
From R. Altman et al. (eds.), Proc. Paci�c Symposium on Biocomputing 5:377{388 (2000)STOCHASTIC SEGMENT MODELS OF EUKARYOTICPROMOTER REGIONSUWE OHLER, GEORG STEMMER, STEFAN HARBECK, HEINRICHNIEMANNLehrstuhl f�ur Mustererkennung, Universit�at Erlangen{N�urnbergMartensstr.3, D-91058 Erlangen, GermanyeMail: ohler@informatik.uni-erlangen.deWe present a new statistical approach for eukaryotic polymerase II promoter recog-nition. We apply stochastic segment models in which each state represents a func-tional part of the promoter. The segments are trained in an unsupervised way.We compare segment models with three and �ve states with our previous systemwhich modeled the promoters as a whole, i. e. as a single state. Results on theclassi�cation of a representative collection of human and D. melanogaster promoterand non-promoter sequences show great improvements. The practical importanceis demonstrated on the mining of large contiguous sequences.1 IntroductionAs the large sequencing projects, e. g. those of man and Drosophila, enter the�nal stage, we are in urgent need of computer methods to analyze and anno-tate the large amounts of contiguous genomic sequences. A particularly hardproblem is the reliable recognition of transcription start sites (TSS) and/orthe promoter regions of genes within genomic DNA. Nothing has essentiallychanged since Fickett and Hatzigeorgiou stated that this problem is far frombeing solved 1.Recently, we presented a content-based system for promoter identi�cation2which used no background knowledge about the structural properties of pro-moter regions (reviewed for example by Kornberg 3 or Nikolov and Burley 4).We only assumed a window size of 300 bases (250 before and 50 after the TSS)which is the region known to contain most of the transcription factor bindingsites involved. This is opposed to the signal-based approaches which look forspeci�c occurrences of transcription elements 5.We have designed a new hybrid approach which is based on the observationthat a eukaryotic promoter can generally be divided into segments: the regionupstream from the transcription start site, the core promoter where the maininitiation complex binds, and a region downstream from the start site. Thecore promoter can be further split into the TATA box and the initiator region(Inr), separated by a spacer of approximately 15 bp. We use this broad seg-1



mentation of a PolII promoter region to pursue a new approach for promoterrecognition based on a stochastic modeling of promoter segments. Our aim is toincorporate as much general structural knowledge as possible without gettingas speci�c as signal-based methods. Previous hybrid approaches 6;7 combinedN -mer statistics of several regions upstream of the TSS with a weight matrixfor the TATA box, or performed a quadratic discriminant analysis based onfeature variables calculated within several windows around the TSS.In the following, we describe stochastic segment models of D. melanogasterand human promoter regions. The model type that we use is similar to stochas-tic gene parsing systems such as GenScan 8. We give a formal de�nition of themodel and describe how standard algorithms for evaluation and training canbe adopted. Then we provide a brief overview of interpolated Markov chainswhich are used as the output distributions. Finally, we present the results ofthe SSMs both on the classi�cation of a representative sequence set and on thescanning of large genomic sequences.2 Methods2.1 Stochastic segment modelsStochastic segment models (SSMs, see the paper of Ostendorf et al. 9 for anintroduction and a comparison of di�erent model types) have been proposedas a generalization of the widely used hidden Markov models (HMMs). LikeHMMs, they consist of a set Q of connected states which can be characterizedby an initial state distribution � and state transition distribution A withentries aij . Each state qj contains an output distribution for the production ofsymbols which can be observed from the outside. While the output distributionof an HMM state can only emit a single symbol per state, each SSM stateincorporates a joint distribution bj which generates a sequence of symbols (awhole segment). The length of the generated segment underlies a durationdistribution dj associated with the state. Thus, the probability Pj(wi) that astate produces a partial sequence wi of length �i is given byPj(wi) = dj(�i) � bj(wij�i): (1)With a given valid segmentation (s; � ) = ((qs1 ; �1) : : : (qsm ; �m)) of se-quence w into segments wj , (Pj �j = jwj), the probability of the sequencecan be expressed asP (w; s; � ) = �s1 m�1Yi=1 Psi (wi)asisi+1 � Psm(wm) (2)2



