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Abstract 

We describe our statistical system for promoter recognition in genomic DNA with which we 

took part in the Genome Annotation Assessment Project (GASP1). We applied two versions 

of the system; the first uses a region based approach towards transcription start site 

identification, namely interpolated Markov chains, the second a hybrid approach combining 

regions and signals within a stochastic segment model. We compare the results of both 

versions with each other and examine how well the application on a genomic scale compares 

to the results we previously obtained on smaller data sets. 
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Introduction 

Within the next year,  the complete genomes of several eukaryotic organisms will be stored in 

the data bases, and we have to face the challenge that the annotation process is getting more 

and more complicated for the genomic sequence of higher eukaryotes such as D. 

melanogaster. The first draft of the annotation of a newly sequenced genome is usually 

limited to the coding part of a gene, but a complete annotation should also contain the 

positions of the transcription start sites (TSS), as most of the regulatory elements involved in 

gene expression are located in the promoter region upstream or close to the TSS.  

The untranslated region between transcription and translation start site, the 5’ UTR region, 

can span up to several kilobases in higher eukaryotes  -- it is an average of almost 2,000 bases 

for the transcription start site set compiled in the paper by Reese et al. (2000).  Therefore, we 

cannot simply take the sequence upstream from the start codon. Methods that aim at the 

identification of regulatory elements in the upstream regions of co-expressed genes such as 

van Helden et al. (1998) have been shown to deliver promising results for the yeast genome 

which has very short UTRs, but they will be hard to apply when the annotation only consists 

of the coding part of a gene. Of course, TSS identification is alleviated by full-length cDNA 

sequencing projects; but as the sequencing always starts at the 3’ end of a gene, we need 

additional methods to confirm the 5’ end of the sequences, or to hunt for rarely expressed 

genes that are not contained in the libraries at all. We are in a desperate need to at least get a 

good guess where the TSS (and thus the promoter region) is located, or we will start looking 

for the needle in the wrong haystack. 

 The only available comparison of promoter prediction in genomic DNA was carried out by 

Fickett and Hatzigeorgiou (1997). At this time, no extensive unstudied genomic sequences 

were available for complex eukaryotic organisms, and the authors performed their evaluation 

on a set of 18 newly released vertebrate sequences, the longest of which comprised less than 6 
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KB. It was therefore  a great challenge to see how well a recently developed promoter 

recognition program performs on a genomic scale, and what we can conclude for the 

annotation of complex eukaryotic genomes. We will briefly review the two versions of our 

promoter recognition system that we applied, discuss in detail the results that were described 

in the paper of Reese et al. (2000), and finally draw conclusions on the state of promoter 

prediction in general.  

Methods and Data 

McPromoter (Ohler et al., 1999a) is a statistical method to look for eukaryotic polymerase II 

transcription start sites in genomic DNA. It consists of a model for promoter sequences, and a 

mixture model for non-promoter sequences for coding and non-coding sequences. To localize 

transcription start sites, a window of 300 bases is shifted over the sequence in steps of 10 

bases (see figure 1). At every position, the difference between the log-likelihood of the 

promoter and the non-promoter model is computed. The resulting plot describes the 

regulatory potential over the sequence, and is smoothed by a median and hysteresis filter (see 

Niemann, 1990). The program then makes a prediction for each local minimum below a pre-

specified threshold (see figure 2 for an example). 

We applied two versions of McPromoter on the Adh sequence (see Ashburner et al. (1999) for 

a comprehensive description of the annotated genes). The difference between the two versions 

lies in the structure of the promoter model, and we wanted to explore how well our more 

recent modeling approach improved on the recognition of TSSs. Version 1.1 of McPromoter 

is a content based approach and uses a single interpolated Markov chain (IMC) of 5th order to 

model promoter sequences. As such, the model does not rely on a priori knowledge about the 

structure of the promoters, but judges the overall composition of the sequence. For the two 

non-promoter components for coding and non-coding sequences, we also chose interpolated 

Markov chains. Related methods were described by Audic and Claverie (1997) and  
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Hutchinson (1996). In the figures of the GASP paper by Reese et al. (2000), version 1.1 is 

denoted by LMEIMC (Lehrstuhl für Mustererkenung – Interpolated Markov Chains). The 

submodels are trained using the discriminative Maximum Mutual Information (MMI) 

approach. In contrast to the standard Maximum Likelihood parameter estimation, MMI 

maximizes the probability of the decision for the correct sequence class, and therefore also 

takes negative samples into account (Ohler et al., 1999b). 

