigned to the
pattern classes )

1
, )

2
,2, )

5
. The classi"cation pro-

cedure is thus a discrete mapping which assigns an
image, showing one of these objects, to the pattern class
the present object corresponds to. If we compute the pose
parameters, the position and orientation of the object
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Fig. 1. Object classes considered in the experiments (Columbia images).

Fig. 2. Structure of feature computations: images and preprocessed sensor data are transformed into feature vectors.

with respect to the world coordinate system are cal-
culated. Usually, there exists no closed-form analytical
description of these mappings. Most systems decompose
this function into a sequence of } mostly independent
} procedures [18].

It is suggesting to consider images [ f
i,j

]
1xixN,1xjxM

as feature vectors f3Rm, where m"NM. Because of the
geometric nature of objects, however, this is not self-
evident. Due to the dimension of (N]M)-images, classi-
"ers using these high-dimensional features directly will
not provide e$cient algorithms for several reasons: in
high-dimensional vector spaces the de"nition of similar
vectors is somehow di$cult, since nearly all vectors are
considered to be neighbors [18]. Furthermore, the com-
parison of vectors is the most often used operation within
the classi"cation module and should be as e$cient as
possible. The use of high-dimensional feature vectors
contradicts this requirement [8]. To reduce the data, it is
important to select or project features from a gray-level
image. Especially for object recognition, traditional
methods use the segmentation of (hopefully discriminat-
ing) features in the image, like edges or corners of an

object. These features allow the explicit use of geometri-
cal relationships between 3-D models and 2-D obser-
vations. The geometry of object transforms and the
projection of 3-D models into the 2-D image plane are
well-understood and mathematically formalized [19]. But
the usage of segmentation results shows some substantial
disadvantages, which partially con"ne their practical use:

f the quality of segmentation highly depends on the
chosen algorithm and on illumination conditions as
well as selected viewpoints,

f robust, optimal, and reliable detection of features is far
from its implementation, and "nally

f the huge amount of data reduction induces a decrease
of information, which might also decrease the dis-
criminative power of resulting classi"ers.

Appearance-based approaches to object recognition,
however, prohibit the use of geometry, but the algorithms
do not depend on a reliable and accurate detection of points
or lines. The computation of features directly from gray-
level images can be done by di!erent types of mappings:
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1. The "rst stage might transform the gray-level image
into another image which shows special properties.
The discrete Fourier transform and spectrum [20], for
example, results in features which are invariant with
respect to translations of the objects in the image
plane and thus reduce the search space with respect to
pose parameters. Other "ltering operations, like high-
pass "lters, abate dependencies on illumination. These
transforms again lead to large feature vectors for input
signals and do not reduce dimensions.

2. For e$cient algorithms, however, it is essential that
features are projected or selected to obtain small but
still discriminating feature vectors. Because selecting
the subset of best features is an NP complete problem,
only an approximation of the optimal set can be
computed within practical applications [18,21].

The transforms which reduce the dimension of features
can have two di!erent motivations: one might be the
application of some heuristic principles which project the
feature vectors and show satisfying recognition results.
Here we will consider a restricted class of transforms
which have the property to be optimal with respect to
objective functions. The applied objective functions

f are based on basic assumptions concerning the distri-
bution of feature vectors,

f are comparatively easy to calculate, and
f induce e$cient algorithms for the analytical computa-

tion of optimal feature transforms.

Fig. 2 summarizes the general idea the subsequent
analysis is based on.

5. Gray-level features, non-linear preprocessing,
and feature selection

The classi"cation and pose estimation task is generally
formalized as a sequence of mappings which assign an
image f3Rm showing one object to a preprocessed image
h3Rm, then to a feature vector c3Rn(n;m), and "nally
to the class )i of the observed pattern class. Further-
more, related pose parameters, which are de"ned by
three rotations and three components de"ning the trans-
lation vector, have to be computed. The classi"cation
and localization of objects crucially depends on postu-
lates which are the basic requirements of most pattern
recognition algorithms. These postulates } as far as they
are relevant for our application } are summarized in the
following subsection, and they form the base of all sub-
sequent linear feature transforms.

5.1. Postulates

Usually, feature vectors suitable for 3-D recognition
are expected to show a high discriminating power and to

allow reliable classi"cation as well as pose estimation.
For that reasons, features have to satisfy basic postulates
for decision making.

f Similarity: objects belonging to the same pattern class
show similar feature vectors independent of the asso-
ciated classes.

f Distinction: objects of distinct pattern classes have dif-
ferent feature vectors, which provide a high discrimi-
nating power.

f Smoothness: small variations in pose or illumination
induce small variations in associated features.

