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ABSTRACT

In our previous research, we have shown that prosody can be used
to dramatically improve the performance of the automatic speech
translation system VERBMOBIL [16]. The methods to classify
prosodic events have been developed on the German subcorpus of
the VERBMOBIL speech database. In this paper we describe how
the methods that we developed on the German subcorpus can be ap-
plied to other languages. Experiments show that these methods are
suited for English and Japanese, as well. Efficiency problems are
addressed and a new set of features is presented. The new set of fea-
tures facilitates a multilingual module for prosodic processing. We
present an architecture for such a multilingual module and discuss
the advantages of this approach compared to an approach that uses
separate modules for different languages. This multilingual module
and the new feature set are evaluated w.r.t. computation time, mem-
ory requirement, and classification performance. The results show
that the memory requirement can be reduced by 78%, whereas the
recognition accuracy does not decrease.

1. INTRODUCTION

The research presented in this paper was conducted as part of the
VERBMOBIL project. The VERBMOBIL system translates spon-
taneous human—-to—human appointment scheduling dialogues [21].
During the translation process prosodic information is used at vari-
ous stages. Phrase boundaries, phrase accents, and sentence mood
are used to guide syntactic parsing and disambiguate between sev-
eral possible meanings [2, 17, 13, 11, 20]. Irregular boundary mark-
ers are used to deal with corrections [19]. Furthermore, some pre-
liminary emotion detection is integrated in order to improve the sys-
tem behavior in the case of errors [3].

In VERBMOBIL the output of a word recognizer is structured as
a word hypotheses graph (WHG). Every edge represents a word
hypothesis and every path through the graph a possible acoustic—
phonetic interpretation of the observed utterance. The edges in the
graph are marked with start and end time, thus making it possi-
ble to determine the corresponding segment of the speech signal.
In order to make prosodic information available, each edge in the
WHG is enriched with probabilities for prosodic events. The prob-
abilities are determined in a classification process. For every word
hypothesis, prosodic features are extracted from the speech signal
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(see Section 3) and used as input to multi layer perceptrons (MLP)
for each prosodic event. The output of an MLP can be interpreted
as an a—posteriori probability [8].

As the importance of prosody for the system performance could be
shown on a German subcorpus of the VERBMOBIL data [16] we
investigate the applicability of our approach for the other VERB-
MoOBIL languages. In [16] a time alignment of the phoneme se-
quence of the recognized words was necessary to perform a phone
intrinsic normalization of energy and duration features. A phone
intrinsic normalization is important because individual phonemes
are affected differently by a change in speaking-rate or loudness
[22,7,12, 4].

The normalization has some draw-backs, though, specifically if it is
used for several languages simultaneously in one software system.
First, in order to compute the time alignment of the phoneme se-
quence acoustic models for the phonemes of each language have to
be trained and used. This requires a large amount of memory. Sec-
ond, a Viterbi alignment of the phoneme sequence is expensive in
terms of computational effort. Third, the features based on phoneme
intervals are very sensitive to errors in the time alignment. Thus, we
focus on how to overcome these draw—backs and describe a set of
features (Section 3) and a system architecture (Section 5) which al-
low fast and robust multilingual prosodic processing.

We show that with the new set of features and a multilingual system
architecture better classification results can be achieved than with
the old features and three monolingual modules. At the same time,
the memory requirement and computation effort can be reduced sig-
nificantly (Section 4.1 and 4.2 and 5). Before we look at the feature
extraction we give a few examples of how and why prosody is used
in VERBMOBIL.

2. PROSODY AND DIALOGUE

Dialogue processing in VERBMOBIL is very complex and prosody
is used at various stages during the translation process [2, 17, 13,
11, 20]. Thus, we can only give a few examples of how prosody is
used. The word recognition components of the VERBMOBIL system
produce lattices of word hypotheses as shown in Figure 1. These lat-
tices are used as input for the modules of the linguistic processing.
Important prosodic information in the context of syntactic/semantic
parsing is:

1. Which words of an utterance carry a phrase accent?
2. Where in an utterance are prosodic boundaries?
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Figure 1: Word lattice produced by the English VERBMOBIL word recognizer. The utterance was ’No. Of course not. On the second of
May.” The word graph is shown after prosodic annotation. Boundary hypotheses are displayed as vertical lines and phrase accent positions

are indicated by slanted characters. Sentence mood is not shown.
3. What is the sentence mood at the prosodic boundaries?