In version 2.0, we replaced the single Markov chain promoter model by a more sophisticated 

stochastic segment model which consists of five states for a simplified upstream-TATA-

spacer-initiator-downstream structure of eukaryotic promoters (Ohler et al., 2000). With this 

approach, we obtain more accurate statistics for the states, combining region specific states 

such as the one for the upstream region with states specific for individual signals such as the 

one for the TATA box. Hybrid approaches that exploit statistics for several regions were 

previously described by Solovyev and Salamov (1997) and Zhang (1998). Version 2.0 of 

McPromoter is denoted by LMESSM in the GASP overview paper (Reese et al., 2000). 

Both versions were trained on the same representative data set consisting of D. melanogaster 

promoter and non-promoter sequences of 300 bases length, obtained at 

http://www.fruitfly.org/sequence/drosophila-datasets.html. Cross-validation classification 

experiments on this data (described in Ohler et al., 2000) gave a recognition rate of 27.9 % for 

version 1.1 and 58.8 % for version 2.0 at the very low false positive rate of 1 %. We used the 

system at this threshold for the evaluation of the Adh region.  

Results 

According to the results described by Reese et al. (2000), version 1.1 of McPromoter could 

identify 26 (28.2 %) transcription start sites with a false positive rate of 1 / 2,633 bases, and 

version 2.0 successfully located 31 promoters (33.6%) with the slightly higher false positive 

rate of 1 / 2,437 bases. This compares well with the results described in the comparison of 
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promoter recognition algorithms in vertebrate DNA  (Fickett and Hatzigeorgiou, 1997), 

especially considered the smaller amount of available training data for the organism of D. 

melanogaster.  

A negatively surprising fact for us was the small improvement of the performance that version 

2.0 achieved in comparison with the earlier version. With the results from cross-validation 

experiments on the representative set of promoters and non-promoters in mind, we expected 

the new version to localize approximately 20-30% more TSSs at the same rate of false 

predictions. 16 of the 26 predictions made by version 1.1 are contained in the set of 31 

predictions from version 2.0. Considered that the methods are closely related, this number is 

somewhat small, and could be due to the different training algorithms (MMI versus ML 

parameter estimation).  

9 predictions from version 1.1 are located within +/-40 bases of the start site (mean distance 

202 bases), as opposed to 13 close predictions and a mean distance of 166 bases of the 

predictions obtained by version 2.0. As we do not know exactly how far the true TSS differs 

from our current annotation, this number is encouraging to us. Version 2.0 is clearly more 

successful to identify the exact position of the start sites. 

Discussion 

To get a better understanding why the performance of version 1.1 and version 2.0 did not 

differ very much from each other, we looked at the system performance without the 

smoothing post-processing steps (table 1). When we look at the results without the smoothing 

post-processing operations, it becomes obvious that the new version indeed makes great 

improvement, and that mainly the post-processing is responsible that version 2.0 works less 

well than expected. The smoothing was designed specifically for a region-based approach like 

the Markov chains applied in version 1.1, and works less well on a hybrid approach like 

version 2.0 where the promoter region is divided in several distinct segments. 
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A rough extrapolation of the cross-validation results at the currently used threshold (1 % false 

positives) leads to a worst-case rate of 1 / 2,000 bases false predictions. From the non-

smoothed results it becomes clear now that this is obviously not met by reality. A possible 

explanation is that the available training data is still not representative enough. It certainly 

contains too little non-coding data, and the available promoter set has a bias towards house-

keeping genes. 