The output distribution bj can itself be arbitrarily complex and take intoaccount dependencies between the symbols within the segment. Dependingon the �eld of application, di�erent distributions such as Markov chains orHMMs may be suitable. Because the output distribution is conditioned onthe duration, we have to provide either an individual distribution for eachpossible segment length or a mapping function from various segment lengthsto a limited number, or the distributions have to be able to generate sequencesof all valid lengths.The idea of segment models is not new to the �eld of DNA sequenceanalysis { most gene �nding systems which make use of stochastic models�t into the framework of SSMs. The GenScan system 8, in particular, usesa model structure similar to that proposed here (as a so-called hidden semi-Markov model). The di�erence is that we cannot expect the training materialto be annotated in advance, which would allow for a supervised and individuallearning of each output and duration distribution. For promoter regions weneither know how many segments we shall use for a successful recognition,nor have any means to separate all the segments from each other, because nopromoter signal is guaranteed to occur in all sequences. This is opposed to thegene �nding systems, where splice sites, for example, can be expected at theborders of exons and introns. A suitable algorithm for this task is describedin the following section. A more elaborate description of our segment modelformalism and implementation issues can be found elsewhere 10.2.2 Algorithms for evaluation and trainingThe probability of generating sequence w with a segment model is equal tothe sum of all possible segmentations over which the sequence can be uttered.Thus, using equation 2, we haveP (w) =Xs X� P (w; s; � ) (3)For HMMs, the corresponding probability can be computed e�ciently bythe forward algorithm. This algorithm calculates the forward variables �t;jwhich contain the probability that the model is in state qj at time t and has sofar produced the symbol chain w1 : : : wt. In HMMs, there is a state transitionafter each symbol, so the computation of �t+1;j involves only the variablesat time t. But for SSMs, the state duration is variable, so we have to sumup over all preceding variables where a state transition might have occurred.Therefore, we have to sum up over all possible segmentations � . The resultingalgorithm is depicted in �gure 1. 3



F := 0FOR t := 1 TO �FOR j := 1 TO nFOR t0 = 0 TO t� 1IF t0 = 0THEN sum := �jELSE FOR i := 1 TO nsum := sum+ Ft0;i � aijFt;j := Ft;j + sum � Pj(wt0+1; ::; wt)P (w) :=Pnj=1 F�;jFigure 1: Forward algorithm for segment models. The input is w = w1; ::; w� . Thematrix F contains the forward variables, n is the number of states. t is the actual time, jthe actual state, and t0 is the time where the state transition from state qi to qj takes place.The evaluation of the forward algorithm involves many computations ofthe output distributions bj , and has the consequence that we can make use ofonly those distributions that can be computed e�ciently. One way to reducethe number of calculations drastically is to provide minimum and maximumdurations �min and �max for the states, which is obviously application depen-dent. We will exploit this idea for the promoter model.The most likely segmentation can be computed using a similarly adaptedViterbi algorithm, in which the sum over all possible segmentations is replacedby its maximum. Here, we use the Viterbi algorithm mainly inside a two-steptraining algorithm: First, we determine the most likely state sequence for eachtraining sequence, then we treat this segmentation as the correct annotation.The resulting training material for each state is used to estimate the output andduration distribution. Of course, the probabilities of the state transitions andinitial states are modi�ed as well. The algorithm maximizes the Viterbi scoreof the model, i. e., the score obtained on the best segmentation is guaranteedto increase after each iteration. This so-called Viterbi training (see �gure 2)usually results in a fast convergence.2.3 Output and duration distributionsWe already obtained promising results on the promoter recognition problemby the application of interpolated Markov chains 2, so we also used them asstate output distributions. Here, we briey revise the basic idea.Given a sequence w, the total joint probability can be computed with thechain rule: 4