This information does not only speed up the search during pars-
ing. In some cases prosodic information is necessary in order to
disambiguate between several possible meanings. If only acoustic—
phonetic information were available many possible readings of the
utterance shown in Figure 1 had to be considered, e.g.

1. No. Of course not on the second of May .
vs. 2. No ! Of course not ! On the second of May!
vs. 3. No. Of course not . On the second of May?
vs. 4. No ?Of course not on the second of May ?

Notice that the first two interpretations both make sense in the same
context of an appointment scheduling dialogue. Interpretation 1
might be a confirmation that the second of May is not an avail-
able date, whereas interpretation 2 expresses the contrary. At this
point of a dialogue prosody might help to recover from an otherwise
unrecoverable error.

Figure 1 illustrates how the output of a word recognizer can be en-
riched with prosodic information. For simplicity, in the figure only
presence/absence of prosodic events is displayed, whereas in the
VERBMOBIL system probabilities are used. In addition to phrase
boundaries, phrase accent, and sentence mood, every edge in a
WHG is annotated with probabilities for irregular boundaries and
emotion. This additional prosodic information is used in the VERB-
MOBIL system as follows:

Irregular boundaries: Irregular boundary markers are used to de-
tect self—corrections. In spontaneous speech self-corrections
are very frequent: A speaker starts a sentence, hesitates/stops,
optionally utters an edit term, and then corrects himself.
The point of interruption is usually distinctively prosodically
marked. A Part—Of-Speech analysis before and after the point
of interruption often allows to “repair” WHGs of such utter-
ances [18].

Emotion: Inthe VERBMOBIL domain only anger vs. not anger is
distinguished. Anger indicates that the dialogue goes astray.
In such circumstances strategies to recover from error might
be employed [3].

Since manual labeling is very time consuming, only parts of the
VERBMOBIL speech database have yet been prosodically labeled.
A set of four labels is used for boundary annotation, four levels of
accents are distinguished, and sentence mood is labeled at prosodic
boundaries as a combination of a question marker and a TOBI-
like tonal sequence. Self—corrections are labeled as (1.) begin of
Reparandum (first word which is corrected), (2.) point of inter-
ruption, (3.) Edit Term (e.g. ”no”, "uhm”, ...), and (4.) end of
Reparans (replacement for reparandum). Since there is almost no
occurrence of anger in the regular VERBMOBIL speech database,

emotional data was collected in Wizard—of-Oz experiments. Each
word of the data is labeled as angry/not angry. Furthermore, a large
part of the speech database is annotated with syntactic—prosodic la-
bels [5].

3. FEATURE EXTRACTION

Prosodic features should compactly describe the properties of a
speech signal which are relevant for the detection of prosodic
events. Prosodic events, such as phrase boundaries and phrase ac-
cents, manifest themselves in variations of speaking-rate, loudness,
pitch, and pausing. The exact interrelation of these prosodic at-
tributes and prosodic events is very complex. Thus, our approach
is to use a number of features in combination which describe these
attributes in great detail. These features are then used as a basis for
classification. In this paper, we describe those features that are used
in the final version of VERBMOBIL; a former version of our feature
set is given in [12]. The current feature set is also described in [10],
where a comparison between the recognition results with the old
and new feature set is given as well.

3.1. Feature Extraction Intervals

The variation of prosodic attributes relevant for the detection of
prosodic events is limited to a certain context. Within that con-
text, features which describe the variation are extracted and used
for classification of prosodic events. Experiments have shown that
a context of two words surrounding the current word are sufficient
to decide if a prosodic event occurred. Larger context sizes do not
improve the classification performance; this might either be due to
the still rather limited size of our training data, or to the fact that
a larger context contains only information that is irrelevant for the
local events we want to model.

