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VERBMOBIL: The Use of Prosody in the Linguistic
Components of a Speech Understanding System
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Abstract—In this paper, we show how prosody can be used
in speech understanding systems. This is demonstrated with the
VERBMOBIL speech-to-speech translation system which, to our
knowledge, is the first complete system which successfully uses
prosodic information in the linguistic analysis. Prosody is used by
computing probabilities for clause boundaries, accentuation, and
different types of sentence mood for each of the word hypotheses
computed by the word recognizer. These probabilities guide
the search of the linguistic analysis. Disambiguation is already
achieved during the analysis and not by a prosodic verification of
different linguistic hypotheses. So far, the most useful prosodic
information is provided by clause boundaries. These are detected
with a recognition rate of 94%. For the parsing of word hypotheses
graphs, the use of clause boundary probabilities yields a speed-up
of 92% and a 96% reduction of alternative readings.

Index Terms—Dialogue, intonation, prosodic phrase boundaries
and accents, prosody, speech understanding, speech-to-speech
translation, spontaneous speech, syntax.

I. INTRODUCTION

I N human decoding of speech, suprasegmental information
plays a major role. The term suprasegmentals was intro-

duced by [33] as a cover term for speech phenomena which are
attributed to speech segments larger than phonemes. Examples
for such segments are syllables, words, phrases, and whole turns
of a speaker. To these segments we attribute perceived proper-
ties like pitch, loudness, speaking rate, voice quality, duration,
pause, rhythm, and so on. Even though there generally is no
unique feature in the speech signal corresponding to these per-
ceived properties, we can find features which are highly corre-
lated with them; examples are the acoustic feature fundamental
frequency which correlates to pitch, and the short time
signal energy correlating to loudness. Other and probably more
commonly used names for these suprasegmental phenomena are
prosody and intonation; the latter is mostly used in connection
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with pitch related suprasegmental phenomena. In the following
we will use the term prosody.

The listener extracts information out of these perceived
phenomena, i.e., we can attribute certain functions to them.
The prosodic functions which are generally considered to be
the most important ones in human-human-communication
are phrase boundaries, accents and sentence mood. Lea [32]
has already proposed the use of this prosodic information in
automatic speech understanding (ASU) systems. Illustrations
for their use are given in the examples below (Section V), cf.
also [27], [32], [36], [52]. For several reasons, the extraction of
prosodic features and their classification into prosodic classes
is not an easy task. First of all, it is not clear at all how many
prosodic classes, e.g., two, three, or more boundary types,
should be distinguished and have thus to be classified. Other
important problems are listed in the following:

• mutual influence of segmental and suprasegmental (i.e.,
prosodic) information;

• interferences of the different prosodic functions which are
realized to a great extent with the same prosodic parame-
ters;

• trading relations between prosodic parameters;
• optionality of prosodic means; when other grammatical

means are already sufficient (as in Wh-questions), a spe-
cific function can be expressed with prosody but it does
not have to be;

• speaker and language specific use of prosodic features.

Thus, even though the number of research projects on prosody
in the context of automatic speech recognition/understanding
has increased steadily over the past ten years, it took 17
years—from [32] to the development of the VERBMOBIL

system [54]—for prosody to be really used in a complete
speech understanding system. Moreover with VERBMOBIL it
can be demonstrated that prosody leads to drastic performance
improvements. There are several reasons for the gap between
the amount of research on prosody and its use in complete
systems. The major role of prosody in human-human-commu-
nication is segmentation and disambiguation. In systems for
restricted tasks, the utterances of the user might be so short that
these segmentation capabilities of prosodic information would
not lead to a system improvement. For example, the average
length of an utterance in a field test with an automatic travel
information system was 3.5 words [17]. In the speech-to-speech
translation task of VERBMOBIL the communication form is
human-(computer)-human whereas it is human-computer
in almost all other ASU application. Thus in VERBMOBIL

spontaneous real-life utterances have to be processed. A
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corpus analysis of VERBMOBIL data which were collected in
human-human dialogues, showed that about 70% of the utter-
ances contain more than one single sentence [51]; on average,
an utterance is comprised of about 20 words. Furthermore,
spontaneous speech phenomena like elliptic constructions and
interruptions or restarts are frequent and increase the amount of
ambiguities a lot. Exact figures for the increase in ambiguities
cannot be given, but cf. below the discussion of Table VIII.
Therefore, the most important contribution of prosody lies in
the understanding rather than in the recognition phase. This
shows up clearly in a system like VERBMOBIL which is one of
the few systems where the end-to-end performance (including
a deep linguistic analysis) is the optimization criterion. In the
current version of the VERBMOBIL research prototype, more
than 70% of the turns are translated approximately correctly
[54]. Note that here, “approximately correct” refers not to
syntactic structure or to exact wording; it means that the gist
of an utterance is translated correctly, as judged by human
translators.

In this paper we want to show how prosodic information can
be computed and used in a speech understanding system. Since
the authors developed the prosody module of the VERBMOBIL

system, and since the use of prosody is implemented on all
levels of linguistic processing in this speech-to-speech transla-
tion system, most examples will be taken from there.

After a short description of the VERBMOBIL architecture (Sec-
tion III), we will describe how prosodic information is computed
in our system (Section IV). This is divided into the steps feature
extraction (Subsection IV-A), description of classes to be rec-
ognized (Subsections IV-B and IV-C), classification into these
classes (Section IV-D), and improvement of the classification
results with stochastic language models (Section IV-E). Finally
in Section IV-F we show how these prosodic classes are cal-
culated in a word hypotheses graph (WHG) rather than in the
spoken word sequence. Following this we will show how we
use the prosodic information at different linguistic levels (Sec-
tion V). We will concentrate on the use of prosodic informa-
tion on the level of syntactic analysis (Section V-A) since we
can present results of extensive experiments. With respect to the
other linguistic levels, we will show how prosodic information
is used in VERBMOBIL (Section V-B). However, we currently
cannot present systematic experimental results which show the
performance improvement caused by prosodic information, as
is the case on the syntax level. The paper ends with an outlook
to future work and a concluding summary.