Initialize model �WHILE not converged or FOR a prede�ned number of cyclesŝ; �̂ := argmaxs;� P�(s; � jw) (Viterbi algorithm)8i : ��i := #(ŝ1 = i)8i; j : �aij := #(ŝt = i ^ ŝt+1 = j)8i : �̂i := ��iPi ��i8i; j : âij := �aijPj �aij8i : Estimation of Pi including di and bi� := (�̂; Â; P̂ )Figure 2: Viterbi training for segment models. A denotes the state transition matrixwith entries aij , � is the vector containing the start state probabilities. Pj is the segmentdensity function for state j which incorporates the output and duration distribution. # is afunction which counts the occurrence of its argument.P (w) = jwjYi=1 P (wijw1 : : : wi�1| {z }context ): (4)Because we cannot handle conditional probabilities with arbitrarily largecontext, we limit the size to N � 1:P (w) � jwjYi=1 P (wijwi�N+1 : : : wi�1) (5)The resulting model is called a Markov chain (MC) of order N � 1. Theparameters of this model are the conditional probabilities on the right-handside of equation 5. After a Maximum Likelihood parameter estimation, weobtain values for ~P (vjv̂) for each symbol v from the vocabulary V and eachcontext v̂. To achieve more stable parameters, we compute the interpolation ofall context lengths from 0 up to N � 1 and use these as new parameter values.This can easily be done in a linear fashion:P̂ (vjv̂) := �0 1V + �1 ~P (v) + : : :+ �N ~P (vjv̂) (6)We used a more sophisticated approach which weights the individual pa-rameters with their number of occurrence: Parameters which occur more fre-quent in the training material lead to a better statistics, and in this case we donot have to fall back to a shorter context as much as if the parameter seldom5



occurs. Optimal interpolation coe�cients �i are calculated on a disjoint partof the training set using a gradient descent method 2.Apart from the promising results, Markov chains are well suited out of asecond reason. As we mentioned above, the evaluation of the output distri-butions must be calculated e�ciently because of the large number of possiblesegmentations. With an MC, the total probability of a sequence can be brokendown to single conditional probabilities per base, so we simply calculate thesevalues along the whole sequence for each model state in advance and storethem in a table. Thus, the calculation of a segment probability can be reducedto two table accesses and a subtraction, if we store the cumulative sum of thelog probabilities.As duration distributions, we simply use discrete distributions, representedas histograms of the relative frequencies. Because the Viterbi training onlyconsiders the most probable length, the values are smoothed with their leftand right neighbours.2.4 The promoter recognition systemThe system for promoter detection in contiguous sequences contains a segmentmodel for promoters and a model for non-promoters. The latter consists of twointerpolatedMarkov chains, one trained on coding and one on intron sequences.They are treated as a mixture distribution with uniform weights.For the application on contiguous sequences, we run a window of 300bases over the sequence. Every 10 bases, we evaluate the window content withthe promoter and the non-promoter model, and store the di�erence betweenthe non-promoter and promoter scores. We obtain a curve describing theregulatory potential at each position. After a smoothing operation on thecurve, a TSS is predicted at each minimum below a given threshold. Thethreshold is used to adjust the number of total predictions.3 Data setsWe established representative sequence sets for the training and compari-son of promoter recognition algorithms 2. Currently, two sets of human andD. melanogaster sequences are available. These sets contain positive (promot-ers) as well as negative (introns and coding sequences) samples and are splitin a number of subsets suited for cross-validation. The sets comprise a totalnumber of 565 (265) promoters, 4345 (240) non-coding, and 890 (711) codingsequences (the numbers in parentheses are for the Drosophila set). The promot-ers contain 250 bases upstream and 50 bases downstream; the non-promoter6