3.2. Different Kind of Features

The features that we extract from the speech signal describe the
acoustic correlates of the prosodic—perceptual attributes, i.e. energy
and FO contour, duration and pauses. Furthermore, we use Part of
Speech (POS) flags as features, cf. [6, 9]. We use a total of 125 fea-
tures which can be sub—categorized as follows: 36 FO, 35 energy,
16 duration, 8 pause, and 30 POS features. These 125 features are
used for all classifiers except sentence mood, where only a subset
of 25 FO features is used. The lexical POS flags cover a context of
five words. Thus the classifier is able to learn a simple 5—gram lan-
guage model. In section 4 it is shown that this syntactic information
improves classification significantly.

Duration Features



Variations of speaking-rate or loudness have different effects on in-
dividual phonemes. Plosives are for instance much less affected by
changes in speaking-rate than vowels. The variablity of the dura-
tion of a phoneme in a syllable depends also on the position of that
syllable in the word and the position of the word accent. These
considerations have led to the normalization that is described in the
following.

Duration Normalization on the Phoneme Level

In order to model local speaking—rate variations we use measures
that are based on the work of Wightman [22]. First, we are in-
terested in capturing how much faster or slower an utterance was
produced compared to the ‘average speaker’. For a large train-
ing database, we compute for each phoneme its mean duration
Hduration(w) and standard deviation Gduration(u)- Hduration(u)
constitutes the duration of unit « spoken by the ‘average speaker’.

The ratio -2uration(v) measyres how much faster or slower u was

duration (u)

produced. The average of this ratio over an interval I is our measure
Tduration, Which is defined in Equation 1. Note that in the Equa-
tions 1 and 2, 7 is stated more generally: the feature parameter F
can be replaced not only by duration but also e.g. by energy.

The value Ty ration iS Used to scale the mean duration fgy ration (u)
and the standard deviation o4yrqtion(w) Of @ speech unit w.
The product Tguration(I)duration(w) CaN be interpreted as the
mean duration of the speech unit « if uttered with speaking-rate
Tauration(I). This interpretation is justified by the experiments in
[22]. There it is shown that the mean and the standard deviation of
speech—-sound categories depend linearly on the speaking-rate.

The difference duration(w) — Tauration(I)Bauration(v) 1S NEY-
ative if duration(u) is smaller than the scaled mean duration
Tauration () duration(w) OF the speech unit . A negative differ-
ence indicates faster speech; a positive difference indicates slower
speech. This difference can be used to detect strong deviations from
the scaled mean duration; the disadvantage of this measure, how-
ever, is that the deviation depends on the speech—sound category.
If we divide the difference by the scaled standard deviation of the
duration Tgyration(I)Tduration(w) We get a measure that is nor-
malized w.r.t. speech-sound dependent variation. In Equation 2,
¢r(J,I) is defined as the average of that fraction in an interval J
(interval I is used as ‘reference’). With this approach it is also pos-
sible to distinguish between phonemes in accented and not accented
syllables, and between phonemes that are in word initial, word fi-
nal, word-internal syllables, or one-syllable words. This can be
achieved simply by using such units u in the Equations 1 and 2.

1 F(u)
#1 Z < JF () @

u) - TF I)NF(u)
)Y

UF('u,)

TF(I) =

CF(JJI)
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Duration Normalization on the Word Level

The measures Tgyration(I) and Cauration(J,I) (Computed with
phonemes as speech units «), as defined in Equations 1 and 2 can
already be used as prosodic features and, in fact, are often used,
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Figure 2: Example of features used to describe a pitch contour.

e.g. in [22], [1], and [12]. These measures have several dis-
advantages, though. First, during feature extraction the duration
of each phoneme has to be determined in order to compute these
measures. To compute a phoneme segmentation of the recognized
words, however, is time consuming and requires considerable mem-
ory resources. The word recognition modules in the VERBMO-
BIL system cannot provide this segmentation due to architectural
constraints. Second, the phoneme segmentation suffers if the audio
quality is degraded. This leads to a drop in the recognition accu-
racy of prosodic events. Furthermore, pronunciation variants can
cause the phoneme segmentation to be incorrect and thus lead to
erroneous features.