Using these basic assumptions for the construction of
good features, we derive di!erent types of linear feature
transforms from high-dimensional into lower-dimen-
sional feature spaces. The basic idea here is to select the
transform such that the resulting features are optimal
with respect to above postulates. In detail we will con-
sider transforms which:

f maximize the distance of all features among each other
independent of pattern classes,

f maximize the distance of features belonging to di!er-
ent pattern classes (interclass distance),

f minimize the distance of features belonging to the
same pattern class (intraclass distance), and

f optimize combinations of the above measures.

However, it should be clear to the reader that linear
transforms will not improve the recognition rate of classi-
"ers, even if we choose m"n.

5.2. Non-linear image transforms

Before we transform the image matrix into lower-
dimensional vectors, we transform sensor data into
images, which show distinguished properties [22]. Exam-
ples for preprocessing operations are high-pass "lters,
low-pass "lters, the application of the 2-D Fourier trans-
form or the use of segmented images. The application of
segmented images gives also a fundamental hint how
recognition results are in#uenced by segmentation. A
comparison of gray-level and feature-based identi"cation
as well as pose estimation is possible based on this
approach (cf. Section 9). Other approaches to object
recognition do not allow comparative studies of that
kind. Within this work we use the following preproces-
sing operations: the absolute values of the 2-D discrete
Fourier transform (spectrum), the result of Gaussian
"ltering, the absolute values of second derivatives (La-
place), the edge strength of pixels computed by the oper-
ators due to Nevatia}Babu and Sobel. Finally, we also
use binary images, where edge pixels are black and the
rest white (edge images).
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Fig. 3. KLT and the ADIDAS-problem.

5.3. Optimization-based feature selection and transform

The basic idea of feature transforms is that we are
looking for mappings which reduce the dimension of
feature vectors and optimize optimality criteria related to
the cited postulates of pattern recognition systems. The
search for the optimal transform requires the restriction to
special parametric types of transforms. It seems com-
putationally prohibitive to search for the best transform
without any constraints to its properties. For that reason,
we restrict the subsequent discussion to linear transforms
which map the m-dimensional vectors if of the sample set
u"Mif3RmDi"1,2, rN from Rm to the n-dimensional
features ic3Rn. The linear transform is obviously com-
pletely characterized by the matrix U3RnCm which maps
the m-dimensional preprocessed image vector h to the
n-dimensional feature vector c, i.e.,

c"Uh. (1)

The nm components of the matrix are considered to be
the variables of the search process, and thus the search
space for suitable transforms is strongly restricted to an
nm-dimensional vector space. This makes the search
problem tractable and } as we will see in the following
subsections } induces optimization problems which can
be solved using basic and well-understood techniques of
linear algebra.

The computation of the optimal linear transform UH
makes the use of objective functions necessary which
have to be optimized with respect to the parameters, i.e.,
the components of U. In the following, we de"ne di!erent
objective functions

s
i
: G

RnCmPR,

UC s
i
(U),

(2)

where i"1, 2 ,2, according to the postulates sum-
marized in Section 5.1. A transform UH

i
is called optimal

with respect to s
i
(U), if it holds

UH
i
"argmax

'
s
i
(U), (3)

presupposed s
i
has to be maximized, and

UH
i
"argmin

'
s
i
(U) (4)

if s
i

has to be minimized. Since scaling of the matrix
U

i
would also a!ect the value of the objective, the ma-

trices are restricted to those composed of unit length
vectors. In the following we use illustrative motivations
for di!erent objectives by considering distributions of
feature vectors.

5.4. Principal component analysis

The most often used linear transform of this type
results from the principal component analysis and is
the so-called Karhunen}Loe%ve transform (KLT), [10,23].

The idea of this transform is based on the reduction of the
dimension of original image vectors h using a linear
mapping U such that the resulting feature vectors c show
pairwise maximum distance. For this transform U, the
objective function s

1
(U) thus is the mean squared

distance of all sample feature vectors ic"U ih to each
other, i.e.,

s
1
(U)"

1

N2

N
+
i/1

N
+
j/1

(ic!jc)T(ic!jc). (5)

The use of KLT provides both advantages and disadvan-
tages: the computation of the optimal linear transform
UH with respect to s

1
(U) does not require the classi"ca-

tion of sample vectors. Furthermore, feature vectors re-
sulting from KLT allow the reconstruction of images
with minimal mean quadratic error [9]. Problems, how-
ever, occur if the distribution of features is such that the
principal axes of all classes are parallel to each other.
A 2-D example, where we project the features onto the
x-axis, is shown in Fig. 3 (ADIDAS-problem, Ref. [24]).
Obviously, the projected features will allow no discrim-
ination of these classes. For this situation, the optimal
linear mapping related to s

1
will not induce discriminat-

ing features, whereas the projection on the y-axis would.
This simple example shows that other objective func-

tions than s
1
(U) seem to be useful or necessary for reduc-

ing the features' dimension and for providing a higher
discriminating power.