II. STATE OF THE ART

The use of prosodic information in the syntactic analysis
of speech has been investigated in the last decade especially
by Mari Ostendorf and her colleagues, and by Andrew Hunt.
In their first work, Ostendorf et al.extended grammar rules
by prosodic “break indices,” so that at each word boundary a
subset out of seven levels of breaks could occur. For the spoken
word chain each word was classified into one of these break
indices on the basis of an acoustic feature vector. These break
indices were introduced in the word chain which then was
parsed using the extended grammar. This approach resulted in a

decrease in the number of parses by up to 25% [10], [39], [41].
Later, it was also used for the rescoring of parses [40], [53]. All
the experiments reported so far by this group concerning the use
of prosody in parsing were conducted on pairs of ambiguous
sentences read by professional radio news speakers. When
using automatically determined prosodic boundary and accent
information, in up to 73% of the cases the model selected the
correct parse out of two alternatives [40], [53].

Hunt developed a similar approach which computes acoustic-
prosodic, and syntactic features for each word. The syntactic
features are determined based on a parse of a word chain using
the link grammar which is a special kind of grammar developed
at CMU [48]. As Ostendorf et al., Hunt correlates the syntactic
features with the prosodic features. In his approach, correlations
between these feature vectors are directly computed using mul-
tivariate linear statistical analysis. With this he can score dif-
ferent parses of the same word chain without requiring a manu-
ally labeled training database. On the same corpus used by Os-
tendorf et al., 74% of the parses were recognized correctly using
this approach [20]–[22].

Note that due to the computation of the syntactic features, the
approaches of both Ostendorf and Hunt require that an entire
sentence hypothesis has been parsed before the prosody model
can be applied. Prosodic information is not incorporated directly
into the search for the optimal parse.

More references can be found in ([27, Sec. 4.3]) and in ([25,
Sec. 2.2]).

III. VERBMOBIL SYSTEM

VERBMOBIL is a speech-to-speech translation project [55],
[11] in the domain of appointment scheduling dialogues, i.e.,
two persons try to fix a meeting date, time, and place. Currently
the emphasis lies on the translation of German utterances into
English. VERBMOBIL research prototype systems have been
successfully presented to the public since 1994; Fig. 1 shows
the architecture of the March 1996 VERBMOBIL prototype.
After the recording of the spontaneous utterance, a WHG is
computed by a standard Hidden Markov Model word recognizer
[31], [49]. The word hypotheses in this graph are then enriched
with prosodic information (cf. Section IV). This prosodically
scored WHG is parsed by one of two alternative syntactic
modules. As a result, the best scored syntactically correct word
chain together with its different possible parse trees (readings)
is passed to the semantic analyzer. There, in conjunction with
the dialogue module, the utterance is translated on the semantic
level (transfer module) and an English utterance is generated
and synthesized. In parallel to this deep analysis performed
by these modules, the dialogue module conducts a shallow
processing, i.e., the important dialogue acts are detected in the
WHG and are roughly translated. A more detailed account of
the architecture can be found in [15] and [55].

Fig. 1 shows the interaction of the prosody module with the
other modules in the VERBMOBIL architecture. The solid lines
point out interfaces and the dashed lines mark additional flow of
information. For the time being, the following modules use the
prosodic information: syntactic analysis, semantic construction,
dialogue processing, transfer, and speech synthesis.



NÖTH et al.: VERBMOBIL: USE OF PROSODY 521

Fig. 1. The VERBMOBIL architecture at a glance.

In the following section we will describe the computation of
prosodic information.

IV. COMPUTATION OF PROSODIC INFORMATION

There are two fundamental approaches to the extraction of
features which represent the prosodic information contained in
the speech signal:

1) The prosody module uses only the speech signal as input.
This means that the module has to segment the signal
into the appropriate suprasegmentals (e.g., syllables) and
calculate features for these units.

2) The prosody module takes the output of the word recog-
nition module in addition to the speech signal as input.
In this case the time-alignment of the recognizer and the
information about the underlying phoneme classes (like
long vowel) can be used by the prosody module.

The first approach has the advantage that prosodic infor-
mation can be computed immediately and in parallel to the
word recognition and that the module can be optimized in-
dependently. The problem is that the units determined by
the prosody module have to be synchronized later with the
units (words, syllables, phones) computed by the word recog-
nizer. This is to map the prosodic information onto word hy-
potheses (or syllables within hypotheses) for further linguistic
processing. In the second approach the prosody module can
use the phonetic segmentation computed by the word recog-
nizer as a basis for prosodic feature extraction. This segment

information is much more reliable and it corresponds exactly
to the segments for which prosodic information should be
computed in order to score word hypotheses prosodically.

In [36] and [37], we present results concerning an explicit
prosodic syllable nucleus detection. Based upon these investiga-
tions we decided for the second approach: input to the module is
the WHG and the speech signal. Output is a prosodically scored
WHG [30], i.e., probabilities for prosodic accent, for prosodic
clause boundaries, and for sentence mood are attached to each
of the word hypotheses. We will now describe the individual
steps toward the calculation of these probabilities for the word
hypotheses.

A. Extraction of Prosodic Features

We distinguish different categories of prosodic feature levels;
an overview is shown in Fig. 2 (as for more detail, cf. [25]).
Acoustic-prosodic features are signal-based features that usu-
ally span over speech units that are larger than phonemes (syl-
lables, words, turns, etc.). Normally, they are extracted from the
specific speech signal interval that belongs to the prosodic unit,
describing its specific prosodic properties, and can be fed di-
rectly into a classifier, e.g., into a multilayer perceptron (MLP).
Within this group we can further distinguish:

• Basic prosodic features
are extracted from the pure speech signal without any
explicit segmentation into prosodic units. Examples are
the frame-based extraction of fundamental frequency

and energy. (Energy and duration features are later
normalized with respect to the intrinsic properties of the
phone they belong to, i.e., to their mean values across
the whole training database.) values are transformed
into semitone values and normalized with respect to
the utterance specific mean value. Usually the basic
prosodic features cannot be directly used for a prosodic
classification.

