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Abstract. This paper introduces a uniform statistical framework for both 3-D and 2-D object recognition using
intensity images as input data. The theoretical part provides a mathematical tool for stochastic modeling. The
algorithmic part introduces methods for automatic model generation, localization, and recognition of objects.
2-D images are used for learning the statistical appearance of 3-D objects; both the depth information and the
matching between image and model features are missing for model generation. The implied incomplete data
estimation problem is solved by the Expectation Maximization algorithm. This leads to a novel class of algorithms
for automatic model generation from projections. The estimation of pose parameters corresponds to a non-linear
maximum likelihood estimation problem which is solved by a global optimization procedure. Classification is done
by the Bayesian decision rule. This work includes the experimental evaluation of the various facets of the presented
approach. An empirical evaluation of learning algorithms and the comparison of different pose estimation algorithms
show the feasibility of the proposed probabilistic framework.

Keywords: statistical object recognition, pose estimation, expectation maximization algorithm, mixture densit-
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1. Introduction

The research field computer vision summarizes a wide
range of problems from low-level image process-
ing, 3-D reconstruction, surface approximation, object
tracking to object identification and pose estimation
(Trucco and Verri, 1998). A major problem and still
unsolved task is the automatic learning, localization,
and recognition of 3-D objects from intensity images.
Generally, a recognition system is expected to iden-
tify and locate arbitrary objects of a model database in
complex scenes, even with cluttered background and
under varying illumination conditions. The involved
algorithms should have no limitations to special types
of objects or any constraints for viewing directions.
The application of statistical methods to tackle the

problem of learning, localizing, and recognizing ob-
jects is becoming more and more popular. There is
some hope that the combination of geometry and

statistics will allow the development of a new genera-
tion of vision algorithms which will improve currently
known and applied methods (Kanatani, 1996).
This work extends the probabilistic framework

for object recognition originally introduced by Wells
(1997). We describe an optimal way (at least from a
theoretical point of view) to deal with common prob-
lems in 3-Dobject recognition.Thedeveloped concepts
provide a model-based statistical recognition system
which allows! automatic learning,! identification, and! pose estimation.
The mathematical framework treats the correspon-

dence problem, relational dependencies between fea-
tures, as well as segmentation errors in a uniform
probabilisticmanner. Furthermore, the proposed theory
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allows 2-D as well as 3-D object recognition. We use
image features for recognition and for pose estimation
that range from point features to line features and we
include the relational dependencies between them.

1.1. Model-Based Object Recognition

Model-based approaches represent the state-of-the-art
techniques to solve the object recognition and localiza-
tion problem (Jain and Flynn, 1993; Ponce et al., 1996;
Trucco and Verri, 1998). Implementations of model-
based recognition and pose estimation algorithms dif-
fer from each other with respect to the representation
ofmodels, the method for the comparison of computed
image features and model data, and the judgment of
hypothesized object classes and pose parameters. Ob-
ject models and the projection, which maps features
from 3-D to 2-D, have to provide all the information
required for recognition and pose estimation. Depend-
ing on the image features used and the strategy selected
for classification, there exists a wide range of different
approaches to object modeling (Ponce et al., 1996). All
of them should provide descriptions which are unam-
biguous, unique, convenient to use, and non-sensitive
to noise or segmentation errors (Jain and Flynn, 1993;
Faugeras, 1993; Horn, 1986). In this paper observa-
tions are considered as random measures and models
are defined by probability density functions.

1.2. Motivation for a Statistical Approach

In the following, our objective is the construction of
a probabilistic object recognition system which fits all
the basic requirements of model-based vision systems.
An obvious and crucial question is, whywe should pre-
fer statistical methods to commonly used recognition
algorithms. It is important to comment on this because
there already exists a broad field of well studied and
quite powerful modeling techniques and recognition
algorithms.Most of these approaches are based on pure
geometry and the application of distance measures for
decision making (Jain and Flynn, 1993; Ponce et al.,
1996). Indeed, there are several fundamental, both the-
oretical and practical, arguments which suggest the
use of probabilistic principles for computer vision pur-
poses. The most important arguments are as follows:

1. Probabilistic methods are successfully applied and
state-of-the-art techniques in pattern recognition
(Bishop, 1995; Ripley, 1996). The success of
speech recognition systems, for instance, is essen-
tially based on statistical methods (Jelinek, 1998).

Probabilistic models facilitated the commercial use
of speech recognition systems.

2. Images and segmentation results (used both for
model generation and classification) are not stable.
There are changes due to illumination, sensor noise,
and variations in pose. Segmentation results vary
considerably. An adequate mathematical descrip-
tion is needed which incorporates these properties.
We should consider a statistical approach because
this framework is especially designed to deal with
uncertainties and randomized processes.

3. Parameter estimation techniques from mathemati-
cal statistics or non-parametric estimation methods
can be applied tomodel generation (McLachlan and
Krishnan, 1996). The availablemathematical results
will support and simplify the development of algo-
rithms.

4. A well-known theorem from decision theory states
the optimality of Bayesian classifiers with respect
to misclassification rates (Bishop, 1995; Ripley,
1996).

1.3. Addressed Problems

As it is implemented by the theoretical result on
Bayesian classifiers, the ultimate goal of all classifica-
tion systems should be the close approximation of the
Bayesian decision rule. This is claimed easily. But the
concrete construction of statistical object models ap-
propriate for solving the 3-D object recognition prob-
lem using 2-D projections is neither obvious nor non-
trivial. It is still an open problem whether statistical
methods allow to model the real world sufficiently for
computer vision purposes. For the implementation of a
probabilistic recognition system the following six prac-
tical problems have to be addressed and will guide the
remainder paper:

1. object modeling: An adequate, discriminative sta-
tistical model has to be constructed within the cho-
sen probabilistic context. We have to provide either
a discrete probability distribution or a continuous
probability density function (p.d.f).

2. model learning: Training algorithms are required
for the automatic estimation of model densities.
Manual interaction should be avoided.

3. statistical inference: Efficient algorithms are needed
for the statistical judgment of observed features and
relational dependencies.

4. matching: Recognition usually demands methods
for the computation of correspondences between
image and model primitives.
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5. pose estimation: Pose estimation has to be compu-
tationally efficient and robust.

6. classification: Classification should apply the
Bayesian decision rule.

Partial solutions to these problems were already dis-
cussed in the literature. Especially in Wells (1997) the
2-D object recognition problem using 2-D image data
is nearly completely treated; however, this approach
is restricted to 2-D point features; the important step
of automatic model learning is missing as well as the
problem of modeling 3-D objects and their appearance
in 2-D. The incorparation of projection models as well
as intrinsic and extrinsic sensor parameters is also part
of our extended probilistic modeling scheme. There-
fore we contribute some novel ideas to this existing
approach. We provide a complete probabilistic frame-
workwhich satisfies the abovementioned requirements
for 3-D object learning, pose estimation, and recogni-
tion from 2-D views. We make extensive use of the
Expectation Maximization algorithm, of independency
assumptions to beat the curse of dimensionality, and
of marginals to reduce and to decompose high dimen-
sional search spaces.

2. Related Work

The use of statistical methods for image processing
and computer vision purposes has a long tradition.
Statistics can be found in many vision systems from
low- to high-level applications (Hornegger et al., 1999;
Wells, 1997; Winkler, 1995). Fields of most practi-
cal relevance range from image and texture model-
ing (Zhu et al., 1998), image filtering and restoration
(Winkler, 1995) to recognition and pose estimation
Wells (1997). The results on probabilistic 2-D recogni-
tion and localization achieved inWells (1997) aswell as
the success of hidden Markov models in speech recog-
nition and analysis motivated our research on proba-
bilistic 3-D vision.
The object recognition process and its complexity

are (up to these days) crucially related to themodel and
thematching strategy of image andmodel features. The
recognition algorithm has to be robust with respect to
possible mismatching decisions. Statistical approaches
which deal with these types of problems are already
in use. Examples can be found in Pope (1995) and
Wells (1993). Solely pairwise statistically independent
assignments are assumed there. Like in hiddenMarkov
modeling, Wells suggests modeling the assignment as

a random process independent of the spatial distribu-
tion of features; point features and their statististical
properties are separated from the assignment; they are
assumed to be normally distributed. In the final p.d.f the
unknown assignment is eliminated simply bymarginal-
ization. Therefore the associated algorithms do not re-
quire feature matching. The final estimation of 2-D
orientation and translation can be done without con-
sidering feature correspondences.In contrast to this ap-
proach, thematching problemmight also be considered
as a labeling process. Statistical dependencies are ex-
plicitly computed by probabilistic relaxation methods
as suggested in Kittler et al. (1993). Our work picks up
the probabilistic modeling of the assignment function
as described in Wells (1993) and extends it to a more
general probabilistic setting including dependencies of
higher order and the incorporation of neighborhood
relations.
Within a probabilistic framework,the recognition of