5.5. Maximizing interclass distance

Another plausible optimization criterion, which does
not show the disadvantages of KLT, results from the
distinction property. Features of one and the same pat-
tern class should have maximum distance to features of
the other pattern classes. In contrast to the KLT, how-
ever, this transform requires a classi"ed sample set. The
original sample data are partitioned, i.e., u"XQ ui, where
ui"Mifi D i"1,2, riN consists of all samples belonging
to pattern class )i. Thus the following objective function
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Fig. 4. Projection to null space.

can be applied only for those sample sets, where such
a labeling is available. Let ici denote the ith sample
vector which belongs to class )i. Of course, the number
ri of sample data of each class may be di!erent, i.e.,
riOrj. The associated objective function based on the
above motivated criterion is de"ned by

s
2
(U)"

2

K(K!1)

K
+

i/2

i~1
+
j/1

1

rirj

]
ri
+
i/1

rj
+
j/1

(ici!jcj)T (ici!jcj), (6)

where K denotes the number of pattern classes.
Now we use the classi"ed sample data and also de"ne

a criterion which combines the ideas of s
1

and s
2
. For

each class )i we compute the mean vector ki,
i"1, 2,2, K, and substitute the feature vectors of s

1
by the mean vectors. The objective s

3
is thus de"ned by

s
3
(U)"

2

K(K!1)

K
+

i/2

i~1
+
j/1

(li!lj)T (li!lj). (7)

If we optimize s
3

with respect to the linear transform U,
the distance between the class centers is maximized. Con-
sequently, the above ADIDAS-problem can be solved
using both s

2
and s

3
.

5.6. Minimizing intraclass distance

The objective functions discussed so far maximize dis-
tances of features. In order to take the similarity postu-
late into account, we de"ne an objective which yields
a measure for the density of features belonging to the
same pattern class. Features of the same pattern class
should have a minimum distance and therefore we sug-
gest to minimize the intraclass distance de"ned by

s
4
(U)"

1

K

K
+

i/1

1

r2i

ri
+
i/1

ri
+
j/1

(ici!jci)T (ici!jci). (8)

The use of this objective function also requires a set of
classi"ed training data. The optimal feature transform
w.r.t. s

4
results from solving

UH
4
"argmin

'
s
4
(U). (9)

The trivial solution U"0 is excluded, because U
4

has to
be composed of unit length vectors.

As we see later, the matrix UH
i

will be composed by
eigenvectors of a kernel matrix Q(i). In this application
the number of sample image vectors ifi will be much
smaller than the dimension of these vectors. Therefore,
the matrix Q(4) will have a fairly large and therefore
non-trivial null space. Projection to this null space will
minimize the objective with s

4
"0.

In this space, as Fig. 4 shows, each class will be repre-
sented by a single point. If further feature reduction has
to be applied, a proper subspace must be selected to

allow good separation of class points. This can be done
by another KLT. Due to the high dimension of the null
space and numerical problems in evaluating eigenvectors
to eigenvalue zero, we only consider combined objec-
tives which maximize the inter- and minimize the intrac-
lass distance at the same time.

5.7. Combination of inter- and intraclass distance

The simplest way of combining the inter- and intra-
class distance measure is the use of fractions or linear
combinations of s

2
, s

3
, and s

4
, i.e., we could, for instance,

de"ne

s
5
(U)"s

3
(U)#hs

4
(U), (10)

s
6
(U)"s

2
(U)#hs

4
(U) or s

7
(U)"

s
2
(U)

s
4
(U)

, (11)

and compute linear transforms using these objectives.
Herein, the weighting factor h is a free variable which has
to be chosen by the user. The following considerations
are restricted to the "rst de"nition s

5
. An experimental

comparison of s
7

(Fisher transform) and s
1

can be found
in Ref. [12].

6. Optimization of objective functions

The optimal linear transforms UH
i
, i"1, 2, 3, 4, 5, with

respect to the introduced objective functions s
1
, s

2
,2, s

5
are not obvious considering the complicated sums in Eqs.
(5)}(8) and (10). Of course, we could start a brute force
exhaustive optimization procedure, but concerning
above objectives a simpli"cation of the related optimiza-
tion tasks results from a reorganization of summations
and multiplications. Indeed, all objective functions can
be written in the following sum of quadratic forms:

s
i
(U)"2

m
+
l/1

uT
l
Q(i)u

l
, (12)
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where the kernel matrix Q(i) corresponding to the ith
objective function s

i
(U) is implicitly de"ned, and

u
l
, l"1, 2 ,2, m, denote the column vectors of the

transform U, i.e., we obtain U"(uT
1
, uT

2
,2, uT

m
) where

u
l
3Rn.
The introduction of kernel matrices shows one crucial

advantage: the optimization of the introduced objectives
s
i

is reduced to the computation of eigenvectors and
eigenvalues due to the quadratic forms involved in Eq.
(12). It is a well-known result from linear algebra that
quadratic terms are minimal (resp. maximal) if the vec-
tors u

l
are eigenvectors corresponding to the minimal

(resp. maximal) eigenvalues.
The computation of the optimal scatter matrix UH

i
thus

proceeds as follows:

1. we compute the eigenvalues and eigenvectors of the
involved kernel matrices Q(i),

2. sort the eigenvalues,
3. de"ne the n rows of the scatter matrix UH

i
to be the

n eigenvectors related to the n eigen values; herein we
take the n highest eigenvalues, if the objective function
has to be maximized, otherwise we use the vectors
corresponding to the smallest eigenvalues.

The remaining problem is the explicit de"nition
of kernel matrices, and for the implementation of
the proposed feature transforms, however, some
numerical aspects and computational considerations are
required.

We prove the validity of Eq. (12) exemplary for s
3

in
the Appendix by explicitly computing the kernel matrix
Q(3). The technical aspects of computations of other
kernel matrices are quite similar and left to the reader. In
the following, we present only the "nal kernel matrices
related to above objective functions, since these will be
required for formalizing the optimization algorithms.

6.1. Kernel matrix of s
1

Elementary algebraic transforms show that using the
objective function s

1
the kernel matrix Q(1) is simply the

covariance matrix of the sample set, which is de"ned by

Q(1)"
1

r

r
+
j/1

jfj fT!A
1

r

r
+
j/1

jfB
2

!

1

r

r
+
j/1

(jf!l) (jf!l)T, (13)

where l denotes the mean vector of the non-classi"ed
sample data, i.e.,

l"
1

r

r
+
j/1

jf. (14)

6.2. Kernel matrices of s
2

and s
3

Considering the interclass distance and the related
objective function s

2
, we get the explicit kernel matrix

Q(2)"
1

K

K
+

i/1

1

ri

ri
+
j/1

jfijfTi

!

1

K(K!1)

K
+

i/2

i
+

j/1
A

1

rirj

ri
+
j/1

jfi
rj
+
j/1

jfTj

#

1

rirj

rj
+
j/1

jfj
ri
+
j/1

jfTiB
"

2

K(K!1)

K
+
i/1

(li!lN ) (li!lN )T, (15)

where

li"
1

ri

ri
+
j/1

jfi and lN "
1

K

K
+

i/1

li. (16)

The reorganization of arithmetic operations in s
3

results
in the explicit kernel matrix:

Q(3)"
1

K(K!1)

K
+
i/2

i~1
+

j/1

(li!lj) (li!lj)T. (17)

Obviously, the matrix Q(3) is the kernel matrix of a
KLT based on mean vectors instead of feature vectors. In
contrast to other kernels, the rank of this matrix is not
bounded by the cardinality of the feature set, but by the
class number.

6.3. Kernel matrix of s
4

The kernel matrix Q(4) is given by

Q(4)"
1

K

K
+

i/1

1

ri A
ri
+
j/1

jfijfTi!lilTiB. (18)

This result shows a connection between the kernel ma-
trices of s

2
, s

3
and s

4
. Indeed the identity

Q(4)"Q(2)!Q(3) (19)

is valid.

6.4. Kernel matrices of s
5

The explicit kernel matrices for linear combinations of
objective functions are trivial. Due to the linear nature of
involved mappings the kernel matrices are linear combi-
nations of the kernel matrices of its summands

Q(5)"Q(2)#hQ(4)"Q(3)#hI Q(4), (20)

where h and hI denote the weighting factors of Q(4).
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7. Computational considerations

The direct calculation of the eigenvalues and vectors of
Q(i) is computationally prohibitive due to the storage
requirements. If we, for instance, assume images of size
128]128, which is a quite low resolution for common
computer vision purposes, we get m"16 384 rows and
columns for kernel matrices Q(i). If we suppose, for
example, that the entries of the matrix are double valued
(i.e., eight byte for each entry), this matrix has storage
requirements of about 2 GB. This simple numerical
example shows that there is a need for more sophisticated
methods to compute the optimal linear transforms re-
lated to the objective functions s

1
, s

2
, s

3
, s

4
, and s

5
as well

as associated kernel matrices.

7.1. Implicit computation of eigen vectors

The storage requirements can be reduced using a result
of singular-value decomposition theory. Let us assume
we have to compute the eigenvalues of a matrix Q3RmCm

which can be factorized as follows:

Q"FFT, (21)

where F3RmCp, p(m. As already mentioned, the size of
the matrix is intractable for the main memory of our
computer. We are interested in computing the eigenvec-
tors and eigenvalues, but a straightforward computation
is prohibited. Instead of considering Q directly, we de"ne
according to Murase and Lindenbaum [25] the implicit
matrix

Q) "FTF, (22)

and observe that there is a remarkable relation between
the eigenvalues and eigenvectors of Q and Q) .

