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Abstract

perience

We describe our statistical system for promoter recognitiageimomic DNA with which we

took part in the Genome Annotation Assessment Project (GASP1) ppled two versions

of the system; the first uses a region based approach towandstiation start site

identification, namely interpolated Markov chains, the second a hgmoach combining

regions and signals within a stochastic segment model. We cortiparesults of both

versions with each other and examine how well the application on a gersmale compares

to the results we previously obtained on smaller data sets.



Introduction

Within the next year, the complete genomes of several eukaryaanisms will be stored in
the data bases, and we have to face the challenge that the &mptatess is getting more
and more complicated for the genomic sequence of higher eukaryoteasiich
melanogasterThe first draft of the annotation of a newly sequenced genome idlysua
limited to the coding part of a gene, but a complete annotation shasgdcahtain the
positions of the transcription start sites (TSS), as most ofé¢balatory elements involved in
gene expression are located in the promoter region upstream or cltiee TSS.

The untranslated region between transcription and translation s&grthe 5° UTR region,

can span up to several kilobases in higher eukaryotes -- itévarage of almost 2,000 bases
for the transcription start site set compiled in the paper bysBetal. (2000). Therefore, we
cannot simply take the sequence upstream from the start codon. Méitlad@sm at the
identification of regulatory elements in the upstream region®eéxpressed genes such as
van Helderet al. (1998) have been shown to deliver promising results for the yeast genom
which has very short UTRs, but they will be hard to apply when the atioot only consists

of the coding part of a gene. Of course, TSS identificationlevated by full-length cDNA
sequencing projects; but as the sequencing always starts atehe 8f a gene, we need
additional methods to confirm the 5’ end of the sequences, or to huntriy expressed
genes that are not contained in the libraries at all. Weragedesperate need to at least get a
good guess where the TSS (and thus the promoter region) is located il start looking

for the needle in the wrong haystack.

The only available comparison of promoter prediction in genomic DN&& warried out by
Fickett and Hatzigeorgiou (1997). At this time, no extensive unstugiemic sequences
were available for complex eukaryotic organisms, and the authofsrperd their evaluation

on a set of 18 newly released vertebrate sequences, the longestbfcomprised less than 6



KB. It was therefore a great challenge to see how wedlaently developed promoter
recognition program performs on a genomic scale, and what we catuderfor the
annotation of complex eukaryotic genomes. We will briefly reviée two versions of our
promoter recognition system that we applied, discuss in detaikthdts that were described
in the paper of Reeset al. (2000), and finally draw conclusions on the state of promoter

prediction in general.

Methods and Data

McPromoter(Ohleret al., 1999a) is a statistical method to look for eukaryotic polymerbse |
transcription start sites in genomic DNA. It consists of a mdolepromoter sequences, and a
mixture model for non-promoter sequences for coding and non-coding sequéadesalize
transcription start sites, a window of 300 bases is shifted dnes¢quence in steps of 10
bases (see figure 1). At every position, the difference betwheetog-likelihood of the
promoter and the non-promoter model is computed. The resulting plot desd¢he

regulatory potential over the sequence, and is smoothed by a medidwystedesis filter (see
Niemann, 1990). The program then makes a prediction for each locahommibelow a pre-
specified threshold (see figure 2 for an example).

We applied two versions dflcPromoteron theAdhsequence (see Ashburredral. (1999) for

a comprehensive description of the annotated genes). The differemesspethe two versions
lies in the structure of the promoter model, and we wanted to explmrewell our more
recent modeling approach improved on the recognition of TSSs. Version M&RrMomoter

is a content based approach and uses a single interpolated Markoyl&h@)of 5" order to
model promoter sequences. As such, the model does not rely on a priotieklygnabout the
structure of the promoters, but judges the overall composition of tipeesee. For the two
non-promoter components for coding and non-coding sequences, we also chige#ated

Markov chains. Related methods were described by Audic and Claii&$5) and



Hutchinson (1996). In the figures of the GASP paper by Ret¢sé (2000), version 1.1 is
denoted by LMEIMC (lehrstuhl fir Misterekenung — hterpolated Mrkov Chains). The
submodels are trained using the discriminative Maximum Mutual In&bion (MMI)
approach. In contrast to the standard Maximum Likelihood parametenagin, MMI
maximizes the probability of the decision for the correct sequelass cand therefore also
takes negative samples into account (Okleal., 1999b).

In version 2.0, we replaced the single Markov chain promoter modalpre sophisticated
stochastic segment modehich consists of five states for a simplified upstream-TATA-
spacer-initiator-downstream structure of eukaryotic promoters (@hka., 2000). With this
approach, we obtain more accurate statistics for the staiesyining region specific states
such as the one for the upstream region with states specifindividual signals such as the
one for the TATA box. Hybrid approaches that exploit statistics émesal regions were
previously described by Solovyev and Salamov (1997) and Zhang (1998)oNer§ of
McPromoteris denoted by LMESSM in the GASP overview paper (Resisa., 2000).

Both versions were trained on the same representative datarsgsting ofD. melanogaster
promoter and non-promoter sequences of 300 bases length, obtained at
http://www.fruitfly.org/sequence/drosophila-datasets.html. Cradistation classification
experiments on this data (described in Oldeal., 2000) gave a recognition rate of 27.9 % for
version 1.1 and 58.8 % for version 2.0 at the very low false positite of 1 %. We used the

system at this threshold for the evaluation of Adhregion.