objects is easily done by applying the Bayesian deci-
sion rule, even in the presence of incomplete knowl-
edge (Dubuisson and Masson, 1993). The same holds
for the classification module of this work. Statistical
models of objects and the observed features are used
for computing the posterior probabilities.
The pose estimation problem is considered in differ-

ent manners in the literature: some authors use view
based approaches to 3-D object recognition (Wells,
1993). There, localization corresponds to the computa-
tion of the correct 2-D view. Pose estimation is consid-
ered as a 2-D classification process (Trucco and Verri,
1998), and the precision of pose parameters depends
on the quantization of the viewing sphere.The inter-
polation of 2-D views can be applied for refinement
(Ullman, 1996). Other authors use various types of
3-D models and reduce the pose estimation problem
to an optimization task (Cagliotti, 1994). They apply
CAD-models for localization (Ponce et al., 1996) or uti-
lize precomputed statistical 3-D models using line fea-
tures and relatedmeasures (Kanatani, 1993; Trucco and
Verri, 1998). Also the EM algorithm proves to be suit-
able for pose estimation of 2-D objects, but it requires
an appropriate initialization close to the global maxi-
mum of the chosen objective function (Wells, 1993).
For that reason, we propose the use of global optimiza-
tion techniques based on adaptive random searchmeth-
ods. Pose estimation here is not restricted to 2-D object
recognition. It also allows for 3-D localization and clas-
sification using gray-level images.
The preceding discussion shows that the use of

statistical methods regarding several components of
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vision systems are well elaborated. Complete solu-
tions, however, which represent an entire statistical
object classifier, and treat model generation, localiza-
tion, and classification, are rather the exceptional case
(Hornegger et al., 1999;Murase andNayar, 1995; Pope,
1995; Schiele, 1997).

3. Statistical Object Recognition

This section introduces the basic notation and formal-
ism required for the subsequent derivations and de-
scriptions of algorithms.

3.1. Rigid Objects

We restrict the discussion to rigid objects. Two objects
are defined to be elements of the same object class, if
their geometrical 3-D structure is equal. There is no
distinction between objects of identical shape and dif-
ferent colors. Only geometry defines pattern classes. In
the following, we consider K different object classes
which are denoted by !κ , κ = {1, 2, . . . , K }. Two ob-
jects are of the same class, if the observed image or
a subset of observed features is assigned to the same
object class !κ . Classification and pose estimation re-
quire models which characterize object classes and al-
low the computation of similarity measures between
observed image features and the object model. Obvi-
ously, if features vary with the position and orientation
of the considered object, the similarity measure will
depend on pose parameters.

3.2. Features and Assignments

Statistical classifiers require probabilisticmodels. Each
object class has to be represented by a p.d.f. Its argu-
ments are random measures computed from the given
sensor data. Generally, we distinguish between two dif-
ferent types of features: 2-D and 3-D. The type of the
feature depends on the space in which the object is
considered. An observed 2-D corner in the image, for
example, has a corresponding 3-D corner of the object.
Therefore, we call the 2-D features computed from sen-
sor data image features and 3-D features correspond-
ing to objects in 3-D model features. Image features
are transformed model features mixed with additional
background features and corrupted by segmentation er-
rors.The set of model features belonging to object class
!κ is denoted by Cκ = {cκ,1, cκ,2, . . . , cκ,nκ

}. These
features belong to the model space and their dimen-
sion is Dm . The Do-dimensional image space yields
the set of image features O = {o1, o2, . . . , om}.

It is obvious that an object in the image plane cannot
be represented by a single feature vector or a set with a
fixed number of vectors. A set of possibly related and
mutually dependent features is required to characterize
an object. There is also the need for the assignment of
image and model features, and the registration of rela-
tional dependency structures.A statistical object recog-
nition system has to provide techniques for describing
the matching procedure (c.f. (Wells, 1993)) and the re-
lations between features in a statistical manner.

Example. If we work on 3-D object recognition
problems using gray-level images and point fea-
tures O= {o1, o2, . . . , om}, we have three-dimensional
model points cκ,l ∈ R3 and two-dimensional observa-
tions ok ∈ R2. In this case Dm = 3 and Do = 2. The
matching problem is the assignment of the segmen-
tation result (the 2-D points) to features of a model
κ from the model data base. The assignment of ob-
served features ok (1 ≤ k ≤ m) to model features cκ,l
(1 ≤ l ≤ nκ) is unknown. A possible relational depen-
dency might be a neighborhood relationship of point
features (e.g., two points are connected by a line) or
visibility constraints (e.g., mutual occlusion).

3.3. Bayesian Classifier

Recognition of an object corresponds to a classifica-
tion problem. In pattern recognition theory, statistical
classifiers expect the complete statistical knowledge of
the problem domain. For a model feature c ∈ RDm of
prior known and fixed dimension Dm , the parametric
probability density function p(c; aκ) must be given,
where c belongs to an object of class !κ , and aκ de-
notes the class-specific parameter of the density; again
the number of considered classes is K , i.e. 1 ≤ κ ≤ K .
In addition, the prior probability p(!κ) for each class
!κ is required because the decision is based on themax-
imization of the a posteriori probabilitiesp(!κ | c). The
Bayesian classifier applies the following decision rule

λ = argmax
κ

p(!κ | c) = argmax
κ

p(!κ) p(c; aκ)

p(c)
.

(1)

There is no straightforward application of this deci-
sion rule to solve object recognition problems for two
reasons:! the statistical description of 3-D objects observed in
2-D images is generally not possible using one single
feature vector, and
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! due to segmentation errors and occlusion the number
of image features is not constant.

The computation of a unique, bijective mapping of
image to model features is, in general, impossible. Ob-
viously we need p.d.f.’s which allow the computation
of a density value for observed image feature sets of
variable cardinality.

3.4. Incorporated Feature Transform

Not only the size of image feature sets varies with dif-
ferent views, but also the position of features and their
relationship in the image plane. Features depend on
the camera and the object position in the chosen world
coordinate system. Therefore, the projection into the
image plane as well as rotation and translation of ob-
jects should be part of statisticalmodels and considered
during the decision process. In Wells (1997) the author
suggests transforming the observed features in the im-
age plane instead of incorporating the transform to the
p.d.f. This is sufficient for 2-D recognition where we
have only planar rotations and translations and no pro-
jection. In case of observing 3-D objects in the 2-D
image this strategy is no longer applicable. The p.d.f.
has to be parameterized with respect to the transfor-
mation, including 3-D rotation, 3-D translation and the
projection mapping.
If image features change with the object’s pose, pa-

rameters of the density function are necessary which
characterize the rotation and translation defined by a
bijective affine mapping R ∈ RDm×Dm and t ∈ RDm .
Thus, the density for each transformed feature c′ =
Rc + t ∈ RDm will include two different types of pa-
rameters: object- and pose-specific parameters. This
is quite similar to the notion of extrinsic and intrinsic
parameters known from camera calibration. The para-
metric density isp(c′; aκ ,R, t), where aκ denotes the
object-specific and R and t the pose-specific parame-
ters. The incorporation of pose-specific parameters into
a single density p(c; aκ) can be done by a standard den-
sity transformation (Anderson, 1958). The same holds
for the embedding of the projection model. The den-
sity of the projected image features o ∈ RDo results
from a density transform and a subsequent marginal-
ization over the random variables lost by projection.
The extended Bayesian decision rule using densities
with incorporated feature transforms obviously is

λ = argmax
κ

p(!κ | o) = argmax
κ

p(!κ)p(o; aκ ,R, t)
p(o)

.

(2)

Considering decision rule (2) we conclude that in ad-
dition to aκ , pose parameters R and t have to be known
for object classification.

Example. Let us assume a normally distributed 3-D
point feature c ∈ R3 of the 3-Dmodel space with mean
vector µκ ∈ R3 and the symmetric, positive semidefi-
nite covariance matrixΣκ ∈ R3×3. This point is rotated
and translated in themodel space, and projected into the
2-D image space by orthographic projection. The para-
metric probability density function of the 3-D model
feature c is given by

p(c; aκ) = N (c;µκ ,Σκ)

=
exp

(
− 1
2 (c− µκ)

TΣ−1
κ (c− µκ)

)
√
det (2πΣκ)

. (3)

In this example, the parameter aκ of the above intro-
duced notation includes in this example simply the
mean vector and the covariance matrix.
There exist different representation methods for 3-D

rotations (Altmann, 1986). For instance, a rotation in
the model space can be defined by a (3 × 3)-matrix
R = RxRyRz .The rotationmatrix depends on the Euler
angles φx , φy , and φz , the rotation angles around the
x-, y-, and z-axis of the world coordinate system. A
translation of model features is defined by a vector t =
(t1, t2, t3)T ∈ R3. The complete mapping given by R
and t has six degrees of freedom. The pose estimation is
restricted to the robust estimation of these parameters.
Due to the affine nature of this transform, the density

of rotated and translated normally distributed model
features c′ = (c′

1, c′
2, c′

3)
T ∈ R3 is again Gaussian. The

mean vector isRµκ + t and covariance matrix results in
RΣκRT (Anderson, 1958). This result holds even for
arbitrary affine transformations from themodel into the
image space, as long as Dm ≥ Do. The density of the
projected image feature o ∈ R2 is given by themarginal
density

p(o; aκ ,R, t) =
∫

p(c′; aκ ,R, t) dc′
3, (4)

where the lost range component c′
3 is integrated out.