Let u(
l
denote the eigenvectors and jK

l
the eigenvalues of

the implicit matrix Q) . The eigenvectors and values are
de"ned by

Q) u(
l
"jK

l
u(
l
; (23)

using (22) we thus get

FTFu(
l
"jK

l
u(
l
. (24)

In the next step, we multiply both sides by F, this yields

FFT(Fu(
l
)"jK

l
(Fu(

l
) (25)

and thus we get

Q(Fu(
l
)"jK

l
(Fu(

l
). (26)

The last equation shows that each eigenvalue of Q is also
an eigenvalue of Q) , and the eigenvectors are related by
the linear transform F.

This result proves that the eigenvalues and eigenvec-
tors of the kernel matrices Q(i) can be computed with low
memory requirements presupposed p;m and matrices
can be factorized in the form of [26]

Q(i)"F(i)F(i)T. (27)

For that reason, the following subsections will derive the
required factorizations of involved kernel matrices.

7.2. Reorganization of Q(1)

The kernel matrix Q(1) is the covariance matrix of the
given sample data, i.e.,

Q(1)"
1

r

r
+
i/1

(if!l) (if!l)T. (28)

We de"ne

F(1)"J2
r
(1f!l,2,rf!l)3RmCr, (29)

and it is obvious that

Q(1)"F(1)F(1)T. (30)

Before we compute the factorization of Q(2), it is ad-
vantageous to consider the decomposition of Q(3) and
Q(4) (see Eq. (19)). This concrete example shows that there
is a trade of between the storage requirements of implicit
kernel matrices and the size of sample sets: here we have
r"p, i.e., the higher r, the higher is the reliability of
resulting models. Higher p-values, however, increase the
storage requirements.

7.3. Reorganization of Q(3)

Analogous to Q(1) we get for class centers the de-
composition

Q(3)"F(3)F(3)T, (31)

where

F(3)"
J2

r
k

(l
1
!lN ,2, l

K
!lN )3RmCK. (32)

The scaling factor J2/JK is important if we use the
combined distance measures. Otherwise this factor can
be neglected.

7.4. Reorganization of Q(4)

The kernel matrix

Q(4)"
1

K

K
+

i/1

1

ri

ri
+
j/1

(jfi!li) (jfi!li)T (33)
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Fig. 5. Example of a manifold model with one degree of freedom
(rotation angle) resulting from KLT features. The model corres-
ponds to the second object shown in Fig. 1. The gray-level image
is not preprocessed.

Fig. 6. Clusters of features belonging to four classes shown in
Fig. 7. Feature transforms use the combined objective s

5
where

h"10~4. Herein, the original image matrix was transformed
into the Fourier spectrum.

can also be factorized in the required manner. The sim-
ilarity to Q(1) is evident, and analogous to Eq. (29) we
de"ne the class-dependent matrices

Fi"
J2

Jri
(1fi!li ,2, rifi!li)3RmCri, (34)

where i"1, 2 ,2, K. The factor J2/Jri is necessary,
because ri varies for di!erent classes )i. The summation
of matrix products can be written using matrix multipli-
cation, i.e.,

Q(4)"
1

K

K
+

i/1

FiFTi"
1

K
(F

1
,2, F

K
) A

FT
1
F

FT
KB

"

1

K
F(4)F(4)T. (35)

7.5. Reorganization of Q(2)

Using Eq. (19) we obviously get

Q(2)"F(2)F(2)T"(F(3), F(4)) (F(3), F(4))T. (36)

7.6. Reorganization of Q(5)

The kernel matrix of the combined objective s
5

is

Q(5)"Q(4)#hQ(3)"(F(4), JhF(3)) (F(4), JhF(3))T

"F(5)F(5)T. (37)

The weight factor h has to be positive, because of the
square root in the de"nition of F(5).

The theoretical part has introduced objective functions
which are used to compute optimal linear transforms and
which are motivated by the basic postulates of pattern
recognition. The required linear mapping is e$ciently
computed reducing objectives to quadratic forms and
solving eigenvalue problems. Related problems with stor-
age requirements of involved computations were solved
by the introduction of implicit matrices. In the following
section we will compare these transforms and techniques
experimentally. Before, it is necessary to de"ne the used
models and decision rules the experimental evaluation is
based on.

8. Models and decision rules

The classi"cation of objects is based on the introduced
features of the eigenspace. Samples of the training set are
represented by points within the eigenspace. Due to the
fact that lighting conditions, position and orientation of
objects vary, feature vectors di!er in the eigenspace. Here
we distinguish two di!erent types of models:

f manifold models as suggested by Murase and Nayar
[9], and

f Gaussian models.

More recent classi"cation methods using support vector
machines are omitted [3].