The normalization according to the Equations 1 and 2 can be used
on the word level as well. The word duration statistics f4y ration (w)
and Ggyration(w) fOr a word w can either be determined directly
if enough tokens of this word have been observed in the training
data. Otherwise the word duration statistics can be approximated
based on the duration statistics of the phonemes that w consists
of; this approach is thus time—consuming only during the train-
ing. This word based normalization circumvents the disadvantages
mentioned above and is, therefore, currently used in the VERBMO-
BIL system.

Pitch Features

Pitch features are based on the (logarithmic) FO contour. Examples
for features that are used to describe the FO contour in a specific
interval are shown in Figure 2. In addition to the features displayed
in this figure, we also use the mean and the median as features.

Energy Features

In order to describe the short-term energy contour we use only a
subset of the features that are shown in Figure 2 because not all
of them provide useful information (e.g. onset and offset). Fur-
thermore, we include normalized energy in our feature vector. The
same normalization as used for the duration normalization on the
word level (see above) can be applied; i.e. F' = energy has to be
used in Equations 1 and 2 with words as speech units u. The mea-
SUTeS Tenergy (1) and energy (J, I) according to these equations are



included in the feature vector that we currently use in the VERBMO-
BIL system.

Pause Features

The pause features are easily extracted: These are simply the dura-
tion of filled pauses (e.g. "uhm”, "uh”, ...) and silent pauses.

Part of Speech Features

A POS flag is assigned to each word in the lexicon, cf. [6]. We
include a flag for each of 15 POS classes (for German) or 10 POS
classes (for English) and a context of 5 words in the feature vector.
These POS features can be mapped onto 6 higher categories, as
‘noun’, ‘verb’, etc. The ‘computation’ of these features consists
simply of a table lookup and is, therefore, very efficient [9].

4. EXPERIMENTS AND RESULTS

In this section we describe the experiments that we performed in
order to

1. investigate if the methods developed on the German subcorpus
of the VERBMOBIL data are suited for English and Japanese,
as well,

2. determine the reduction in computation time.

As mentioned in Section 2, labeled data sets for phrase accents,
phrase boundaries, sentence mood, irregular boundaries, emotion,
and syntactic—prosodic boundaries exist. In this paper we restrict
ourselves to phrase accents (A), phrase boundaries (B), and ques-
tions (Q). Furthermore we do not distinguish all four accent labels
and all four boundary labels in our classification experiments, but
map these labels to classes as shown in Table 1. For Sentence mood
we distinguish between questions and non—questions.

Acoustic—prosodic boundary labels
label | class | description
B3 B | prosodic clause boundary
B2 =B | prosodic phrase boundary
B9 =B | irregular boundary,
usually hesitation lengthening
BO -B | every other word boundary
Acoustic—prosodic accent labels
label | class | description
PA A | most prominent (primary) accent
within prosodic clause
NA A | all other accented words
carrying secondary accent
EK A | emphatic or contrastive accent
UA —A | unaccented words

Table 1: Description of acoustic—prosodic boundary and accent la-
bels.

The VERBMOBIL corpus momentarily consists of more than 50
CDROMs with high quality speech recordings. Only a small subset
of the CDROM s has yet been prosodically labeled. While the data

sets for German and English have been labeled by trained personnel,
the data set for Japanese has been labeled by students in an effort to
obtain some data for the experiments that are described below.