Since an orthographic projection can be described by
an affine mapping, the resulting distribution (4) of the
observed, projected image feature is also Gaussian. If
model- and pose-specific parameters are known,we can
evaluate the density (4) for arbitrary image features and
get a statistical measure for their probability.
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3.5. Probabilistic Formalization of
Addressed Problems

So far the discussion allows an abstract description of
the major components of statistical object recognition
systems ignoring mathematical details of the densi-
ties’ structure. The set of observed image features is
given by O= {o1, o2, . . . , om}. Let p(O;Bκ ,R, t) be
the probability density function with incorporated fea-
ture transform corresponding to object class!κ for the
set O of appearing features. Here Bκ summarizes all
object-specific parameters, whereas R and t symbolize
the transformation parameters in the model space. The
projection model is assumed to be known and implic-
itly implemented in p(O;Bκ ,R, t). Densities describ-
ing objects and their statistical behavior in the image
plane are called model densities. Using these model
densities, we conclude that both the model generation
process and the localization of known objects corre-
spond to parameter estimation problems. These can be
solved by maximum likelihood estimation, and we de-
note the estimate of a parameter by a “ ˆ”. The classi-
fication, however, uses the Bayesian decision rule (2).
The stages required for a statistical object recogni-

tion system are formally characterized by:! object modelingwhich is the concrete representation
of the p.d.f. p(O;Bκ ,R, t).! model learning which corresponds to the parameter
estimation problem

B̂κ = argmax
Bκ

N∑

&=1
log p(&O;Bκ ,

&R, &t), (5)

for a given set of N training views which differ in im-
age features {&O | 1 ≤ & ≤ N } and in the associated
set of pose parameters {&R, &t | 1 ≤ & ≤ N };! statistical inferencewhich requires the efficient eval-
uation of the p.d.f. p(O;Bκ ,R, t) in the absence of
explicitly matched features;! matching which is the explicit computation of cor-
respondences between image and model features;! pose estimation formalized as the global optimiza-
tion task

{R̂, t̂} = argmax
R,t

p(O;Bκ ,R, t), (6)

for a given class κ ,where the image features O of a
single view are used for object localization;! classification applyingBayes decision rulewhich re-
quires the priors of classes and the p.d.f. associated
with each class.

The construction of appropriate densities and the im-
plementation of each stage are the major concerns of
the upcoming sections.

4. Construction of Model Densities

This section introduces the concrete structure of prob-
abilistic models which are used to build a 3-D recog-
nition and pose estimation system. The concept distin-
guishes between different types of random processes,
and between hidden and observable random variables.
Marginalization proves to be an extremely powerful
mechanism for the elimination of hidden random vari-
ables. A final composed probability density function is
used to derive various statistical models by specializa-
tion and by introducing independency assumptions. It
is shown how this class of density functions is related
to well-known statistical models, like mixture densi-
ties or hidden Markov models. We also suggest further
generalizations of well established standard modeling
schemes (Jelinek, 1998; Li et al., 2000).

4.1. Model Densities

We start with the introduction of a probabilistic model
which allows the probabilistic description of image fea-
tures and of relations among image features. Model
densities, which are suitable for various types of pat-
tern recognition problems, can be constructed by look-
ing at the involved components (e.g., assignment of
image and model features, rotation, translation, pro-
jection, etc.) in detail.

4.1.1. Probabilistic Modeling of Image Feature Sets.
In Section 3.4 the statistical modeling of single model
and image features using simple density functions with
an incorporated feature transform was introduced (c.f.
(3) and (4)). If observed image features of fixed dimen-
sion are transformed model features and if the class of
parametric transformations is known, the original den-
sity functions p(c; aκ,l) (1≤ κ ≤ nκ) of model features
can be extended with respect to pose-specific param-
eters and result in densities for corresponding image
features p(o; aκ,l ,R, t) (c.f. Section 3.4). Given the as-
sumption that the densities of all image features are
known, the probabilistic characterization of a set of
image features O = {o1, o2, . . . , om} is given by the
product of single density functions. Herein, the obser-
vations are assumed to be pairwise statistically inde-
pendent. If the corresponding pairs (defined by the as-
signment function ζκ , c.f. Section 4.1.2) of image and
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model features are known, we get

p(O | ζκ;Bκ ,R, t) =
m∏

k=1
p(ok; aκ,lk ,R, t). (7)

This model density relates image featuresO and model
featuresCκ , if the correspondingpairs of image features
ok and model features cκ,lkare known and if the pose
parameters R and t are given. Since our objective is
the probabilistic description of the complete objects
and their appearance in the image plane, the statistical
modeling of the assignment function ζκ is required.

4.1.2. Probabilistic Modeling of Feature Correspon-
dences. The probabilistic modeling of the assign-
ment function, which relates image and model fea-
tures, enforces the introduction of a discrete random
process. Therefore, we introduce according to Wells
(1997) the assignment function ζκ between the set of
image features O= {o1, o2, . . . , om} and model fea-
tures Cκ = {cκ,1, cκ,2, . . . , cκ,nκ

} using the definition

ζκ :

{
O → {1, . . . , nκ}
ok *→ lk, k = 1, 2, . . . ,m.

(8)

Herein, ζκ maps the observed image feature ok to the
index lk of its corresponding model feature cκ,lk . For
simplicity, we assume that all image features have a
corresponding model feature, i.e. ζκ is a total map-
ping. Due to occlusion and segmentation errors, not
all model features have corresponding image features.
Segmentation errors might also mean that one model
feature can have more associated image features. For
that reason, ζκ is neither injective nor surjective. One
single image feature cannot correspond to more than
one model feature. The mapping ζκ defines a function
and in real image data two different model features
should not generate identical image features.
The introduction of the assignment function ζκ now

allows a statistical formalization of the assignment be-
tween image and model features. We simply associate

Figure 1. Matching of image and model features.

with each image feature setO a discrete random vector

ζκ = (ζκ(o1) . . . , ζκ(om), )T

= (l1, . . . , lm, )T ∈ {1, . . . , nκ}m . (9)

This random vector ζκ is attached to a discrete proba-
bility p(ζκ), which results in a probabilistic measure
for assignment functions and given sets of image fea-
tures. For each assignment function the probability for
its occurrence can be computed. Given that assign-
ments are considered as random measures the prob-
ability constraint

∑
ζκ
p(ζκ) = 1 is valid.

On the one hand the advantage of the probabilis-
tic characterization of assignments is that we have a
statistical measure for each considered matching. On
the other hand statistical modeling permits the use of
marginals and the elimination of random variables of
multivariate density functions (Jelinek, 1998; Wells,
1997), i.e. also the elemination of assignments.

Example. Figure 1 shows an example of a discrete
assignment function, symbolized by arrows. The gray
colored ellipse illustrates the loss of information dur-
ing the projection θκ from the model into the image
space.The resulting random vector for this example is
ζκ = (1, 3, 2, 2, 5, 6, 6, 5)T .

4.1.3. Probabilistic Modeling of Relations. The ba-
sic idea for statisticalmodeling of assignment functions
is the introduction of a discrete random vector and the
embedding of this random vector in a measure space.
This procedure can also be applied for the statistical
modeling of relational dependencies between features.
An arbitrary q-ary relation of image features is defined
by the indicator function

χ
(
ok1 , . . . , okq

)
=

{
1, if the relation is satisfied
0, otherwise

.

(10)

Using this definition for each q-tuple (ok1 , . . . , okq ) of
observed features, we get a Boolean value, which in-
dicates, whether the tuple satisfies the relation or not.
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The q-ary relation and the associated Boolean values
induce a random array

ν = (νk1,...,kq )1≤k1,...,kq≤m

= (χ(ok1 , . . . , okq ))1≤k1,...,kq≤m . (11)

The entries of this array show a randomized behavior.
Due to segmentation errors and variations within the
sensor data, the observable relations in the image plane
are not deterministic.
In accordance with the statistical modeling of the

assignment function, we relate this matrix to a condi-
tional discrete probability p(ν | ζκ), where +ν p(ν |
ζκ) = 1. The probability of the random array depends
on the assignment ζκ of image and model features. Ob-
servable relations are usually induced by dependencies
in the model space.