8.1. Manifold models

Objects have several degrees of freedom. Di!erent ro-
tation angles, for instance, result in di!erent feature vec-
tors. It is suggesting to use parametric models (curves)
with respect to these variables. Manifold models result
from sample feature vectors by interpolation. Fig. 5
shows 3-D feature vectors and the interpolated manifold
model. These manifolds are computed for each object
class. The class decision is based on the minimization of
the distance between an observed feature vector and the
manifold models. The parameter vector associated with
the manifold point, which has the lowest distance to the
observation, de"nes the pose parameters.
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1See http://www.cs.columbia.edu/CAVE/coil-20.html.

Fig. 7. Industrial objects captured by uncalibrated cameras.

2These images are available via URL: http://www5.infor-
matik.uni-erlangen.de.

8.2. Gaussian densities

Simpler modeling schemes characterize all sample
features assigned to one class by a single probability
density function. Here we use multivariate Gaussians for
modeling and decide for that class with the highest a-
posteriori probability. Of course, these statistical models
do not allow for pose estimation. Therefore, these models
are especially useful for those applications or training
samples, where no pose information is required or avail-
able for model generation. Fig. 6 shows four clusters of
features belonging to object classes shown in Fig. 7.
Within the chosen probabilistic framework, each cluster
is characterized by a 3-D Gaussian density.

9. Experimental results

The experimental evaluation provides a comparative
empirical study of the introduced transforms UH

i
. Before

we describe detailed results, we give a brief overview of
the experimental set up and the used image data.

9.1. Experimental setup and image data

The experimental evaluation is done on a HP 9000/735
(99 MHz, 124 MIPS) using 128]128 images. Within the
experiments we use two di!erent image databases. To
provide the capability of comparing the introduced fea-
ture transforms with other methods and di!erent ap-
proaches to 3-D object recognition, we discuss some
experiments using the standard images of the Columbia
University image database.1 We restrict these recogni-
tion experiments to the "ve object classes, which were
already shown in Fig. 1. For each object 36 training and
36 test views are available. The images show single 3-D
objects with homogeneous background rotated by 53.
Rotations of 0, 10, 20,2, 3603 are used for training. The

recognition experiments run on images showing rota-
tions 5, 15,2, 3553. Training and test sets are disjoint,
and contain images showing objects of varying pose.
Occlusion, except self-occlusion, does not occur. For
each training and test view the pose parameters, i.e. the
single rotation angle, are known. Illumination conditions
are constant for all samples.

In addition to these idealized images (homogeneous
black background) we also consider industrial parts from
a real application using an uncalibrated camera.2 We use
four objects which are shown in Fig. 7. Of each object 200
di!erent views are available, including also partially oc-
cluded objects. Planar rotations and translations as well
as lighting are chosen randomly. The set of 2-D views is
partitioned into training and test sets of equal cardinali-
ties. In contrast to the above-mentioned image database,
the pose parameters are not available.

9.2. Varied parameters and evaluation criterions

The computation of features has several degrees of
freedom. Within the experiments, we varied the following
parameters:

f dimension of used features,
f di!erent preprocessing methods, and
f di!erent objective functions.

The basic criteria for experimental evaluations are the
recognition rates, errors in pose estimates, and the runtime.
The used models are both manifold models as suggested
in Ref. [9], which also consider the pose parameters, and
simple statistical models. Statistical models assume nor-
mally distributed feature vectors for each class, and do
not use pose information within the training data. The
experiments related to pose estimation accuracy are re-
stricted to manifold models and therefore to images of
the Columbia database.
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Fig. 8. Comparison of di!erent linear image transforms using s
1
, s

2
, and s

3
(Columbia images) and di!erent models: manifold models

(left) and Gaussian models (right).

Table 1
Mean errors and deviations in estimated rotation angles based
on 10-D feature vectors for s

1
, s

2
and s

5
, and 4-D feature vectors

for s
3

Objective function Mean error
(deg)

Standard deviation
(deg)

s
1

0.71 0.78
s
2

0.71 0.79
s
3

8.45 43.32
s
5
(h"10~4) 0.69 0.77

s
5
(h"0.1) 0.70 0.78

s
5
(h"0.5) 0.67 0.74

Table 2
Mean error in pose estimates using s

1
as objective function and

di!erent preprocessing operations. The chosen dimension of
eigenvectors is 10

Filter Error (deg)

No "ltering 0.70
Spectrum 0.96
Gaussian "ltering 0.74
Edge detection 14.84
Laplace 3.81
Nevatia 2.96
Sobel 1.73

9.3. Pose estimation results

We tested the pose estimation accuracy using manifold
models. The considered object transforms are rotations
around a single coordinate axis. The features are trans-
formed by linear mappings induced by the discussed
objective functions. Table 1 summarizes the obtained
errors with respect to rotations around the z-axis of the
world coordinate system. Obviously, the best results are
achieved by the combined objectives. The overall im-
provement with respect to the standard principal com-
ponent analysis, however, is minor.