• Structured prosodic features
are computed over larger speech units (syllable, syllable
nucleus, word, turn). Some of them are based on the basic
prosodic features, e.g., these features describe the shape
of the or the energy contour. Others are based on seg-
mental information that can be provided from the output
of a word recognizer, e.g., features which describe dura-
tional properties of phonemes, syllable nuclei, syllables,
pauses.

Prosodic information is highly interrelated with “higher” lin-
guistic information, i.e., the underlying linguistic information
strongly influences the actual realization and relevance of the
measured acoustic-prosodic features. In this sense, we speak of
linguistic prosodic features that can be introduced from other
knowledge sources, as lexicon, syntax, or semantics; usually
they have either an intensifying or an inhibitory effect on the
acoustic-prosodic features. The linguistic prosodic features can
be further divided into the following.

• Lexical prosodic features which are categorical features
that can be extracted from a lexicon that contains syllable
boundaries and information about the position of the lex-
ical word accent in the phonetic transcription of the words.
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Fig. 2. Sketch of the process of prosodic feature extraction.

Examples for these features are flags marking if a syl-
lable is wordfinal or not or denoting which syllable carries
the lexical word accent. Other possibilities not considered
here might be special flags marking content and function
words which are usually realized with a different prosody.

• Syntactic/semantic prosodic features which encode the
syntactic and/or semantic structure of an utterance. They
can be obtained from syntax, e.g., from the syntax tree
as in [22], [23], or they can be based on predictions of
possibly important—and thus accented—words from the
semantic or the dialogue module.

Since we want to use prosody to disambiguate and speed-up
syntactic/semantic analysis we do not assume that syntactic/se-
mantic prosodic features are available; in the following, the
cover term prosodic features means mostly structured prosodic
features and some lexical prosodic features.

For spontaneous speech it is still an open question which
prosodic features are relevant for the different classification
problems, and how the different features are interrelated. We
try therefore to be as exhaustive as possible, and we use a
highly redundant feature set leaving it to the statistical classifier
to find out the relevant features and the optimal weighting of
them. For the computation of the prosodic features, a fixed
reference point has to be chosen. We decided in favor of the
end of a word because the word is a well-defined unit in word
recognition, and because this point can be more easily defined
than, for example, the middle of the syllable nucleus in word
accent position. As many relevant prosodic features as possible
are extracted from different overlapping windows around the
final syllable of a word or a word hypothesis. These features
are composed into a large vector which represents the prosodic

properties of this, and of several surrounding units, in a specific
context.

We investigated different contexts of up to 6 syllables ( 3
words, resp.) to the left and to the right of the reference point
(last frame of the current word hypothesis). For every classi-
fication problem investigated, many different subsets of these
features were analyzed. To date, the best results were achieved
by using 276 features computed for each word hypothesis which
consider a context of 2 syllables ( 2 words, resp.).

A full account of the strategy for the feature selection that is
described more fully in [25] is beyond the scope of this paper;
our feature set is comparable to that used by ([57, p. 475f]) with
the following differences: guided by our experience that raw
values yield better recognition results than ratio values, cf. ([1,
p. 34f]), we decided in favor of raw values. We use the same
feature set for accent and boundary classification and leave it to
the classifier to select the appropriate features for the specific
task. For the same reason, we compute the same features over
several contexts, even though we know that these features are
highly correlated.

In more detail the features used here are

• duration (absolute and normalized as in [56]) for each syl-
lable nucleus/syllable/word;

• for each syllable and word in this context
• minimum and maximum of fundamental frequency

and their position relative to the reference point
normalized as to the -mean (all values are in-
terpolated at unvoiced stretches of speech);

• maximum energy (absolute and normalized) and
their position relative to the reference point as well
as mean energy (absolute and normalized).
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TABLE I
OVERVIEW OVER THE

�
LABELS

• -offset and its position for the actual and preceding
word (the -offset is the last nonzero -value in a seg-
ment);

• -onset and its position for the actual and succeeding
word (the -onset is the first nonzero -value in a seg-
ment);

• for each syllable in the considered context: flags indicating
whether the syllable carries the lexical word accent or
whether it is in a word final position;

• length of the pauses preceding/succeeding the actual
word;

• linear regression coefficients of -contour and energy
contour over 11 different windows to the left and to the
right of the actual syllable;

• for a normalization of the features, measures for the
speaking rate are computed over the whole utterance
based on the absolute and the normalized syllable dura-
tions (as in [56]). It is used to explicitly normalize the
durational features and it is added to the feature vector
for an implicit normalization of the other features; cf. [6].

B. Prosodic Classes

It is not self-evident what prosodic classes to look for, i.e.,
which reference labels should be used to train the prosodic clas-
sifiers: how many boundary types and how many levels of ac-
centuation should be distinguished? Should we try to detect
events which can be marked prosodically (e.g., all questions,
even those with a “declarative”, falling pitch contour) or only
those which really are marked prosodically (e.g., only questions
with final rising pitch contour)? Who decides on the classes—a
panel of naive listeners or phonetic experts?

We tried to recognize those classes which need to be detected
for the linguistic analysis in VERBMOBIL. These classes are rep-
resented by the different types of perceptual-prosodic reference
labels annotated at the University of Braunschweig; cf. [43].

1) Prosodically Marked Phrasal Accents: Four different
types of syllable based phrasal accent labels are used: primary

accent, secondary accent, emphatic or contrastive accent, and
no accent. For the experiments described below, these labels
were mapped onto word-based labels denoting if a word is
accented A or not A , because for the time being this
was considered to be sufficient for the semantic analysis in
VERBMOBIL.

2) Prosodically Marked Boundaries: Four different types
of boundaries are labeled: full intonational boundary with
strong prosodic marking, intermediate phrase boundary with
weak marking, normal word boundary, and “agrammatical”
boundary, e.g., hesitation, repair. For the experiments described
below, these labels were mapped onto word-based labels de-
noting if after a word a full prosodic boundary B or one of
the other three classes B occurs, because due to the many
elliptic clauses in spontaneous speech, determining clause
boundaries was the most important problem for the syntactic
analysis.