Example. A concrete example for relational depen-
dencies yields the neighborhood relationship between
image features. Two image points, for instance, are said
to be neighbors, if they are connected by a line.In Fig. 2
(middle), for example,o1 ando2 are neighbors,whereas
o2 and o3 are not. The aleatory matrix for the complete
segmentation result (Fig. 2, middle) is

(νk ′,k ′′)1≤k ′,k ′′≤7 =





0 1 0 1 1 0 0
1 0 0 0 0 1 0
0 0 0 1 0 0 1
1 0 1 0 0 0 0
1 0 0 0 0 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 0





. (12)

Due to the fact that the neighborhood relation is sym-
metric, this indicator matrix ν is symmetric.

4.1.4. Probabilistic Modeling using Joint Density
Functions. The joint density for observing a set of
m image features O with a given assignment function

Figure 2. 3-D model (left) and 2-D segmentation results of views with varying illumination (middle, right).

ζκ and the Boolean matrix ν ∈ Rq×q results from the
components introduced so far. The joint probability
function

p(O,ν, ζκ;Bκ ,R, t)

= p(ζκ)p(ν | ζκ)
m∏

k=1
p
(
ok; aκ,ζκ (ok ),R, t

)
. (13)

combines the continuous density function (7) for image
features with the discrete probabilities for the assign-
ment function and the observed relations. This model
density allows the computation of statistical measures
for observations. These include the features and rela-
tions. The assignment function ζκ is usually not part of
the observation. Themodel density (13) seems inappro-
priate because it requires the knowledge of the latent
assignment ζκ . An obvious way to deal with this prob-
lem is search for an optimal match. All assignments
are judged by (13), and we decide for that matching
with highest density values. However, if the computed
assignment function is wrong, this would affect subse-
quent processing steps like localization and classifica-
tion. Fortunately the statistical modeling of the assign-
ment process allows for a more powerful technique:
the marginalization (Jelinek, 1998; Wells, 1997). We
eliminate the unknown matching by summation over
all possible assignments instead of solving a discrete
search problem to find the best match. The marginal
density results in

p(O,ν;Bκ ,R, t)
=

∑

ζκ

p(O,ν, ζκ;Bκ ,R, t)

=
∑

ζκ

p(ζκ) p(ν | ζκ)
m∏

k=1
p
(
ok; aκ,ζκ (ok ),R, t

)
.

(14)

On the one hand, this marginalization yields a more
democratic measure than the search for the optimal
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matching (Wells, 1997). It considers all possible as-
signments.On the other hand, the number of summands
in (14) is nmκ and thus the complexity for evaluating the
model density for a given observation is bounded by
O(m nmκ ). For that reason, the model density as defined
in (14) is computationally prohibitive.

4.2. Specializations and Independency Assumptions

We have to find a way to evaluate the model density
more efficiently. Furthermore the curse of dimension-
ality Bishop (1995) tells us that a high dimensional pa-
rameter space implies intractable practical problems.
The dimension of the parameter space is closely re-
lated to the dependency of involved random measures:
the higher the dependency, the more parameters are re-
quired. In general, we apply two mathematically well
founded techniques to deal with curse and efficiency:! specialization and! the introduction of reasonable independency as-
sumptions.

In the following we discuss different independency
modelswith respect to the assignment function.A treat-
ment of different approaches to simplify relations is
omitted. The interested reader will find more informa-
tion on this topic in Hornegger (1997).

4.2.1. Statistically Independent Assignments. We
consider model densities which make no use of rela-
tions between observed features. In addition to this spe-
cialization, we postulate the idealized assumption that
the components of the assignment vector are mutually
independent (Hornegger, 1994; Wells, 1997). This re-
quirement allows the following factorization

p(ζκ) =
m∏

k=1
p(ζκ(ok) = lk), (15)

where lk ∈ {1, 2, . . . , nκ}. Instead of p(ζκ(ok) = lk)
we also use the abbreviations p(ζκ(ok)) or simply
k pκ,lk . This denotes the discrete probability that the
k-th image feature ok is assigned to the model feature
cκ,lk indexed by lk . If the index k of the image feature is
not considered, pκ,l represents the probability that any
image feature corresponds to model feature cκ,l , i.e. we
set pκ,l =

∑m
k=1

k pκ,l .
The consequence of the introduced independency

assumption is the reduction of the density evaluation

to linear complexity, which follows looking at Wells
(1997):

p(O;Bκ ,R, t) =
∑

ζκ

p(O, ζκ;Bκ ,R, t)

=
nκ∑

l1,l2,...,lm=1

(
m∏

k=1

k pκ,lk

)(
m∏

k=1
p
(
ok; aκ,lk ,R, t

)
)

=
m∏

k=1

nκ∑

l=1

k pκ,l p(ok; aκ,l ,R, t)

=
m∏

k=1
p(ok;Bκ ,R, t). (16)

This is a product of mixtures and as already shown in
Wells (1997) the evaluation of (16) requires O(m nκ)

real additions and multiplications. In contrast to Wells
(1997) our mixtures here are extended with respect
to the incorporated feature transform in the model
space represented by R and t. This example demon-
strates that assuming statistically independent assign-
ments, a mixture density modeling is appropriate for
objects’ appearance in the image plane. The sim-
ple introduction of independency, reduces the orig-
inal exponential complexity of marginals to linear
complexity.

4.2.2. Statistically Dependent Assignments of Higher
Order. The independency assumption of the assign-
ment function is weakened by the introduction of
bounded dependencies. The statistical dependency of
order g results in marginal densities which can be eval-
uated in O(mng+1κ ).
Let the dependency be of order g> 0. In contrast to

(15) we have the factorization

p(ζκ) = p(ζκ(o1))·
p(ζκ(o2) | ζκ(o1))·

...

p(ζκ(og) | ζκ(o1), . . . , ζκ(og−1))·
m∏

k=g+1
p(ζκ(ok) | ζκ(ok−g), . . . , ζκ(ok−1)) (17)

for the discrete probability of the assignment function.
Dynamic programming allows the efficient evaluation
of the resulting model density. The derivation of the
algorithm is not as simple as in the previous case, where
we had g = 0.
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Let us first have a look at the probability to observe g
features o1, o2, . . . , og and the assignment function ζκ :

pκ,l1,l2,...,lg = p(ζκ(o1)) p
(
o1; aκ,l1 ,R, t

)

p(ζκ(o2) | ζκ(o1)) p(o2; aκ,l2 ,R, t)
...

p(ζκ(og) | ζκ(o1), . . . , ζκ(og−1)) p(og; aκ,lg ,R, t).
(18)

This probability can be extended recursively for an ar-
bitrary number m > g of observed features. It results
in a recurrent scheme for the evaluation of the model
density function. We consider the k-th feature ok with
g < k ≤ m. The probability of observing the feature
sequence o1, o2, . . . , ok is given by

pκ,lk−g+1,lk−g+2,...,lk

=
(

nκ∑

lk−g=1
pκ,lk−g,lk−g+1,...,lk−1 p(ζκ(ok) | ζκ(ok−g), . . . ,

× ζκ(ok−1))
)

p(ok; aκ,lk ,R, t), (19)

where the involved sum is the marginal density over all
possible assignments of feature ok−g . Thismarginaliza-
tion is required, since due to the bounded dependency
the assignment of the k-th observed feature does not
rely on the match for the (k − g)-th feature. Repeated
application of this marginalization yields the complete
density for m observed features:

p(O;Bκ ,R, t)

=
nκ∑

lm−g+1,lm−g+2,...,lm=1
pκ,lm−g+1,lm−g+2,...,lm . (20)

In the last step, the marginalization over lm−g+1,
lm−g+2, . . . , lm is necessary, because the model density
with the marginalized assignment function is needed.
The complexity for evaluating the probability density
using the suggested recursivemethod given by (18) and
(19) is O(m ng+1κ ).
If we set g= 1, leave out the feature transform, and

enforce the independency of (18) with respect to the
position of the observed feature in the sequence, the
above modeling is equivalent to the well-known hid-
den Markov models (Jelinek, 1998). This specializa-
tion shows also that (19) and (20) is a generalized
version of the forward-algorithm for statistical depen-

dencies of order g. The complexity bound O(m n2)
of the forward-algorithm confirms with the computa-
tional costs for evaluating (20) with g= 1. If we choose
g= 0, we have statistically independent assignments.
In this case, the generalized forward-algorithm defined
by (19) and (20) reduces to a product ofmixtures as seen
in (16).