Table 2 summarizes the errors based on di!erent
preprocessing operations and a subsequent principal
component analysis in 10 dimensions. If no bijective
mappings are used, we expect a reduction of accuracy.
Indeed, the experiments show that the best pose esti-
mates result from the immediate use of the gray-level
image. The worst accuracy is obtained by using edge
images. These examples prove that the appearance-based
approach does not provide reliable pose estimates if
segmented images are used. Using images containing
lines only decreases the accuracy of pose estimates

drastically. Appearance-based pose estimation tech-
niques should not be applied to this type of preprocessed
images.

9.4. Recognition results

In the following experiments we compare various pre-
processing operations and linear transforms with respect
to the resulting recognition rates.

9.4.1. Columbia images
Using the Columbia images (see Fig. 1, "ve classes) we

compare manifold models and statistical models based
on simple multivariate Gaussians. The graphs shown in
Fig. 8 summarize the recognition results for varying
linear transforms and di!erent dimensions of used fea-
ture vectors. These experiments prove that the recogni-
tion rate is 100% for all transforms, if the dimension of
eigen vectors is at least 3 and manifold models are used.
For lower-dimensional features, s

3
dominates both with

respect to manifold and Gaussian models. The recogni-
tion results using combined objectives with di!erent
weights are summarized in Fig. 9.
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Fig. 9. Combined objective s
5
"s

3
#hs

4
, where h"10~4, 10~1, 1

2
, 1 (Columbia images).

Fig. 10. Recognition rates using s
1

and di!erent preprocessing operations.

Recognition results using di!erent preprocessing op-
erations are summarized in Fig. 10 using objective s

1
and

Fig. 11, where we have used s
3
. It is conspicuous that the

optimization criterion s
3

combined with the spectrum
shows the highest recognition rates independently of the
selected model. The main reason for that is the invariance
of the spectrum with respect to object translations in
the image plane.

All examples show that manifold models provide
higher recognition rates than Gaussian models. How-

ever, manifold models require pose information within
the training samples, probabilistic models using multi-
variate Gaussians do not.

9.4.2. Industrial objects
The next experiments use images, where no pose in-

formation is available (see Fig. 7, four classes). Therefore,
we only consider probabilistic models and analyze the
recognition in the presence of occlusion. The recognition
rates do also vary with the dimension of eigenvectors. In
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Fig. 11. Recognition rates using s
3

and di!erent preprocessing operations.

Table 3
Recognition rates using images of industrial objects shown in
Fig. 7. The dimension of the eigenspace is 20. The linear trans-
form is based on s

1
, and the columns show recognition rates

using no preprocessing, Gaussian "ltering (GF) and segmenting
the background (BG)

Class No occlusion Occlusion

* GF BG * GF BG

)
1

25 41 40 10 10 10
)

2
87 85 80 30 20 30

)
3

1 0 3 0 0 0
)

4
57 48 64 80 80 80

Average 43 44 47 30 28 30

contrast to previous experiments, we restrict the dimen-
sion of the eigenspace to 10 and 20. Table 3 shows the
low recognition rates for the industrial objects based on
linear transforms using s

1
, even if di!erent preprocessing

operations are used. Obviously, partially occluded ob-
jects cannot be classi"ed using the high-dimensional
eigenvectors and this approach. Recognition rates are

comparable to random estimates. The use of linear trans-
forms introduced above also does not essentially improve
the recognition results. Tables 4 and 5 also show the
curse of dimensionality: an increasing dimension of fea-
ture vectors does not necessarily increase recognition
results. The main reason for low recognition rates is the
presence of translations in the image plane. If we detect
the object and consider only pixels belonging to the
object, we observe a remarkable improvement of recogni-
tion rates. We get 100% even in the presence of occlu-
sion. Therefore, we use the spectrum of images (absolute
values of the 2-D Fourier transform), which is known to
be invariant with respect to translations. These experi-
ments show that rotations do not in#uence the accuracy
of recognition in contrast to translations. The segmenta-
tion of objects, i.e. the bi-partition of image points into
object and background pixels, or usage of Fourier trans-
form for object classi"cation is advantageous for recogni-
tion, if no pose information is available within the train-
ing data.