3) Prosodically Marked Sentence Mood: We distinguish
between three classes that are marked prosodically: statement,
question, and continuation rise (cf. [26]).

4) Disadvantage of Perceptual Classes in Automatic Speech
Understanding: There are some drawbacks in these reference
labels if one wants to use prosodic information in the later lin-
guistic analysis; these drawbacks are best explained with respect
to the use of prosodic boundary information in parsing.

• Prosodic labeling by hand is very time consuming, the
labeled database up to now is therefore rather small.

• Perceptual labeling of prosodic boundaries is not an easy
task and possibly not very robust.

• Prosodic boundaries do not only mirror syntactic bound-
aries but are influenced by other factors as rhythmic
constraints and speaker specific style. In the worst case,
clashes between prosody and syntax might be lethal for
a syntactic analysis if the parser relies only on prosody,
goes down the wrong track, and never returns.

Earlier experiments on a large corpus with read speech
showed that syntactic labels can be successfully used for the
training of prosodic classifiers (cf. [30]). This and the work
with pure syntactic boundaries together with our colleagues
from IBM (Heidelberg) [19], [3] encouraged us to develop a
new syntactic-prosodic labeling scheme which is described in
the following section.

C. New Boundary Labels: The Syntactic-Prosodic -Labels

Our new labels should fulfill the following requirements.

• It should allow for fast labeling. Therefore, the labeling
scheme should be rather rough, because the more precise
it is the more complicated and the more time consuming
the labeling will be. A “small” amount of labeling errors
can be tolerated, since it will be used to train statistical
models which should be robust to cope for these errors.

• Prosodic tendencies and regularities should be taken
into account. In this context, it is suboptimal to label a
syntactic boundary that is most of the time not marked
prosodically with the same label as an often prosodically
marked boundary. Since large quantities of data should
be labeled within a short time, only expectations about
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TABLE II
PARTS OF VERBMOBIL TURNS SHOWING EXAMPLES FOR THE � LABELS

AND THEIR FREQUENCY IN THE 7286 TURNS

prosodic regularities based on the textual representation
of a turn (transliteration) can be considered. Examples for
mismatches between syntactic and prosodic boundaries
that can be expected to occur are given in [7].

• The specific characteristics of spontaneous speech, e.g.,
heavy use of extrapositions and discourse particles,
agrammatical structures such as repairs or fresh starts [7],
have to be incorporated in the scheme.

• It should be independent of particular syntactic theories
but at the same time, it should be compatible with syntactic
theory in general.

According to these requirements, 7286 VERBMOBIL turns
(17 h of speech, 149 514 word tokens counting word fragments
but not nonverbals) were labeled by one person in about four
months. An overview over the so called M labels is given in
Table I where the context of the boundaries is described shortly,
and the label and the main class it is attached to is given. Ex-
amples follow in Table II in the same order. Table II also shows
the frequency of occurrence of the labels not counting the end
of turns which by default are labeled with M3S. No numbers

TABLE III
CONFUSION MATRIX FOR THE CLASSIFICATION OF PROSODIC

BOUNDARIES ���������
	

are given for M2I and M1I, because a reliable detection of M3
had priority and thus, M2I was only labeled in three dialogues,
and M1I was not labeled at all. Nevertheless, in [9] we showed
that even in read speech such phrase boundaries are marked
prosodically and that they can be reliably detected.

In the experiments described in this paper, we distinguish
only between the three main classes given in Table I that are
for the time being robust enough and most relevant for the lin-
guistic analysis in VERBMOBIL. Nevertheless, the distinction of
the nine classes was considered to be useful, because their auto-
matic discrimination might become important in the future. Fur-
thermore, these boundary classes might be marked prosodically
in a different way; for a detailed discussion of the M labels see
[8]. A more detailed account of the labeling scheme, an exten-
sion of the scheme as well as the computation of effort needed
and the agreement between labellers (reliability) are presented
in [7]; there, additional experiments are also described.

D. Classification of Prosodic Events

Given a feature set and a training database of hand labeled
classes to be recognized, pattern recognition offers a large va-
riety of classifiers for supervised learning. Here we will only
report results obtained with MLPs which turned out to be supe-
rior compared to Gaussian distribution classifiers and polyno-
mial classifiers in similar investigations [28], [9]. Different MLP
topologies were analyzed for the various classification prob-
lems. Experiments were performed with different feature sets.
In all cases the MLP had as many input nodes as the dimension
of the specific prosodic feature vector, and one output node for
each of the classes to be recognized. During training the desired
output for each of the feature vectors is set to one for the node
corresponding to the reference label; the other one is set to zero.
With this method in theory the MLP estimates a posteriori prob-
abilities for the classes under consideration. During training the
MLP was presented with an equal number of feature vectors
from each class so that it computes class likelihoods instead of
a posteriori probabilities. These likelihoods are combined with
a priori probabilities estimated on the basis of the word chain as
shown in Section IV-E. For all training, the quickpropagation
algorithm [18] with the sigmoid activation function was used.

For classification, the utterances annotated with perceptual
B and A labels were divided into a training database (30 di-
alogues, 797 turns, 13.145 words) and a test database (3 dia-
logues, 64 turns, 1.513 words). The best result for the classifi-
cation of prosodic boundaries B B is illustrated in Table III
in a confusion matrix. (For this table, only the 1449 turn-in-
ternal word boundaries are considered.) It was obtained using
an MLP with nodes in the first/second hidden layer. The
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average recognition rate here is 88.3%, the average of
the class-dependent recognition rates is 86.8%. Note
that we try to balance the recognition accuracy for both classes,
i.e., that recall and precision are approximately within the same
range. In our opinion, it is more important to optimize
than . In Table IV, the results for experiments with different
subsets of this best feature set are shown for the recognition of
prosodic boundaries (column B B) as well as for the classifi-
cation of accents (column A A). For column “SET alone”, only
the feature set indicated in the first column is used, for ALL/SET,
the complement is used, i.e., all features except “SET alone”.
Thus, we can see how good a feature set is in predicting bound-
aries and accents (“SET alone”), and to which extent all other
feature groups can compensate for a missing information that is
entailed in “SET alone” (ALL/SET). A more detailed account is
given in [5].