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transcriptionstart siteFigure 3: Determination of initial model structure. On the vertical axis, the startingposition of the window on which a model was trained is given. The horizontal axis depictshow well the model trained on a certain window position performed in all windows. See thetext for further explanation.sequences are also 300 bases long. Further information and the sequencesthemselves can be retrieved via the Internet a. These sets will be referred toas "classi�cation sets".For the evaluation on contiguous sequences, we applied our human pro-moter model on the benchmark set of Fickett and Hatzigeorgiou 1. It includes18 vertebrate sequences with a total of 33,120 bp and contains 24 promot-ers. We are currently building a new reference set to pursue the evaluationin real-scale genomic regions, based on a contiguous 2.9 Mb sequence of D.melanogaster recently used for a community-wide genome annotation experi-ment b.4 Experiments and Results4.1 Establishing a suitable model structureTo determine an initial promoter model structure, we performed the follow-ing experiment. We shifted a window of 12 bases along four-�fths of the humanpromoter sequences in the classi�cation set. At each position, a fourth-orderMarkov chain was trained with the window content of all sequences. Markovahttp://www.fruity.org/seq tools/human-datasets.htmlbhttp://www.fruity.org/GASP1 7



Table 1: Structure of the three-state promoter model. Shown arethe minimum and maximum length foreach length distribution. The Markovchains used as output distributions areall of �fth order.state �min �maxupstream 190 220TATA 20 40Inr/downstream 50 80
Table 2: Structure of the �ve-state promotermodel. Shown are the minimum and maximumlength for each length and the Markov order ofeach output distribution.state �min �max orderupstream 205 230 5TATA 10 20 3spacer 10 20 2Inr 5 15 3downstream 35 50 4chains will be used as output distributions in our SSM, and the fourth orderresembles the typical motif size of transcription elements. This model was thenevaluated at every position of the remaining sequences, again within a windowsize of 12 bases. All the scores were summed up for each window, normalizedand plotted against the position on which the window was trained (�gure 3).High scoring windows appear in a dark color, and if dark regions appear onthe diagonal, this indicates a position speci�c signal within a promoter regionwhich can be detected by the model.The only clearly visible position-speci�c signal is the TATA box region.Even at the TSS itself, there is no clear sign that the models trained on thisregion perform better than models trained on a di�erent part of the promoter.This is somewhat surprising, but in accordance with the results of Zhang 7,who found that TATAAA is the only clear position speci�c six-tuple withinpromoters c. Obviously, the window size of 12 bases is too small to detectregion-speci�c signals, such as transcription factor binding sites which occurmore frequently in speci�c parts of the upstream region. We repeated theexperiment with a window size of 50 bases, but this delivered no signi�cantlydi�erent results. We thus decided to start our experiments with a three-statelinearly connected model for upstream, TATA, and Inr/downstream region.4.2 Performance on the classi�cation data setAfter a model structure was chosen, we performed a �ve-fold cross-valida-tion experiment on the human classi�cation set: We trained the models on four-�fths of the sequences with four cycles of Viterbi training which led to a goodconvergence. Then we evaluated them on the remaining part and averagedcNB: A fourth-order Markov chain might be still too large to �nd a short TSS signal.8
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False Positive Rate (%)�ve-state modelthree-state modelFigure 4: Results on the human promoter classi�cation set. The receiver operatingcharacteristics of a �ve-state, a three-state and a single-state promoter is depicted.the results. We set upper and lower bounds �min and �max for the lengthdistributions and initialized them with uniform values; as output distributions,we used �fth-order interpolatedMarkov chains. The model structure is given intable 1. The segment sizes are heuristic, but based on the experiment describedabove. The results were calculated with the forward algorithm instead ofthe Viterbi algorithm. This makes the probabilities comparable to the non-promoter model on a theoretically sound basis d.Figure 4 shows the resulting receiver operating characteristics (ROC), i. e.the recognition or true positive rate at di�erent rates of false positives. Thefalse positive rate can be adjusted by choosing di�erent thresholds on theposterior probabilities of the concurring models. One can see immediately thatthe new promoter model with three