9.5. Run time

The run time behavior of the complete system is sum-
marized in Tables 6}9. All numbers are based on the
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Table 4
Recognition rates based on 10-dimensional eigen vectors. The images are preprocessed such that background and object pixels are
separated

Class No occlusion Occlusion

s
1

s
2

s
5
(0.5) s

5
(10~4) s

1
s
2

s
5
(0.5) s

5
(10~4)

)
1

90 84 88 61 30 30 30 40
)

2
99 98 98 88 100 100 100 100

)
3

92 93 92 62 60 60 60 40
)

4
87 87 87 62 100 100 100 100

Average 92 90 91 68 72 72 72 70

Table 5
Recognition rates based on 20-dimensional eigenvectors. The images are preprocessed such that background and object pixels are
separated

Class No occlusion Occlusion

s
1

s
2

s
5
(0.5) s

5
(10~4) s

1
s
2

s
5
(0.5) s

5
(10~4)

)
1

40 35 47 61 10 10 10 30
)

2
80 80 83 88 30 30 30 40

)
3

3 9 25 62 0 0 0 0
)

4
64 65 63 62 80 90 100 80

Average 47 47 54 68 30 33 35 38

Table 6
Recognition rates using 20-dimensional feature vectors

Method Recognition rate (%)

No occlusion Occlusion

Non-invariant features 47 30
Separated object/background
pixels

99 73

Spectrum 100 100

Table 7
Run time of the learning stage dependent on the dimension of
used eigenspaces (180 images)

Dimension of
eigenvectors

Computation of
eigenvectors
(min:s)

Training (ms)

Gauss Manifold

5 3:34 (10 (10
10 3:55 (10 (10
20 4:18 40 (10

Table 8
Run time of eigenvalue computations (10-dimensional eigen-
space) dependent on the number of training images

Number of images Time [min:s]

45 0:38
90 1:37

135 2:34
180 3:55

Columbia image database including 180 training images
of size 128]128. Table 6 shows the time required for
training using all images of the training set. Most of the
time is obviously required for the computation of eigen-
vectors. Table 8 shows the relation between the time for
classi"cation and the dimension of the eigenspace.

10. Summary and conclusions

Standard linear feature transforms which are broadly
used in pattern recognition and speech recognition are
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Table 9
Run time of the classi"cation module. The images are represent-
ed as vectors

Dimension of
eigenspace

Projection Classi"cation

Gauss (ms) Manifold (ms)

5 30 (10 560
10 60 (10 650
20 110 30 790

successfully applied to solve object recognition and pose
estimation problems in the "eld of 3-D computer vision
using gray-level images.

This paper has summarized various objective functions
for the computation of optimal feature transforms: the
principal component analysis, the interclass distance,
the intraclass distance, and various combinations. We
have shown how the associated optimization problems
are reduced to the computation of eigenvectors. A two-
stage re-organization of considered objective functions
leads to computational practical solutions:

1. the transform of the objective functions into sums of
quadratic forms that reduces the optimization prob-
lem to the computation of eigenvectors, and

2. the factorization of kernel matrices into products of
matrices and its transposes which induces lower stor-
age requirements for computing eigenvalues and
eigenvectors.

The experimental evaluation provides a comparison of
new types feature transforms. Based on a standard image
database, we prove empirically that the best pose estima-
tion results are provided by a transform which maximizes
a combination of intra- and interclass distances. The
recognition results show highest accuracy, if the distance
of class-speci"c mean vectors is maximized. Dependent
on the selected dimension of feature vectors we have
shown that a dimension of 4 already leads to recognition
results of 100% correctness. Instead of manifolds, we
have also tested the recognition rates using the assump-
tion of normally distributed feature vectors. Using spec-
tral features which are invariant to translations in the
image plane we observed also recognition rates of 100%
using industrial objects, where the training set includes
no pose information.

Considering these results, we conclude that appear-
ance-based object recognition systems can compete with
standard geometrical approaches both with respect to
recognition rates and run time behavior. The introduc-
tion of implicit kernel matrices has reduced storage re-
quirements.

The problems which are not yet solved su$ciently
are the explicit modeling of occlusion, the analysis of

multiple object scenes, and the construction of object
models in the presence of background features. The
application of the considered transforms to classify
and localize objects with heterogeneous background is
straightforward using the hierarchical framework intro-
duced in Ref. [15].
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Appendix A

We consider the criterion s
3

and get the following
quadratic form:

s
3
"

2

K(K!1)

K
+
i/2

i~1
+

j/1

(Uli!Ulj)T (Uli!Ulj)

"

2

K(K!1)

K
+
i/2

i~1
+

j/1

(li!lj)T UTU(li!lj)

"

2

K(K!1)

K
+
i/2

i~1
+

j/1

tr (UTU(li!lj) (li!lj)T)

"2tr CUTUA
1

K(K!1)

]
K
+
i/2

i~1
+
j/1

(li!lj) (li!lj)TB D
"2tr [UTUQ(3)]

"2
r
+
i/1

uT
i
Q(3)u

i
. (38)

The kernel matrix for this case thus is [8]

Q(3)"
1

K(K!1)

K
+
i/2

i~1
+

j/1

(li!lj) (li!lj)T. (39)
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