4.3. Composed Model Densities

The theory allows the statistical description of model
features’ appearance and uncertainty in the image
plane. In practice we have, however, to deal with com-
plex scenes including several objects. Additional back-
ground features do not necessarily correspond to any
object from the model database. Thus, a model den-
sity is needed for the probabilistic characterization of
image features as a whole.
If background and model features appear simultane-

ously in an image, a partition on image features can
be defined (c.f. Wells (1997)). An observed image fea-
ture ok corresponds either to the background or it is
part of the object. Therefore, image features consist
of disjoint subsets of features: background and model
features. This observation induces a two stage assign-
ment procedure: we decide, whether an image feature
belongs to the object class !κ or not. If it is an image
feature corresponding to the object class, we match it
to a model feature using the familiar assignment func-
tion ζκ . Background features are statistically charac-
terized by the parametric probability density function
p(o; aH ). This probability measure is assumed to be
independent from the object’s pose, because the posi-
tion of these features is not influenced by rotations and
translations of objects.
The assignment of observed features to background

or object classes is defined by

ζH,κ (ok) =
{
0, if ok is assigned to the background
κ, if ok belongs to object class !κ.

(21)

Following the statisticalmodeling of ζκ (Section 4.1.2),
we associate with ζH,κ a binary random vector ζH,κ ∈
{0, κ}m and a discrete probability p(ζH,κ ) ∈ [0, 1]. The
parameter aH and the discrete probabilities p(ζH,κ )

are summarized by BH . Combining these statistical
measures with the known probability density func-
tion for model features, we get the model density with
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incorporated background features:

p(O;BH ,Bκ ,R, t)

=
∑

ζH,κ ,ζκ

p(ζH,κ , ζκ)

( m∏

k=1
ζH,κ (ok )=κ

p(ok; aκ,ζκ (ok ),R, t)
)

×
( m∏

k=1
ζH,κ (ok )=0

p(ok; aH )

)
. (22)

The complexity for the evaluation of this model den-
sity can also be reduced by considering indepen-
dency assumptions. If all involved assignments are,
for instance, mutually independent, we have the model
density

p(O;BH ,Bκ ,R, t)

=
m∏

k=1

(

pH p(ok; aH ) + (1− pH )

×
nκ∑

l=1
pκ,l p(ok; aκ,l ,R, t)

)

, (23)

where pH denotes the discrete probability for observ-
ing a background feature and (1 − pH ) the probabil-
ity for a model feature. Obviously, the evaluation of
this mixture density is bounded by O(m nκ). The ad-
ditional background features do not change the overall
complexity of model density evaluation.

5. Model Generation

So far we have seen how to build model densities in
terms of parametric p.d.f.’s. In this section we apply
the Expectation Maximization algorithm (McLachlan
and Krishnan, 1996) to solve the resulting parameter
estimation problems (5). The following section will
show how the assignment functions, statistical proper-
ties of statistical relationships, and the parameters of
normally distributed point features can be estimated.
The complete set of iteration formulas can be found in
Hornegger (1996).

5.1. Goals and Basic Assumptions

Here we are mainly concerned with methodological
aspects of automatic model generation, i.e. we present
algorithms for estimating the parameter set Bκ of the
introduced model densities; the computation of Bκ for

each object class !κ , κ = 1, 2, . . . , K includes the es-
timation of

1. p(ζκ), which models the assignment function,
2. p(ν | ζκ), which defines the statistical behavior of
relational dependencies between features, and

3. {aκ,l; l = 1, . . . , nκ}, which characterizes single
model features.

The discussion is restricted to normally distributed fea-
tures o1, o2, . . . , om, i.e.

p(ok; aκ,l ,R, t)

= N (ok;Rµκ,l + t,RΣκ,lRT )

=
exp

(
− 1
2 (ok − Rµκ,l − t)T (RΣκ,lRT )−1(ok − Rµκ,l − t)

)
√
det(2πRΣκ,lRT )

(24)

This is an appropriate approximation of the statistical
behavior of point features in the image plane as shown
in Wells (1997) by hypothesis testing.
In the followingwe assume that all training views in-

clude a single object of known class with homogeneous
background. The assignment of image and model fea-
tures is unknown; the training data provide N views
from different viewing directions. For each view, in-
dexed by &, the features as well as the corresponding
rotation and translation parameters within the world
coordinate system are available, i.e. the training set is
{&O, &R, &t; 1 ≤ & ≤ N }. It is obvious that the auto-
matically computed point or line features show insta-
bilities. Segmentation errors occur. The parameter es-
timation algorithms have to use this kind of projected
features for training.
Having identified the observable and the hidden part

of training data, we can apply the EM algorithm. This
method requires the identification of observable and
hidden random variables. Then the parameters are es-
timated by an iterative maximization of the Kullback-
Leibler statistics (Huang et al., 1990). The application
of this general technique to models introduced previ-
ously is straightforward.

5.2. Estimation of Assignment Parameters

The estimation of statistical parameters corresponding
to the assignment function ζκ requires first of all the
determination of the dependency structure of single as-
signments, and next the symbolic computation of the
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Kullback-Leibler statistics (McLachlan and Krishnan,
1996; Huang et al., 1990), as well as its iterative max-
imization.
In the simplest case we have mutually independent

assignments, i.e. the components of the random vec-
tor ζκ do not depend on each other. The assignment
function ζκ induces a discrete, non-observable ran-
dom variable ζκ . For a model density p(O;Bκ ,R, t)
including nκ components for model features, pκ,l ,

l = 1, 2, . . . , nκ , denotes the discrete probability to
observe a feature in the image which corresponds to
the l-th model feature. The assignment function and
its associated discrete random variable allow the fac-
torization (15). Instead of integrating out the hidden
variables, a summation is required for the discrete
case. Concerning the model density (16) we define the
probability

p(&, k, l) = p
(
&ok | ζκ

(
&ok

)
= l; B̂(i)

κ , &R, &t
)

=
p̂(i)

κ,l p
(
&ok; â(i)

κ,l ,
&R, &t

)

p
(
&ok; B̂

(i)
κ , &R, &t

)

=
p̂(i)

κ,l p
(
&ok; â(i)

κ,l ,
&R, &t

)

∑nκ

l=1 p̂
(i)
κ,l p

(
&ok; â(i)

κ,l ,
&R, &t

) (25)

to observe the k-th image feature &ok of the &-th view if
the assignment of image and model features is known,
and get the Q-function (c.f. (Huang et al., 1990)) by
summations over all assignments of image feature &ok ,
over all image features of each view, and over all avail-
able training views (Hornegger, 1996):

Q
(
B̂(i+1)

κ ; B̂(i)
κ

)
=

N∑

&=1

&m∑

k=1

nκ∑

l=1
p(&, k, l) log p̂(i+1)

κ,l

+
N∑

&=1

&m∑

k=1

nκ∑

l=1
p(&, k, l) log p

(
&ok; â(i+1)

κ,l , &R, &t
)
.

(26)

The logarithmherein enforces the decomposition of the
product (7) into a sum. This sum separates the parame-
ters of the assignment pκ,l and the parameters aκ,l . Each
term of the above sum includes mutually independent
parameters.
The EM iterations require the iterative maximiza-

tion of the above Q-function with respect to B̂(i+1)
κ , the

estimate in the (i + 1) iteration step (see (McLachlan
and Krishnan, 1996; Huang et al., 1990) for details).
A necessary condition for a maximum is that the par-

tial derivatives are zero. The gradient is a linear op-
erator. Therefore, the zero crossings of the Kullback-
Leibler statistics for unknown parameters can be com-
puted separately. The training formulas will treat
parameters for the assignment and for the features in-
dividually and independent from each other. This de-
composes the optimization problem into smaller inde-
pendent parts and simplifies the parameter estimation
problem.
The complete optimization has to be done consider-

ing the probability constraint
∑nκ

l=1 pκ,l =
∑nκ

l=1 p̂
(i)
κ,l =

1 for the assignment parameters. For that reason, we
apply the Lagrange multiplier method. The parameters
pκ,l (1 ≤ l ≤ nκ) are estimated by the maximization
of the sum

N∑

&=1

&m∑

k=1

nκ∑

l=1

p̂(i)
κ,l p

(
&ok; â(i)

κ,l ,
&R, &t

)

p
(
&ok; B̂

(i)
κ , &R, &t

) log p̂(i+1)
κ,l

+ η

( nκ∑

l=1
p̂(i+1)

κ,l − 1
)

(27)

with respect to p̂(i+1)
κ,l , wherein η ∈ R is the Lagrange

multiplier. We get

η = −
N∑

&=1

&m∑

k=1

nκ∑

l=1

p̂(i)
κ,l p

(
&ok; â(i)

κ,l ,
&R, &t

)

p
(
&ok; B̂

(i)
κ , &R, &t

)

= −
N∑

&=1

&m. (28)

and thus the closed form iteration formula

p̂(i+1)
κ,l = 1

∑N
&=1

&m

N∑

&=1

&m∑

k=1
p(&, k, l) (29)

for estimating the assignment probabilities pκ,l (1 ≤
l ≤ nκ).