segmental states performed much betterthan our previous system (one single state). This encouraged us to use threestates for the core promoter: one for the TATA box, one for the initiator regionaround the transcription start site, and one for the spacer sequence betweenTATA box and initiator. Because these segments are smaller than the onesin the old model, we had less training material available for each state, so wechose smaller Markov orders for the output distributions to reduce the numberof parameters. This should also lead to a better modeling of short signals suchdWe also experimented with the Viterbi algorithm, but �rst runs on contiguous sequencesshowed that the output score (the di�erence between promoter and non-promoter model)was quite noisy, which lead to a large number of false predictions. Replacing the Viterbiscore with the full probability calculated by the forward algorithm reduced this e�ect.9
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Figure 5: Duration distributions for TATA and Inr state. The distributions wereinitialised with uniform values and estimated with four cycles of the Viterbi training.as the Inr. The new �ve-state model (table 2) is slightly better than the three-state, as can be seen in �gure 4. The best averaged cross-correlation value(CC) is 0.66, at a false positive rate of 2% and a true positive rate of 62.3%.Compared with the single-state model, we were able to reduce the number offalse predictions at the same recognition rate by more than two thirds. In�gure 5, the learned duration distributions of the TATA and initiator state ofone cross-validation experiment are depicted.The same tests were also performed on the D. melanogaster sequence set.Figure 6 shows the results obtained with a �ve-state model with the samestructure as the human one. The best CC is 0.68 at a rate of 7% false positivesand 75.4% true positives.4.3 Application on long genomic sequencesTo see if we could obtain results for contiguous sequences as good as thosefor the classi�cation set, we applied one model trained in the cross-validationexperiments to search for the promoters in the genomic sequences from thesurvey of Fickett and Hatzigeorgiou 1. We set the threshold at 2% of falsepositives, where we obtained the best CC value.We could detect 12 out of 24 promoters with a false positive rate of 1/895bp. This is a slight improvement with respect to our previous system, wherewe detected the same number of promoters, but at a false positive rate of1/849 bp. The system by Solovyev and Salamov 6, which was one of the bestperforming system in the survey, identi�ed 10 promoters with a false positiveevery 789 bp.We expected a better performance with the results from the previous sec-10
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Figure 6: Results on the D.melanogaster classi�cation set. The ROC curve of a �ve-state and a single-state promoter model are given.tion in mind. Fickett and Hatzigeorgiou mention that the sequence set is notreally representative, as the number of promoters is quite small. Furthermore,the test set was collected from articles which concentrated on transcriptionalregulation, so the sequences might be biased towards special regulatory cir-cumstances. Another explanation might be that the available training samplesare not really representative. To clarify this, we aim at the evaluation of ourmodels on a large and typical eukaryotic genomic sequence: the 2.9 Mb Adhregion of D. melanogaster (mentioned in section 3) which contains approxi-mately 230 genes. On a large data set, we can also study in detail the e�ectthat the smoothing of the scores (see sec. 2.4) has on the overall performance.5 Conclusions and Final RemarksIn this paper, we present a new approach for the stochastic modeling of eu-karyotic polymerase II promoters, based on the general segmental structure ofpromoter regions. We could show a clear improvement of a �ve-state segmentmodel on the classi�cation of �xed-length sequences with respect to our previ-ous approach, which modeled the promoter region as a whole. The results ongenomic sequences are also improved, but not yet as much as we expected.Currently, we have the following intention: to break up the linear structureof the model and introduce new states which run in parallel to others. Coupledwith our Viterbi training algorithm, we aim to identify broad promoter clusters,depending on the optimal path chosen. Apart from better recognition, we11
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