We already realized a number of plans to improve the model performance of version 2.0. The 

first idea was to include reverse sequence models for the non-promoter states, as we scan both 

directions of the sequence independently. It is well known that the reverse sequences of genes 

still resemble the true genes on the opposite strand, and that the statistics of reverse exon and 

intron sequences are close to the forward sequence -- hence the problem of shadow gene 

predictions. Nevertheless, we added two new states for reverse exon and intron sequences to 

have a more accurate model for the non-promoters.  

In a second step, we increased the amount of training data. For the Adh experiment, we took 

the model that performed best on three cross-validation experiments and left out one third of 

the available data to see if our predictions on this set were met by reality. Instead, we took the 

whole set and determined the 1 % false positive threshold by choosing the mean threshold of 

the three experiments. 

Finally, we replaced the median and hysteresis filters by a simple approach to allow only one 

prediction below the threshold within 300 bases (the model size). A similar smoothing 

approach is implicitly carried out by the gene finders with integrated promoter predictors; 

they choose the best prediction in accordance with the model topology which allows for only 

one prediction before the start codon. But the question remains if some predictions close to 

the best one might correspond to alternative transcription start sites, and if such a reduction 

actually filters out useful information. 
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As a result of these improvements, 20 predictions instead of 13 are now located within +/-40 

bases from the putative start site, and we could increase the performance to 34 identified 

promoters with a false positive rate of 1 / 3,000 bases. 

Conclusions and Outlook 
The analysis of the Adh region showed us clearly that promoter recognition by itself, without 

context information, still delivers too many false positives to be practically useful on a 

genomic scale. There is still a lot of room for improvement – we think of parallel states for the 

TATA box region and the downstream region, discriminative training of the segment model, 

and a non-linear combination of the segment likelihoods. But the overall picture will maybe 

not change in the near future when we exploit only the primary sequence. We will see if the 

usage of other features such as DNA bendability (Pedersen et al., 1998) can lead to the 

necessary improvement. 

From a different point of view though, the rate of one false positive in three kilobases seems 

reasonable if one has already an idea where the coding part of the gene is. This information 

can be provided in both by alignments of cDNA to genomic sequence and ab initio gene 

finding. We therefore envision a promoter recognition system used within a gene finder that 

also incorporates EST and cDNA alignment information to extend the coding region on the 

5’end. The accuracy of the TSS localization of McPromoter is good enough to then use such a 

preliminary annotation of the transcription start site for the analysis of upstream regions of co-

expressed genes. 

Both versions of the McPromoter system can be accessed via the World Wide Web at 

http://www5.informatik.uni-erlangen.de/HTML/English/Research/Promoter. 
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Figure 1. Structure of the McPromoter system. A window of 300 bases is shifted over the sequence in steps 

of 10 bases, and the content  is evaluated with the promoter and non-promoter models. The difference 

between the promoter and the non-promoter log likelihood is stored. After post-processing, the local 

minima are reported as transcription start site predictions. 

Figure 2. Application of  McPromoter version 2.0 on a 5 kB part of the Adh region containing the 

transcription start site for the Adh gene. We show the non-smoothed as well as the smoothed output of the 

system. The strongest local minimm corresponds to the annotated transcription start site of Adh.
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 Version 1.1 Version 2.0 
Post-processing Recognized 

promoters 
False positive 
rate 

Recognized 
promoters 

False positive 
rate 

None 47 1 / 450 57  1 / 719 
Hysteresis 33  1 / 1,833 43  1 / 1,653 
Median & Hysteresis 26  1 / 2,633 31  1 / 2,437 
 

Table 1. Comparison of the influence of post-processing on the performance of the promoter predictors. 

Shown are the results without any post-processing (i.e., every local minimum is used as prediction), after 

hysteresis smoothing, and after both median and hysteresis smoothing. The post-processing operations 

reduce the number of  false positives for both versions, but it becomes clear that the effect is much better 

for the pure region-based approach of version 1.1. 

 