4.1. Prosodic Classification with Neural Net-

works

In the prosody module a multi layer perceptron (MLP) is used as a
classifier. The input layer has as many nodes as there are features in
the feature vector (see Section 3). The output layer has two nodes
corresponding to the prosodic events, e.g., A, B and Q, and their
complement, e.g., =A, =B and =Q. The topology of the hidden lay-
ers is optimized based on a validation sample. For each word of the
WHG a feature vector with a context of two words to the left and
to the right is computed. The training is done using the Stuttgart
Neuronal Network Simulator (SNNS), cf. [24], [23]. During classi-
fication in the prosody module, a prosodic feature vector is passed
to the MLP, and the scores of the output nodes are normalized to the
range of [0.. . 1] so that they add up to 1; these scores can thus be
interpreted as probabilities. The WHG is then annotated with the
probability for the prosodic event and its complement. The proba-
bility scores can be extracted by the other modules of VERBMOBIL
directly out of the WHG.

As the effort needed for annotation differs considerably for the dif-
ferent prosodic events, cf. [5], the size of the available training
data differs accordingly. However, the resulting classifiers yield
good recognition rates. Classification errors have different effects
depending on whether a prosodic event is not found (miss) or its
complement is wrongly classified as a prosodic event (false alarm).
Therefore, we consider recall, i.e., correct/(correct + miss), and
precision, i.e., correct/(correct + false alarm). In Table 2 only
recall is given; precision can easily be computed from the numbers
provided. Due to sparse data and/or the fact that, especially for
English and Japanese, the same speakers were often used for more
than one dialogue, cf. column ‘dial./speakers’ in Table 2, train and
test speakers for the MLP classification were kept disjunct only for
German. For the German and English databases used for the MLP
classification with acoustic—prosodic features, the male/female dis-
tribution can be given: German train 38/7, German test 3/3; English
train 7/5, English test 3/3 (Japanese: not available).

Several feature vectors and different groups of features in different
context sizes were examined to get the best MLP classifier for our
prosodic events. Eventually we added POS features, taking textual
information during prosodic classification into account. Our final
feature set now includes 95 acoustic—prosodic features and a vary-
ing number of POS features, depending on the language and the
optimized granularity of categorization. (The old feature set used in
[12, 16, 15] was based on the phoneme alignment and consisted of
276 features.) The best results we achieved and integrated into the
VERBMOBIL system can be found in Table 2. In [10] it is shown
that the classification errors are reduced by 3% for German accents
and boundaries and by 18% for English boundaries and 24% for
English accents when the new feature set is used. The bigger im-
provement for the English data is due to the fact that the phoneme
based time alignment is not as robust as the word based, due to the
significantly less training data.

Even if it is possible to train MLPs with more classes, for the
prosodic events A, B and Q, we used only two because more classes



dial./speakers B -B A -A Q -Q
G  #train: 30/45 2310 10964 5140 8134 349 1743
# test: 3/6 227 1320 697 850 34 240
% recall — POS 84 88 78 84 88 91
% recall + POS 89 89 79 86 91 90
E  #train: 33/12 638 4137 1958 2817 47 205
# test: 4/6 94 611 297 408 4 27
% recall — POS 97 91 81 78 100 96
% recall + POS 97 93 82 82 100 85
J  #train: 24/20 747 5348 1545 4889 - -
# test: 19/18 67 558 165 497 - -
% recall - POS 81 89 75 71 - -

Table 2: MLP classification: Recall in percent for prosodic bound-
aries B, prosodic accents A, and prosodic questions Q in the three
languages of the VERBMOBIL system; number of dialogues, speak-
ers, and cases is given for train and test.

Input Data Pools: Output Data Pools:
English German English German
_Jepanese | . Japanese
T Control 4 _ ______
I
e, ! 1
| English - —5 y A Y
——————— s Processing of —
Classification
(Femes o) | whes [T TR
_______ o
| German - * A
L__A____ Feature
: Extraction

pre-computed |anguage dependent data

| Computation time |

old features

new features

216 min

17 min

Table 3: Computation time of the old and new feature extraction
methods on 112 min of speech

yielded worse results due to sparse data. Generally, classification
results are good or very good; two overall tendencies can further be
observed: first, boundaries can be better classified than accents, and
POS information improves the performance of the MLP except for
English questions, where the database is very small.