5.3. Estimation of Relational Parameters

So far we have considered statistically dependent as-
signments of various order. Now we add also re-
lational dependencies of image features to the sta-
tistical model, and compute training formulas for
discrete probabilities characterizing relations. Here
the discussion is restricted to binary relations. The
extension for arbitrary q-ary relations is straight-
forward.
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For simplicity, we assume mutually independent
components of the aleatory array (11), which is a
suitable constraint for a wide range of practical ap-
plications like the characterization of line features or
the modeling of mutual occlusion. We assume that we
have two image features &ok ′ and &ok ′′ of the &-th view
which are assigned to model features cκ,l ′ and cκ,l ′′ . The
boolean variable, which indicates the relation between
image features, is denoted by &νk ′,k ′′ = χ(&ok ′ , &ok ′′) ∈
{0, 1}. Thus the conditional probability density func-
tion p(l ′, l ′′ | (&ok ′ , &ok ′′ , &νk ′,k ′′); B̂(i)

κ , &R, &t) is amea-
sure that two image features are assigned to cκ,l ′ and
cκ,l ′′ , if they show the relation indicated by &νk ′,k ′′ in the
image plane.
For the estimation of discrete probabilities for rela-

tions, we determine the Q-function for the considered
statistical model. For one pair of image features &ok ′

and &ok ′′ of the &-th view we get

&Qk ′,k ′′
(
B̂(i+1)

κ ; B̂(i)
κ

)

=
nκ∑

l ′,l ′′=1
p
(
l ′, l ′′

∣∣(&ok ′ , &ok ′′ , &νk ′,k ′′
)
; B̂(i)

κ , &R, &t
)

× log p
((

&ok ′ , &ok ′′ , &νk ′,k ′′
)
, l ′, l ′′; B̂(i+1)

κ , &R, &t
)
,

(30)

and thus the overall Q-function is (Huang et al., 1990):

Q
(
B̂(i+1)

κ ; B̂(i)
κ

)
=

N∑

&=1

&m∑

k ′,k ′′=1

&Qk ′,k ′′
(
B̂(i+1)

κ ; B̂(i)
κ

)
.

(31)

For binary relations we define the discrete probabili-
ties p(v; l ′, l ′′), which measure the probability that the
indicator function results in v ∈ {0, 1} for the model
features cκ,l ′ and cκ,l ′′ . Gradient computation of the
Kullback-Leibler statistics regarding the probability
constraint p(0 | l ′, l ′′) + p(1 | l ′, l ′′) = 1 yields the
following iterative scheme

p̂(i+1)
κ (v|l ′, l ′′)

=

∑N
&=1

∑&m
k′ ,k′′=1

&νk′ ,k′′ =v

p
(
l ′, l ′′ | (&ok′ , &ok′′ , &νk′,k′′ ), B̂(i)

κ , &R, &t
)

∑N
&=1

∑1
v=0

∑&m
k′,k′′=1p

(
l ′, l ′′ | (&ok′ , &ok′′ , v), B̂(i)

κ , &R, &t
) .

(32)

The discrete probabilities for the assignment function
in the presence of relations can be computed in a sim-
ilar manner and is omitted here. For further details we
recommend Hornegger (1996).

5.4. Normally Distributed Point Features

In contrast to the assignment function and relational de-
pendencies, the estimation procedures for parameters
aκ,l , which qualify the statistical behavior of both image
and model features, depend on the assumed distribu-
tion. If discrete features are used, the parameter aκ,l
characterizes discrete probabilities. In the continuous
case, aκ,l denotes the parameters of the expected or hy-
pothesized probability density. In the following subsec-
tion, the discussion is restricted to normally distributed
image andmodel features, i.e.we set aκ,l = {µκ,l ,Σκ,l}
for the non-transformed model feature cκ,l ∈ RDm . The
required derivatives concerning vector andmatrix com-
ponents can be computed applying the rules given in
Fukunaga (1990).
If the Dm-dimensional model features are normally

distributed, and the transform of the &-th view from the
model into the image space is given by the affine map-
ping defined by the matrix &R ∈ RDo×Dm and the vec-
tor &t ∈ RDo , the observable image features are also
normally distributed. The gradient vector of the cor-
responding Q-function with respect to mean vectors
and its zero-crossings result in the closed-form itera-
tion scheme (1 ≤ l ≤ nκ )

µ̂(i+1)
κ,l

=
(

N∑

&=1

&m∑

k=1
p(&, k, l)&RT

(
&RΣ̂

(i+1)
κ,l

&RT
)−1

&R
)−1

×
N∑

&=1

&m∑

k=1
p(&, k, l)&RT

(
&RΣ̂

(i+1)
κ,l

&RT
)−1(

&ok − &t
)
.

(33)

The importance of this formula is obvious, because it
allows the estimation of Dm-dimensional mean vec-
tors from Do-dimensional observations without know-
ing correspondences. It solves both the reconstruc-
tion problem from projections and the correspondence
problem for features of different views.
In contrast to the estimator for mean vectors from

projected observations, we get no closed form iteration
algorithm for covariance matrices. The gradient with
respect to the covariance matrix Σκ,l is

∇∑̂
κ,l
Q

(
B̂(i+1)

κ ; B̂(i)
κ

)

= −
N∑

&=1

&m∑

k=1
p(&, k, l)M̂(i+1)

κ,k,l , (34)
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where the matrix M̂(i+1)
κ,k,l is defined by

&RT
(
&D̂(i+1)

κ,l
)−1(&D̂(i+1)

κ,l − &Ŝ(i+1)
κ,k,l

)(
&D̂(i+1)

κ,l
)−1&R,

(35)

where

&Ŝ(i+1)
κ,k,l =

(
&ok − &Rµ̂(i+1)

κ,l −&t
)

×
(
&ok − &Rµ̂(i+1)

κ,l −&t
)T (36)

and

&D̂(i+1)
κ,l = &RΣ̂

(i+1)
κ,l

&RT . (37)

For the maximization of the Kullback-Leibler statistics
concerning the covariance matrices within the EM it-
erations we have to use numerical methods, since the
zero-crossings of the gradient matrix (34) results in
non-linear equations. In our implementation we apply
in accordance to Lawley and Maxwell (1971) the local
optimization method due to Fletcher and Powell.

6. Object Localization

In this section, we consider the problem of computing
the position and orientation using the observed image
and the introduced model density. The pose parame-
ters R and t are incorporated parameters of the model
density. We will compute these parameters applying a
maximum likelihood estimation. Thus the localization
of an object results in the optimization problem

argmax
R,t

p(O;Bκ ,R, t), (38)

wherein the parametric model density is a multimodal
function showingmany localmaxima.Weneed aglobal
optimization method to solve the object localization
problem. Algorithms like Newton-Raphson iteration,
which will compute the local maximum closest to the
start point, are not applicable.
Pose determination via parameter estimation is quite

unusual in computer vision (Wells, 1993). Common
methods apply geometrical constraints and relations
between image and model features (Faugeras, 1993).
The computation of pose parameters based on point
or line features is a well studied and already solved
problem, if a 3-D model and correspondences between
model and image features are given. However, we have

eliminated the correspondences bymarginalization and
therefore alternative methods have to be applied.

6.1. Deterministic vs. Probabilistic Search Methods

For a given set of observations the model density
p(O;Bκ ,R, t) is a parametric function with respect to
pose parameters. Without the reliable initial pose es-
timates, the locally optimizing EM algorithm will not
succeed in solving this maximization task, because the
model density is a highly multimodal function with
respect to pose parameters. For the 2-D object local-
ization problem Wells (1993) applies an indexing al-
gorithm to get the initialization. The fact that the pose
parameters imply a low dimensional search space, a
direct ML estimation seems to be reasonable; in con-
trast to the high-dimensional search spaces as we have
observed for model generation.
Global optimization algorithms are usually divided

up into two different steps: in the first step, initial points
in the search space are selected; in the second step, local
optimization techniques are applied to detect the closest
localmaximum to the initialized point. The selection of
initial points can be organized either deterministically
or probabilistically. The simplest andmost obviousway
for global optimization is the definition of a regular grid
for initial points. The grid size yields an upper bound
for the precision of the detected global maximum. If
the mesh size includes at least one point of the search
space,which is part of the area of attraction of the global
maximum, the success of optimization is guaranteed.
In contrast to grid search approaches, probabilistic

procedures for global optimization generate the initial
points by a random process. This could either be based
on uniformly distributed points over the search space or
could be guided by an adaptive random process which
also considers the history of previous function eval-
uations. Regions yielding low function values are less
probable than more promising parts of the search space
with already computed, high function values. There ex-
ist a variety of adaptive random search methods in the
literature (Ermakov and Zhiglyavskij, 1983; Mockus,
1989), Typical examples for regular grid and proba-
bilistic search methods are illustrated in Fig. 3.
An easy counter example proves the practical neces-

sity of probabilistic searchmethods for pose estimation
purposes:

Example. Let us assume that we have a six-
dimensional search space, and let the angles for
rotations around the x-, y-, and z-axis of the world
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Figure 3. Contour-map of a multimodal 2-D function and deterministic (left) and probabilistic (right) initial points for global optimization.

coordinate system be quantized in 10◦-steps. The com-
ponents of translation vector are from the interval
[0; 260] and quantized to steps of size 10. If the evalua-
tion of the model density for a single observation needs
7ms, then the required 4.6×106 density evaluations for
each grid point will take 9 hours. This runtime behavior
for global optimization is computationally prohibitive
and not acceptable for practical applications. For that
reason, the next subsection concentrates on the discus-
sion of adaptive randomsearchmethods combinedwith
local optimization steps suitable for solving the pose
estimation problem using model densities.