Although the sole use of some feature subsets shows already
respectable results whereas some (row SPEAKING RATE) seem
to be almost neglectable, the best recognition rate can only be
achieved, if all feature sets are used in combination (row ALL).
For the B B problem the most important features are , EN-

ERGY. Concerning the A A classification, is also the most
important group and in contrast to the B B problem more rel-
evant than ENERGY. An explanation for the superiority of
and ENERGY compared to DURATION might be the fact that dura-
tional information is already modeled in the position features of

and ENERGY. This shows also the distinct drop of the recog-
nition rate if only the “pure” features without their positions
(row “ without POS”) are used. The lexical prosodic features
(row FLAGS) seem to be much more relevant for the A A clas-
sification than for the B B classification. This mirrors the fact
that word accent position in a word is, to a very large extent, pre-
dictable in German as well as in English. Note that we model ac-
cents for words (“phrase accents”) but compute them based on
syllable as well as on word information. A more detailed feature
evaluation is given in [2].

In the next two sections, we will show how we combine
the acoustic-prosodic classification of B boundaries with a
stochastic language model based on the syntactic-prosodic M
boundaries and the word chain, and how we put this boundary
information into a WHG (see also [28] and [30]).

E. Improving the Classification Results With Stochastic
Language Models

Let be a word out of a vocabulary where denotes the
position in the utterance; denotes a symbol out of a predefined
set of prosodic symbols. These can be for example B B

A A , or a combination of both B A BA B A BA
depending on the specific classification task. For example,
B means that the th word in an utterance is succeeded by a full
intonational boundary.

Ideally one would like to model the following a priori prob-
ability

which is the probability for strings, where words and prosodic
labels alternate ( is the number of words in the utterance).

TABLE IV
RECOGNITION RATES FOR THE CLASSIFICATION OF ACCENTS ���������	� AND

PROSODIC BOUNDARIES �
�������� FOR DIFFERENT FEATURE SETS. IT IS

DISTINGUISHED BETWEEN THE CLASSIFICATION WITH DIFFERENT FEATURE

SETS (COLUMN SET ALONE) AND THE CLASSIFICATION WITH ALL FEATURES

BUT THE ONES CORRESPONDING TO THE ACTUAL ROW (COLUMN ALL\SET).
BESIDES THE OVERALL RECOGNITION RATE ������� ALSO THE AVERAGES OF

THE CLASS-WISE RECOGNITION RATES ����� � ARE GIVEN

In [28] we used a language model similar to this one to score
chains containing words and prosodic labels. In the following,
we are interested in the recognition of prosodic classes given a
(partial) word chain. When determining the appropriate label to
substitute , the labels at positions and are not known

. Thus, we used the following probabilities:

(1)

where , and are defined as follows:

(2)

(3)

(4)

Terms like in are called history.
As usual in stochastic language modeling, the history has to
be restricted to a certain length [35]. The stochastic language
model approach we used is the so called polygram [46], a special

-gram, where the histories have variable length depending on
the available training data. A maximum history length can be
defined.
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For each word boundary in the training corpus, a sufficient
number of context words (according to the maximum history
length) and the corresponding prosodic reference label are
extracted from the text corpora; they are used to estimate the
probabilities of the equations above by counting the frequencies
(maximum likelihood estimation), as is usually done when
training stochastic language models. To be more precise, words
were collapsed into a smaller set of 150 categories which were
then used to compute probabilities.

We used the trained polygrams for the classification of
prosodic labels. Given a word chain , the
appropriate prosodic class is determined by maximizing the
probability of (1):

Note that the probability is independent of in (2). Thus
this maximization (and ) is independent from . Note also
that does not only depend on the left context (probability
in (3)) but also on the words succeeding the word (probability

in (4)). In practice, the context is restricted to the maximum
history length used during training of the polygram

Classification results using this language model are given in
Table V which is described at the end of the next subsection.

F. Prosodic Scoring of WHGs

A WHG is a directed acyclic graph [38]. Each edge corre-
sponds to a word hypothesis which has attached to it its acoustic
probability, its first and last time frame, and a time alignment of
the underlying phoneme sequence. The graph has a single start
node (corresponding to time frame 1) and a single end node (the
last time frame in the signal). Each path through the graph from
the start to the end node forms a sentence hypothesis. Each edge
in the graph lies on at least one such path. In the following the
term neighbors of a word hypothesis in a graph refers to all its
adjacent predecessor and successor edges.

With prosodic scoring of WHGs we mean in fact the anno-
tation of the word hypotheses in the graph with the probabil-
ities for the different prosodic classes. These probabilities are
used by the other modules during linguistic analysis, e.g., by the
parser in the syntax module. Note that also in the case of phrase
boundaries, we do not compute the probability for a prosodic
boundary located at a certain node in the WHG. Rather we com-
pute for each of the word hypotheses in the graph the probability
for a boundary being after this word. This is important, since the
acoustic-prosodic features also include the duration of syllable
nuclei; these are most robustly obtained from the time align-
ment of the phoneme sequence underlying a word hypothesis
computed with the word recognizer, and these durations have
to be normalized with respect to the intrinsic phoneme dura-
tion. In fact, often for word hypotheses being in parallel between
the same nodes in the WHG, very different scores for the same
prosodic classes are computed due to differences in the segmen-
tation into phonemes and to the intrinsic normalization segment
duration.

TABLE V
RECOGNITION RATES ������� AND AVERAGES OF THE CLASS-DEPENDENT

RECOGNITION RATES ����� � FOR THE CLASSIFICATION OF

SYNTACTIC-PROSODIC BOUNDARIES ���
	������� ON 160 WHG, WHICH

CONTAIN THE SPOKEN WORDS

The following two steps have to be conducted.

1) Determine recursively appropriate neighbors of the
word hypothesis until a word chain is
built which contains enough syllables to compute the
acoustic-prosodic feature vector and where

, with being the maximum context modeled by
the polygram. We used in our experiments.