Results

According to the results described by Reesal. (2000), version 1.1 dficPromotercould
identify 26 (28.2 %) transcription start sites with a false pesitate of 1 / 2,633 bases, and
version 2.0 successfully located 31 promoters (33.6%) with the sligigher false positive

rate of 1 /2,437 bases. This compares well with the resultgithestin the comparison of



promoter recognition algorithms in vertebrate DNA (Fickett araddiyeorgiou, 1997),
especially considered the smaller amount of available trainiteyfda the organism ob.
melanogaster

A negatively surprising fact for us was the small improvenwdrihe performance that version
2.0 achieved in comparison with the earlier version. With the te$tdm cross-validation
experiments on the representative set of promoters and non-promoiensd, we expected
the new version to localize approximately 20-30% more TSSs adhree rate of false
predictions. 16 of the 26 predictions made by version 1.1 are containbd set of 31
predictions from version 2.0. Considered that the methods are cladated, this number is
somewhat small, and could be due to the different training algori{ivihdl versus ML
parameter estimation).

9 predictions from version 1.1 are located within +/-40 bases ofttré site (mean distance
202 bases), as opposed to 13 close predictions and a mean distance of 564 tizse
predictions obtained by version 2.0. As we do not know exactly how fairtieeTSS differs
from our current annotation, this number is encouraging to us. Versiois 2l@arly more

successful to identify the exact position of the start sites.

Discussion

To get a better understanding why the performance of version 1.1 asidiwe.0 did not

differ very much from each other, we looked at the system perfoc@avithout the
smoothing post-processing steps (table 1). When we look at the resthitait the smoothing
post-processing operations, it becomes obvious that the new versiod im@ées great
improvement, and that mainly the post-processing is responsibleedtson 2.0 works less
well than expected. The smoothing was designed specifically fegiam-based approach like
the Markov chains applied in version 1.1, and works less well on a th@mproach like

version 2.0 where the promoter region is divided in several diss@gments.



A rough extrapolation of the cross-validation results at the cuyersitd threshold (1 % false
positives) leads to a worst-case rate of 1 /2,000 basesgedskctions. From the non-
smoothed results it becomes clear now that this is obviously nobynegality. A possible
explanation is that the available training data is still not espntative enough. It certainly
contains too little non-coding data, and the available promoter sed b#éas towards house-
keeping genes.

We already realized a number of plans to improve the model perforenaf version 2.0. The
first idea was to include reverse sequence models for the non-peostates, as we scan both
directions of the sequence independently. It is well known that therse\sequences of genes
still resemble the true genes on the opposite strand, and thattisiss of reverse exon and
intron sequences are close to the forward sequence -- hence the podldkatdow gene
predictions. Nevertheless, we added two new states for reggmseand intron sequences to
have a more accurate model for the non-promoters.

In a second step, we increased the amount of training data. Fédtinexperiment, we took
the model that performed best on three cross-validation experimentsfandt one third of
the available data to see if our predictions on this set werdognegality. Instead, we took the
whole set and determined the 1 % false positive threshold by chodgngéan threshold of
the three experiments.

Finally, we replaced the median and hysteresis filters byngle approach to allow only one
prediction below the threshold within 300 bases (the model size). Assismoothing
approach is implicitly carried out by the gene finders with ingggd promoter predictors;
they choose the best prediction in accordance with the model topologh atawvs for only
one prediction before the start codon. But the question remains if pogdéctions close to
the best one might correspond to alternative transcription staeg, sind if such a reduction

actually filters out useful information.



As a result of these improvements, 20 predictions instead of 18awdocated within +/-40
bases from the putative start site, and we could increase thapance to 34 identified
promoters with a false positive rate of 1/ 3,000 bases.

Conclusions and Outlook

The analysis of thé&dhregion showed us clearly that promoter recognition by itselfhouit
context information, still delivers too many false positives tqbectically useful on a
genomicscale. There is still a lot of room for improvement — we thaflparallel states for the
TATA box region and the downstream region, discriminative traininthefsegment model,
and a non-linear combination of the segment likelihoods. But the oygcdllre will maybe
not change in the near future when we exploit only the primary sequéveavill see if the
usage of other features such as DNA bendability (Pedearsalhy 1998) can lead to the
necessary improvement.

From a different point of view though, the rate of one false positivthree kilobases seems
reasonable if one has already an idea where the coding part oétieeig) This information
can be provided in both by alignments of cDNA to genomic sequence anttiabgene
finding. We therefore envision a promoter recognition system usgdna gene finder that
also incorporates EST and cDNA alignment information to extend thengadigion on the
5’end. The accuracy of the TSS localizationd¢Promoteris good enough to then use such a
preliminary annotation of the transcription start site for the gsialof upstream regions of co-
expressed genes.

Both versions of the McPromoter system can be accessed viaahld Wide Web at

http://www5.informatik.uni-erlangen.de/HTML/English/Research/Promote
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Figure 1. Structure of the McPromoter system. A wirdow of 300 bases is shifted over the sequence ireps
of 10 bases, and the content is evaluated with theromoter and non-promoter models. The difference
between the promoter and the non-promoter log likehood is stored. After post-processing, the local

minima are reported as transcription start site predictions.

Figure 2. Application of McPromoter version 2.0 ona 5 kB part of the Adh region containing the
transcription start site for the Adh gene. We show the non-smoothed as well as the sntfoed output of the

system. The strongest local minimm corresponds tde annotated transcription start site of Adh.
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Version 1.1 Version 2.0
Post-processing Recognized |False positivel Recognized |False positive
promoters rate promoters rate
None 47 1/450 57 1/719
Hysteresis 33 1/1,833 43 1/1,653
Median & Hysteresis 26 1/2,633 31 1/2,437

Table 1. Comparison of the influence of post-procesng on the performance of the promoter predictors.
Shown are the results without any post-processing.€., every local minimum is used as prediction), faer
hysteresis smoothing, and after both median and hysresis smoothing. The post-processing operations
reduce the number of false positives for both veriens, but it becomes clear that the effect is muchetter

for the pure region-based approach of version 1.1.
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