6.2. Adaptive Random Search

The graph of Fig. 4 summarizes the general principle of
adaptive random search methods, which take the previ-
ously observed density values into consideration. This
common scheme shows several degrees of freedom for

Figure 4. Probabilistic global optimization.

a concrete implementation and the probability of suc-
cess. In addition to parameters a and b, which control
the length and the processing of considered list ele-
ments, the generation of random points is also variable.
We can use different types of probability density func-
tionswhich control the generation of new search points.
The density function should adapt to the distribution of
high function values related to the selected parameters.
Areas including observed high function values must
have a higher probability than areas showing low func-
tion values.
For solving the pose estimation problem, we have

implemented the following idea of adaptive random
search:

1. We define a covariance matrix Σ ∈ RD×D , where
D represents the dimension of the search space, and
a contraction factor γ , where 0 ≤ γ ≤ 1.

2. In the first step a uniformly distributed random
points in the search space are generated.
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Figure 5. A geometric interpretation of marginalization.

3. The best b considered elements of the search space
are entered into a list.

4. The points of the list are used to generate new
random points in the following manner: we use b
normal distributions, where the mean vectors cor-
respond to the computed list elements and the co-
variances are given by Σ. The covariances have to
be initialized properly. This has to be adapted to
the given problem. Using each Gaussian density we
compute a new random point of the search space.

5. After the random generation of further points the
covariancematrixΣ is multiplied by the constant γ .

The steps 3–5 are repeated until a termination crite-
rion is satisfied. In our experiments the termination
is guided by the absolute value of difference of the
highest and lowest density value for the computed list
elements. The covariance matrix decreases with the
search progress. Instead of considering the random
points solely, we apply the downhill-simplex method
(Press et al., 1988) for each list element to find the
closest local maximum.

6.3. Marginals and Search Space Reduction

The model generation algorithms based on the EM it-
erations have shown the remarkable side effect that
the search space is decomposed into independent sub
spaces. In the present case the marginalization proves
to be a powerful tool for reducing the complexity of

the optimization problem. In general marginalization
is related to a loss of information. The discriminating
power of features decreases. It is not obvious that the
projection of features is advantageous, because pro-
jection induces a loss of information. Surprisingly the
introduction of marginals induces a reduction of the
search space for pose parameters, if orthographic pro-
jection is assumed. This important observation speeds
up the localization of objects.
Figure 5 illustrates that the point features projected

onto the x-axis of the image yield one-dimensional
features. These 1-D points are invariant with respect
to rotations of the original 2-D points around the
x-axis; furthermore they do not change by translations
along the y-axis. The model density of the 1-D fea-
tures are easily computed from the model densities of
2D-observations. We just marginalize. Of course, we
cannot expect the global maximization for 1-D fea-
tures to be simpler than for 2-D image features. The
objective function is still multimodal. It is even worse:
projections from 2-D to 1-D might increase the num-
ber of local maxima. However, marginalization leads
to a decomposition of the original search space. The
dimensionality of the search problem is reduced.
This important result leads to the following three step

optimization procedure for solving the pose estimation
problem:

1. compute the set M of maxima (φy, φz, t1) of
the model density corresponding to the one-
dimensional features projected to the x-axis
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Figure 6. 2-D objects used for experiments.

2. startingwith all elements ofM compute themaxima
with respect to (φx , t2)

3. use this set of maxima and start local optimizations.

This three stage algorithm now allows the estimation
of pose parameters. If model- and pose-specific param-
eters are known, we can evaluate the model density
p(O;Bκ ,R, t) for a given set O of observed features.

7. Experimental Results

In the following we evaluate the statistical framework
for object modeling, learning, classification, and pose
estimation experimentally. We apply the algorithms to
solve 2-D and 3-D object recognition problems using
real image data. The authors want to point out that only
point and line features are used for pose estimation and
recognition. The detection of these features was done
automatically.

7.1. Experimental Environment

For the experimental evaluation of the explored algo-
rithms, training data are required. The training set in-
cludes both intensity images and ex- as well as intrinsic

Figure 7. Polyhedral 3-D objects used for 3-D experiments.

camera parameters. Training and test images are gen-
erated automatically from random viewing directions.
For that purpose a calibrated camera is guided by a
robot’s hand. All images used for model generation
show a single object; the background is homogeneous
and no occlusion (except self-occlusion) occurred. In
contrast to training images, test images include scenes
showing multiple objects and cluttered background.
The 2-D objects that were used (denoted by P1–P4)
are shown in Fig. 6, and the polyhedral 3-D objects
(Q1–Q4) can be found in Fig. 7.
The implemented probabilistic object recognition

system Staccato1 is embedded into an object ori-
ented environment. The basicmodules of this computer
vision package are described in (Paulus andHornrgger,
1998). Different model densities, parameter estima-
tion formulas, and the required optimization algorithms
support an object oriented implementation. All exper-
iments run on a Silicon Graphics O2 equipped with an
R12000 RISC processor.

7.2. Training

The training of 2-D objects is done by taking 300 views
of each object. The background is homogeneous. Po-
sition, orientation and illumination conditions varied.
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Figure 8. Two different views of 3-D mean vectors estimated from 2-D views of object Q2.

The training images include features only which be-
long to the object or which are caused by segmentation
errors. The training of model densities for 3-D objects
is done using 400 random views of each object. Again,
all training images include a single object. Model gen-
eration is supervised with respect to the object class
appearing in each image.
The success of training algorithms using the EM al-

gorithm depends crucially on an appropriate initializa-
tion ofmodel parameters. Both the number nκ ofmodel
features and the parametersBκ have to be set. The num-
ber of model features for each object class, which de-
fines the structure of the model density, is assumed to
be known in advance. This number nκ is defined by
using the polyhedral object and counting the corners.
Since normally distributed point features are as-

sumed, mean vectors and covariance matrices are esti-
mated during the training stage. In case of 2-D objects,
2-D mean vectors can be initialized using a single 2-D
reference image. The initialization of 3-D model den-
sities is based on lower-dimensional 2-D observations.
For that reason, we start with mean vectors where the
range component is set to zero.
The model densities are estimated for point as well

as for line features using the formulas described in Sec-
tion 5. On average, in our experiments 5 EM iterations
turn out to be sufficient for parameter estimation of 2-D
models. The training of 3-Dmodel densities is based on
2-D projections, and therefore besides the assignment

function the range data are missing. This slows down
the convergence rate of EM iterations, however, we ob-
served that in no example more than 15 EM iterations
were required.
The correctness of the estimation procedures of 3-D

objects from 2-D views can be visualized by the esti-
mated 3-Dmean vectors of vertices. Figure 8 shows the
estimated means for two different views of object Q2.
We have to keep in mind that the mean vectors do not
represent the reconstructed 3-D corners of the original
object. The estimated 3-Dmean vectors are probabilis-
tic measurements computed from 2-D projections.
The numerical analysis of errors is especially in-

teresting in case of mean vectors. These parameters al-
low a concrete geometric interpretation. They represent
the average coordinates of the model points. However,
this is a probabilistic parameter which is influenced by
segmentation errors, inaccuracies in camera calibra-
tion, quantization errors, etc. Table 1 summarized the

Table 1. Errors in 3-D mean estimates.

Object Q1 Q2 Q3 Q4

#Corners 10 12 8 8
Max. depth (mm) 16 21 9 19
Min. deviation (mm) 1 0 1 1
Max. deviation (mm) 7 5 6 9
Mean deviation (mm) 3 3 3 3
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minimum, maximum and average deviation of the es-
timated coordinates in millimeters. We get an average
error of 3 mm.

7.3. Localization

The localization of objects corresponds to a global op-
timization problem of a continuous function. For that
reason, we compare different global optimization algo-
rithms. A fair measure for the quality of certain opti-
mization algorithms is the required number of function
evaluations for the detection of the global maximum.
We test the adaptive random search (V1) (Ermakov

and Zhiglyavskij, 1983), the adaptive random search
method combinedwith the downhill-simplex algorithm
(V2) (Press et al., 1988), see Section 6), simulated an-
nealing for continuous functions (V3) (Corana et al.
1987), multistart techniques (V4) (Timmer, 1984), the
grid-simplex algorithm (V5) (Press et al., 1988), and
the pure probabilistic search (V6) (Boender et al.,
1982).
The data of the test set include 20 2-D views of a

synthetic 3-D object (homogeneous background) and
the corresponding 2-D point features. All selected opti-
mization methods have several degrees of freedom.We
adapt the parameters of the algorithms such that all op-
timization techniques find the prior known global max-
imum of the model density given a selected synthetic
view. The pose estimate is considered to be correct if
themean error of back projected point features is below
10−5.
The number of function evaluations and the run time

of this experiment are summarized in Table 2. The
search is done in the five-dimensional pose space be-
cause orthographic projection is assumed. Our com-
parison shows that method V2 is the best optimization
algorithm concerning the function evaluation criterion.
For further experiments, we used the model density

of object class P1 and generated 100 randomviews. For

Table 2. Average number of density evaluations and
run time of different global optimization algorithms.