2) For each compute the probabilities

where

denotes the acoustic-prosodic feature vector, is a weight
for the combination of the acoustic-prosodic model probability

and the prosodic-syntactic language model proba-
bility. The first probability is computed by the MLP trained
with B boundaries, the second one by the polygram trained
with M boundaries. The value of is determined empirically
on a validation set.

In the current implementation we just select that hypothesis
as the “appropriate” neighbor of which is most probable ac-
cording to the acoustic model, i.e., the adjacent words with the
highest acoustic score are chosen. Note that this is suboptimal,
because the selected context words may differ from the actually
spoken words. An exact solution would be a weighted sum of all
probabilities computed on the basis of all the possible con-
texts. However, this does not seem to be feasible under real-time
constraints. As a trade-off, the neighbors are determined on the
basis of the best of the paths through the graph which contain the
hypothesis . The best path is determined efficiently with dy-
namic programming using acoustic and language model scores.

The evaluation of the prosodic scores only makes sense on
the WHGs containing the spoken word chain:

1) Score the WHG prosodically with the probabilities .
Note that this is based on the best paths through the hy-
potheses which may be different from the spoken word
chain.

2) For each word contained in the (best) path corresponding
to the spoken word chain determine the prosodic class
with the largest probability (i.e., the recognized
class).

3) Compare the recognized classes with the reference labels
and determine the recognition error.
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In Table V the recognition rates for different experiments
on 160 WHGs are presented. These are WHG out of a larger
set which contained all the spoken words; the density of the
graphs was about 13 words per spoken word; for details see
[27]. LM denotes the polygram-classification as described in
Section IV-E, where specifies the maximum context allowed
during training of the polygram. The column “word chain”
refers to experiments conducted on the time alignment of the
spoken word chain, i.e., with optimal context. The results
obtained for the word chain represent a sort of upper limit for
the classification; of course, for the actual system performance,
the results for the WHG are more relevant. The results show
that the LM classifies boundaries better than the MLP, and
that furthermore a combination of both classifiers yields the
best results (94% recognition rate using word chains). It is not
surprising that the recognition rates are smaller on word graphs
than on word chains due to the suboptimal selection of words
in the context; however, the decrease is not drastic so that a
92% recognition rate is obtained on word graphs.

Our syntactic-prosodic M boundaries could be compared
with the boundaries used in [57], and the classification results
could be compared as well, albeit not in a strict sense: there,
the authors annotate prosodically and assume, as we do, that
there is a high correlation between syntax and prosody. We do
it the other way around: we annotate syntactically and only
subspecify prosodically. The labels in [57] should thus be
rather compared with our prosodic-perceptual B boundaries.
The authors in [57] use a professionally read corpus with
well-designed ambiguous sentences, whereas we use sponta-
neous speech. Boundary classes differ, algorithms differ, and
languages differ. We therefore refrain from comparing their
recognition results from ours, although we achieve higher
absolute recognition rates.

In the next section we will see, how the prosodic information
is used during linguistic analysis.

V. THE USE OF PROSODIC INFORMATION

A. Prosody and Syntax—Interaction With the TUG-Grammar

In this subsection, we describe the interaction of prosody
with the syntax module developed by Siemens (Munich).
Note that in the experiments reported here, a prosodic fea-
ture set that is smaller than that described in Section IV-A
was used so that less computation time was needed at a
cost of slightly worse recognition rates (for more informa-
tion cf. [27]. The adaptation of the syntax module was done
by Siemens and is described in [29]. For the interaction with
the VERBMOBIL syntax module developed by IBM (Heidel-
berg) cf. [3], [4]. In the module described here, a Trace and
Unification Grammar (TUG) [12] and a modification of the
parsing algorithm of Tomita [50] is used. The basis of a TUG
is a context free grammar augmented with PATR-II-style fea-
ture equations. The Tomita parser uses a graph-structured
stack as the central data structure [47]. After processing word

, the top nodes of this stack keep track of all partial deriva-
tions for . The parsing-scheme uses an -search
and is able to combine different knowledge sources in order
to find the optimal word sequence in a WHG with respect to

these knowledge sources. It is presented in [45]. The main
extension in order to be able to use prosodic information
was to introduce a symbol for a clause boundary which we
will call PSCB (prosodic-syntactic clause boundary) in the
grammar. This is introduced at positions where either a M3
or a B3 boundary is expected.

When searching the WHG, partial sentence hypotheses are
organized as a tree. A graph-structured stack of the Tomita
parser is associated with each node. In the search an agenda
of score-ranked orders to extend a partial sentence hypothesis

by a word or a PSCB
symbol is processed: The best entry is taken; if the associated
graph-structured stack of the parser can be extended by or
by PSCB, respectively, new orders are inserted in the agenda
for combining the extended hypothesis with the words
which then follow in the graph, and, furthermore, the hypoth-
esis is extended by the PSCB symbol. Otherwise, no
entries will be inserted. Thus, the parser makes hard decisions
and rejects hypotheses which are ungrammatical.

The acoustic, prosodic, and trigram knowledge sources de-
liver scores which are combined to give the score for an entry
of the agenda. In the case the hypothesis is extended by
a word , the score of the resulting hypothesis is computed
by

����������	�
�� ��������

	���
�������� ��������

� ������������������	 
!�"��#$����%&	 
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where is the prosodic score as defined in Section IV-E,
����������	 
 � �������� and 	���
*������� �������� are
the scores computed by the word recognizer. The weights and

are determined heuristically.
Prior to parsing, a Viterbi-like backward pass approximates

the scores of optimal continuations of partial sentence hy-
potheses ( -search). After a certain time has elapsed, the
search is abandoned. With these scoring functions, hard deci-
sions about the positions of clause boundaries are only made
by the grammar but not by the prosody module. If the grammar
rules are ambiguous in a sense that two hypotheses and

are accepted that differ only in the position of PSCBs,
the prosodic score guides the search by ranking the agenda.