4.2. Efficiency
As a last experiment we measured the computation time during fea-
ture extraction on the data set G, using

1. 95 old features that require a time alignment of the phoneme
sequence, and

2. 95 new features that do normalization on the word level and
therefore do not need a time alignment.

The set of 95 features is the subset of word-based features without
the POS flags. We chose this subset as the basis for the experi-
ment in order to get comparable results. Feature extraction with
normalization on the phoneme level does not require significantly
more computation time or memory if 276 features instead of the
95 features are used. The requirements are dominated by the time
alignment. The experiment was performed on the same computer
under the same conditions (no load except for the feature extraction
process). The result is shown in Table 3. As can be seen, the real
time factor drops from 1.93 to .15.

5. MULTILINGUAL ARCHITECTURE

In the VERBMOBIL system, prosodic information is computed for
the three languages German, English, and Japanese. Firsta prosody
module for each of these languages was integrated in the system.
Thus a lot of common data and procedures for all languages could
not be shared. To reduce the memory requirements we integrated
the language dependent modules into one multilingual prosody

Figure 3: Architecture of the multilingual prosody module for
prosodic processing.

module where other languages easily can be added. The architecture
of the multilingual prosodic module is shown in Figure 3.

It is possible to share the feature extraction and classification proce-
dures in a multilingual module because they are language indepen-
dent. The language dependent data, for instance, duration normal-
ization tables, and specific classifiers are kept in different structures.
Via configuration files individual classification parameters for each
language, for instance, the different sizes of the n—grams, can be
loaded. The prosody module has to deal with different incoming
and outgoing data. The communication is done with the Pool Com-
munication Architecture (PCA) which is described in [14]. Input
into the prosody module is the speech signal and the word hypothe-
ses graph (WHG), output is an annotated WHG, now including ad-
ditional prosodic information for each word. In more detail, pro-
cessing in the prosody module can be described as follows:

e The control component handles the global behavior of the
prosody module, for instance: ‘get the WHG’, ‘start classi-
fication’. Furthermore, the language dependent behavior can
be configured here.

e The PCA in VERBMOBIL works event driven. Depending on
which data pool first indicates incoming data, the handler for
that particular data pool is called. Each data pool gets input
from the word recognition module for one language. Thus,
the control component selects the corresponding language de-
pendent data, for instance, language—specific normalization ta-
bles, which are needed for the feature extraction as described
in Section 3.

e The WHG component then traverses the WHG. At each node
the feature extraction component is called.

e The feature extraction component uses the language dependent
data structure, the word hypotheses and word intervals from
the WHG (see Section 3). The result is a feature vector which
is passed to the classification component.

e The classification component classifies the feature vector us-
ing language dependent classifier information. For that we use



MLPs which can be combined with language models, cf. sec-
tion 4. The classification result is handed back to the WHG
component.

e The WHG component annotates the WHG correspondingly.

o After all edges of the WHG have been processed the annotated
WHG is delivered to the output data pool.

The structure of the multilingual module has several advantages. It
can easily be extended to additional languages. In order to add a
new language only a few changes to the configuration file have to
be made, i.e. the language dependent parameters have to be set.
Furthermore, the memory requirement of the multilingual module
after some optimization steps (64 MByte) is a lot smaller than the
sum of the memory needed for three modules (291 MByte).

6. CONCLUSION

In this paper we have shown that the methods to classify prosodic
events that we developed on German speech data are also well
suited for other languages. Due to efficiency problems caused by the
feature extraction with phoneme-based normalization a new set of
features was proposed that avoids these problems. With this new set
of features we achieved a speed-up of the feature extraction com-
ponent by more than a factor of 12. The new features proved to be
more robust, and thus, led to significant improvements for English
phrase boundary and accent classification.

An architecture for a multilingual module for prosodic processing
was described and the advantages of this architecture were dis-
cussed. The memory requirement of a multilingual module com-
pared to three single monolingual modules (with the new feature
set) is reduced by 78%.
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