Method Evaluations Run time (sec)

V1 10 010 25
V2 8 560 21
V3 41 300 102
V4 585 000 1446
V5 1 820 000 4488
V6 10 000 000 24602

the 3-D object Q1 we use 400 images. The correctness
of pose estimates is checked by comparing the esti-
mated pose parameters using the extrinsic parameters
of the camera as references.
The experiments with adaptive random searchmeth-

ods have shown the following results in case of the 2-D
object:! mean error in estimated angle is 2.5◦ with a variance
of 0.34◦.! the estimated translation vector is more robust and
shows a mean error of 0.6 pixels and a variance of
0.05.

Regarding the 3-D object we get the following
results:! the global maximum could be found in 87% of the
images,! the global optimization in three stages (see Section 6)
is twice as fast as the optimization in the five-
dimensional parameter space, and! in average 5400 evaluations of the 1-D density func-
tion and 260 evaluations of the 2-D density functions
are required.

Some examples for pose computations in the pres-
ence of background features using ML estimates are
illustrated in Fig. 9 for 2-D objects and in Fig. 10 for
3-D objects. The background shows also objects which
are not elements of the model database. In these exam-
ples the object classes are assumed to be known. If the
object classes are not known, two stages are required:
pose estimation for all elements of the model database
and subsequent classification.

7.4. Classification

The pose estimation results show that within the classi-
fication experiments recognition rates for 3-D objects
greater than 87% cannot be expected. Using pose de-
pendent features, the correct localization is a neces-
sary condition for classification. Errors are inherited
from the pose estimation stage to the classification
module. The class decision is based on the maximiza-
tion of a posteriori probabilities p(!κ |O) (c.f. decision
rule (1)). Herein, all objects are assumed to have iden-
tical prior probabilities. Table 3 shows the recognition
rates for point and line features as well as the average
runtime. Table 4 covers the same experiments for 3-D
objects. The 2-D experiments consider 300 randomly
chosen images of each class. The test set for 3-Dobjects
contains 400 images of each class which were captured
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Figure 9. Examples of scenes with heterogeneous background (left: gray-level image, middle: segmentation result, right: estimated pose).

Figure 10. Examples of scenes with heterogeneous background (left: gray-level image, middle: segmentation result, right: estimated pose).

by the robot’s camera. In all experiments learning and
test set are disjoint. The recognition rate of 93% for the
2-D experiments seems satisfactory for the following
reasons: the objects of classes P1 and P2 are symmetric
with respect to the image plane and the probability to
mix them up is a priori high. Object P4 has much less
features than others. The size of P4 is similar to P1 and
P2. If point or line features are used, a scene showing
an element of object class P3 can be interpreted to show
P4 and additional background features. These conclu-
sions explain the lower recognition rates for P3 and P4,
and also the restricted discriminating power of selected
features.
Another important observation is that the recognition

rate does not increase with line features. This is due to
the fact that the used segmentation algorithms decom-
pose lines—characterized by initial and end points—
into smaller parts. The splitting points have no geo-
metric equivalent. Their appearance is randomly and
the assumed normal distributions are not adequate in
this case.
Thisweakness of the statisticalmodelingof automat-

ically segmented line features is also observed looking
at 3-D examples. The recognition rate of about 70%

Table 3. Run time and recognition rate of 2-D experiments.

Run time per
Recognition rate (%) image (sec)

2-D object Points Lines Points Lines

P1 98 96 15 103
P2 94 94 17 111
P3 92 96 18 134
P4 90 85 10 77

Average 93 93 15 106

using point features decreases to 60% if line features
are used for classification.
Object classQ2 shows the best recognition rates. The

L-shaped object differs from others in the height and
the number of point features extremely. For that rea-
son, point and line features show the highest discrimi-
nating power for this object. Object classes Q1 and Q3
represent slim objects. The image features correspond-
ing to these objects are close to each other within the
2-D projections, and make the identification more dif-
ficult. This explains the low recognition rates of these
objects.
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Table 4. Run time and recognition rate of 3-D experiments.

Run time per
Recognition rate (%) image (sec)

3-D object Points Lines Points Lines

Q1 47 44 154 660
Q2 78 82 161 692
Q3 58 36 154 638
Q4 89 76 155 501

Average 68 59 156 623

The discriminating power of geometric features will
increase if 3-D instead of 2-D data were available for
classification. The 2-D examples show that equal di-
mensions in model and image spaces allow recognition
rates of more than 90%.

8. Conclusions

Statistical methods become more and more popular in
computer vision and they are of increasing interest.
This paper has presented a novel and uniform approach
to statistical modeling, localization, and classification
of objects. We have discussed all the theoretical details
as well as the implementation of a 2-D and 3-D object
recognition system. Detailed tests were carried out. In
general, the experimental results with a huge set of real
images have proven the correctness and the practical
use of proposed methods. The modeling of objects by
non-geometric descriptions, but probabilistic density
functions is remarkable: The application of the EM al-
gorithm for automaticmodel generation leads to a pow-
erful set of learning algorithms which overcome com-
mon problems associated with standard geometrical
approaches. Marginalization and statistical indepen-
dence, which are not available in geometrical settings,
provide powerful tools to beat the curse of dimension-
ality, to reduce complexity, and to increase efficiency.
The non-observable matching of image and model fea-
tures is eliminated by marginalization. The indepen-
dency of single assignments reduces the exponential
complexity to a linear one. Furthermore, the pose space
was decomposed by marginalization which results in a
three stage pose estimation technique. The experiments
concerning the involved global optimization problems
have shown that also in the field of optimization theory,
probabilistic algorithms are superior to deterministic
methods. We presented reasonable probabilistic algo-
rithms for pose estimation, where deterministic opti-
mization was computationally prohibited.

Despite of the general mathematical framework and
promising first experimental results, there still remain
some general open problems:
Thepose computation corresponds to a parameter es-

timation problem, and is not based on geometrical con-
straints, like explicitly used feature correspondences
and the analytical computation of pose parameters.
Of course, an increase of the training data induces
an increase of the reliability of estimated parameters.
It seems natural that the use of multiple views will
improve the pose estimation and object recognition
rates; the more data, the more reliable estimates can
be computed.
Regarding the use of multiple views, the question is

obvious, how to compute the most discriminating ob-
ject views. Intelligent methods for viewpoint planning
are required. The suggested framework allows to make
use of information theory like entropy maximization
techniques (Schiele and Crowley, 1998).
It is well-known that a classifier is as good as its fea-

tures. The used point and line features seem not to have
the discriminating power as expected from reliable
classifiers. Perhaps this is partially due to deficiencies
of the segmentation algorithms. In addition, the applied
features here are computed by non-statistical meth-
ods. Thus, the probabilistic approach does not cover
all levels of object recognition by stochastic meth-
ods. Our future work will concentrate on the develop-
ment of statistical algorithms which directly use gray-
level images for object recognition and localization
avoiding prior segmentation (Niemann and Hornegger,
2000).

Glossary
φx , φy, φz Eulerian angles
∇ nabla-operator
η Lagrange multiplier
& index of training view
N number of training views
K number of pattern classes
κ, λ indices of pattern classes
!κ class κ

Nκ number of model features belonging
to !κ

&O set of observed features of view &

ol l-th image feature
&ol l-th image feature of view &

m number of observed features
&m number of observed features of

view &
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Cκ set of model features of "κ

cl l-th model feature
cκ,l l-th model feature of "κ

nκ number of model features of
class "κ

θκ transforms object from model
to the image

B model parameters
B̂ estimation of B
B̂(i) estimation of B in the i-th iteration
BH parameters characterizing the

background
aκ,l parameter characterizing cκ,l
Σ covariance matrix
µ mean vector
N (c;µ,Σ) normal (Gaussian) p.d.f.
Do dimension of image space
Dm dimension model space
R, t affine mapping
θκ projection of class "κ

ζ assignment function
ζκ assignments to class "κ

ζ random vector induced by ζ

ν neighborhood relation
νk ′,k ′′ neighborhood relation of ok ′ and ok ′′

&ν banary random matrix of &-th view
g dependency order
lk index of model feature assigned to

the k-th image feature
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Note

1. STACCATO: STAtistical ClAssification of Three-dimensional
Objects.
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