In order to make use of the prosodic information, the
grammar had to be slightly modified. The best results were
achieved by a grammar that neatly designed the occurrence
of PSCBs between the multiple phrases of the utterance. A
context-free grammar for spontaneous speech has to allow for
a variety of possible input phrases following each other in a
single utterance, cf. (rule 1) in Table VI. Among those count
normal sentences (rule 2), sentences with topic ellipsis (rule
3), elliptical phrases like PPs or NPs (rule 4), or presentential
particles, so called “exclamatives” (rule 5 and rule 6). Those
phrases were classified as to whether they require an obligatory
or optional PSCB behind them. The grammar fragment in
Table VI says that the phrases s s-ell and np require an
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obligatory PSCB behind them, whereas excl may also attach
immediately to the succeeding phrase (rule 6).

The segmentation of utterances according to a grammar like
in Table VI is of relevance to the text understanding compo-
nents that follow the syntactic analysis, cf. the following two
examples which differ w.r.t. the attachment of the particle ja. In
the first example, it is followed immediately by a sentence (rule
6), whereas in the second it is separated by a PSCB from the
following sentence (rule 5). Semantic analysis or dialogue pro-
cessing can make use of these different rules. The particle ja in
example 1) might be identified as introduction, in example (2)
it might be interpreted as affirmation. Note that for example 2),
a word-by-word translation into English is given.

1) “ja also bei mir geht prinzipiell jeder

Montag und jeder Donnerstag PSCB”

“Well as far as I’m concerned in principle

every Monday or Thursday is possible.”

2) “ja PSCB das pa’’st mir Dienstag PSCB
ist der f’’unfzehnte PSCB”

“Yes. That suits me, Tuesday. Is the fifteenth.”

The occurrence of the second PSCB in example 2) does not
mirror the intention of the speaker: Here the PSCB divides the
subject Dienstag from its matrix clause ist der fünfzehnte. A hes-
itation in the input that was not detected as a false alarm might be
responsible for this. However, 2) is a syntactically correct seg-
mentation since a grammar for spoken language has to allow for
topic ellipsis and the phrase ist der fünfzehnte constitutes a cor-
rect sentence according to (rule 3). The grammar therefore re-
trieves the interpretation for this lattice as indicated by the Eng-
lish translation.1

In experiments using a preliminary version of the sub-gram-
mars for the individual types of phrases, we compared the
grammar explained above with a grammar that obligatorily
required a PSCB behind every input phrase, see Table VII.

With the grammar shown in Table VI, 149 WHGs could suc-
cessfully be parsed; with the one given in Table VII, only 79
WHGs were analyzed. This indicates that often the prosody
module computes a high score for PSCB after particles so
that parsing fails if a PSCB is obligatorily required as in the
grammar of Table VII.

With an improved version of the grammar for the individual
phrases, we repeated the experiments using the grammar of
Table VI and compared them with the parsing results using a
grammar without PSCBs. For the latter, we took the category
PSCB out of the grammar and allowed all input phrases to ad-
join recursively to each other. The graphs were parsed without
taking notice of the prosodic PSCB information contained in
the lattice. In this case, the number of readings increases and
the efficiency decreases drastically; cf. Table VIII.

1For this word chain, it would make no difference for the text understanding
component, whether the PSCB is before or after Dienstag. Actually, the spoken
word chain is: Ja, das paßt. Nur Dienstag ist der fünfzehnte. The dialogue goes
like this: A: What about Tuesday the sixteenth? B: Yes. That’s ok. But Tuesday
is the fifteenth. A: Sorry. Then let’s say Wednesday the sixteenth. B: OK. Fine.
B thus only confirms the sixteenth, but not Tuesday.

TABLE VI
GRAMMAR 1 FOR MULTIPLE PHRASE UTTERANCES

TABLE VII
GRAMMAR 2 FOR MULTIPLE PHRASE UTTERANCES

TABLE VIII
PARSING STATISTICS FOR 594 WHGs

The statistics show that on average, the number of readings
decreases by 96% when prosodic information is used, and the
parse time drops by 92%. If the lattice parser does not pay atten-
tion to the information on possible PSCBs, the grammar has to
determine by itself where the phrase boundaries in the utterance
might be. It may rely only on the coherence and completeness
restrictions of the verbs that occur somewhere in the utterance.
These restrictions are furthermore softened by topic ellipsis, etc.
Any simple utterance like Er kommt morgen results therefore
in a lot of possible segmentations, see Table IX. Almost every
word or sequence of words is a possible syntactic unit. This fact
results in a huge amount of possible alternatives, and in turn, in
a huge amount of computation time. Some utterances can thus
not be parsed within a reasonable time frame. The most impor-
tant aspect of the way we use prosodic information is that we
do not make hard decisions based on prosodic events in order to
prune the search space. We rather guide the search in the huge
search space by using probabilities about prosodic events such
that only a few plausible solutions are found, and they are found
in a shorter time frame.

Our colleagues from Siemens, Munich were interested in the
quality of the parsing result. They determined the best of the
alternative parse trees according to some domain knowledge and
compared it to a reference tree stored in a tree bank. It turned
out that on average the quality of the parse trees improves by
using prosodic information. More detailed results can be found
in ([27, p. 266]).
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TABLE IX
SYNTACTICALLY POSSIBLE SEGMENTATIONS

Nine WHGs (i.e., 2%) could not be analyzed with the use of
prosody. This is due to the fact that the search space is explored
differently, and that the fixed time limit has been reached
before the analysis succeeded. However, this small number of
nonanalyzable WHGs is neglectable considering the fact that
without prosody, the average real-time factor is 6.1 for the
parsing. With prosodic information the real-time factor drops
to 0.5; the real-time factor for the computation of prosodic
information is 1.0 (with WHGs of about ten hypotheses per
spoken word).

Empty categories are an even more serious problem. They are
used by the grammar in order to deal with verb movement and
topicalization in German. The binding of these empty categories
has to be checked inside a single input phrase, i.e., the main sen-
tence. No movement across phrase boundaries is allowed. Now,
whenever a PSCB signals the occurrence of a boundary, the
parser checks whether all binding conditions are satisfied and
accepts or rejects the path that was found so far. This mecha-
nism works efficiently if prosodic information is used. For the
grammar without PSCBs, no signal where to check the binding
restrictions is available.

So far, there is no figure available that describes the impact
of prosody on the overall system performance. Yet, there is one
decisive figure: Due to time constraints, most of the time, the
system simply does not work without prosody.

B. Prosody and the Other Linguistic Modules

Prosody has just recently been used in other modules of
VERBMOBIL; so only preliminary results are available. This
section gives an overview.

1) Semantic Construction: The VERBMOBIL semantic
module receives a parse tree, the underlying word chain,
and the prosodic scores for accentuation from the syntax
module. Based on these, underspecified discourse represen-
tation structures (DRS) [24], [14] are created. These yield
assertions, representing the direct meaning of a sentence, and
presuppositions. In cases as indicated below, if several DRSs
are plausible due to ambiguities, accent information is used to
rule out the not-intended DRS. Context information might also
be used to disambiguate the interpretation; however, prosodic
information can be utilized at a much lower cost [13]. Currently,
the use of accent information is restricted to particles, whose
interpretation in German is highly ambiguous. This use of
prosody can be illustrated by the following examples from the
VERBMOBIL corpus where the meaning of both sentences is
the same. However, the position of the primary accent changes
the scope of the particle noch (still, another) and thereby the
presupposition of the utterances which results in a different
translation of the particle.

3) “Dann müssen wir noch einen Termin

ausmachen.”

“Then we still have to fix a date.”

4) “Dann müssen wir noch einen Termin

ausmachen.”

“Then we have to fix another date.”

2) Dialogue Processing: One of the tasks of the dialogue
module [42] is to keep track of the state of the dialogue in terms
of dialogue acts. Dialogue act recognition is done by statistical
classifiers. Dialogue acts are, e.g., greeting, confirmation of a
date, suggestion of a place. In VERBMOBIL, a turn of a user can
consist of more than one dialogue act. Currently, the processing
is done in two steps: First, the best path in the WHG (extracted
by a Viterbi search using acoustic and trigram scores) is seg-
mented into dialogue act units. Second, these units are classified
into dialogue acts. For the segmentation into dialogue acts, we
use the same prosodic clause boundary information as used by
the syntax modules. Due to less training data, the use of a dif-
ferent classifier trained directly on dialogue act boundaries did
not improve the recognition rate. Further details can be found in
[27] and [34].

3) Transfer: The transfer module of the VERBMOBIL system
translates DRSs representing the semantic information under-
lying the utterance into DRSs corresponding to English sen-
tences [16]. This task might involve pragmatic analysis and dis-
ambiguation which is partly done by the semantic evaluation
module. The transfer module uses accent and sentence mood
information for a few tasks. The sentence mood information is
used to distinguish between questions and nonquestions if gram-
matical indicators are missing; confer the identical word order
in declaratives and declarative questions as in er kommt./? (he
comes./does he come?). The accent information disambiguates
mainly the interpretation of particles. In the following exam-
ples, the same word chain has different meanings depending
on whether the accent is on schon or on finde. For further use
of prosodic information in the VERBMOBIL transfer module cf.
[44].

5) “Finde ich schon.” “I really believe that.”

6) “Finde ich schon.” “I’ll find it certainly.”

So far, the use of prosodic information in translation was im-
plemented for selected examples and successfully tested with
the prototype system which was also demonstrated at several oc-
casions like ICASSP’97. Formal evaluation on a large database
only makes sense when prosody will be used for much more as-
pects of the translation.

4) Speech Synthesis: For a better user acceptance, the syn-
thesized output of a translation system should be adapted to the
voice of the original speaker (especially in a multiparty sce-
nario). With respect to prosody this means that parameters like
the pitch level and the speaking rate should be adapted. So far,
the speech synthesis of the VERBMOBIL system is only switched
to a male or a female voice according to the contour of the
original user’s utterance.
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VI. CONCLUDING REMARKS

We have shown in this paper how prosodic information is used
in the speech understanding and translation system VERBMOBIL.
The main emphasis was given to the automatic classification
of syntactic-prosodic boundaries and their use in the system.
After a short presentation of the overall system, we outlined
our general approach that can be characterized as follows: We
favor a functional approach instead of a purely formal one. A
prosodic-perceptual annotation of boundaries was therefore used
mainlyfortheevaluationofourclassifier,andasyntactic-prosodic
annotation was used as reference in the final prosody module.
Many prosodic features were extracted modeling energy, du-
ration, and . In addition, energy and duration features were
normalized as for their intrinsic mean values; features were
normalizedwithrespect to themeanvalueoftheutterance.Gener-
ally,wepreferrawvaluestoratiovaluesandleaveit totheclassifier
to find the relevant features and to discard the irrelevant ones.
For the automatic classification of boundaries, a combination of
acoustic classifier (MLP) and stochastic language model turned
out to be superior: for the classification of WHGs, a MLP yielded
absolute recognition rates of 77.5%, a language model 91.9%,
and the combination of MLP and LM 92.2%. In the last part of
the paper, the use of this information computed by this prosodic
classifier in thesyntaxmoduleofVERBMOBIL (TraceandUnifica-
tion Grammar) is described. When prosodic information is used
during parsing, the number of readings decreased by 96%, and
the parse time drops by 92%. Due to time constraints, the whole
systemwouldactuallynotworkwithoutprosody.

Prosodic information is known to play a major role in human
speech understanding; a growing number of research projects
within the last ten years dealt with this topic. The German
speech-to-speech translationsystemVERBMOBIL is, however, the
first complete ASU system where prosody is used successfully.
Currently, this use is mainly confined to the prosodic scoring
of WHGs. We have shown that a substantial speed up of parse
time and a substantial reduction of syntactic readings could be
achieved. Other applications are, e.g., the prosodic marking of
accents (centerof informationfordialogueactclassification),and
the prosodic marking of emotions, e.g., neutral state vs. arousal
and anger that might trigger the reaction of the system. These are,
amongst others, topics that will be addressed within the second
phaseof theVERBMOBILproject lastingfrom1997to2000.

Although it might be possible that segmentation is really the
most important contribution of prosody to speech understanding,
we are still at the very beginning of an integration of prosody into
ASUsystems.Further improvementsare thereforeverylikely.
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