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What is observable is the sequence of observations generated by the second mecha-
nism. The sequence of observations iso = [oi] chosen from a finite set of observation
symbols

O = {O1, O2, . . . , OL} .

An observationoi ∈ O is generated when the model is in stateSi. The output symbol
is chosen depending on the matrix of output probabilities

B = [bil] = P (Ol emitted in stateSi|sn = Si )

i = 1, . . . , I , l = 1, . . . , L .

A hiddenMarkovmodel is defined by the tripel

HMM = (π,A,B) . (3.59)

It may be viewed as a stochastic automaton generating a stochastic process. The set
of states is chosen according to the task domain. For example, in speech recognition
it is a set of subword units of a language, in gesture recognition it may be a set of
motion states. For each class, e.g. for each word or each gesture, a separate HMM
is defined and its parameters are trained from classified observations. For a new
observation the posterior probability is computed that a particular HMM was active
when this observation is available. The most probable HMM is chosen according to
Equation 3.36. An HMM may be represented by a graph. The nodes are the states,
and a link between two nodes is introduced if there is a non-zero transition probability
between the two corresponding states.

The three basic computational problems for HMM’s are:

Given an observation sequenceo and an HMM with its parameters, what is the
probabilityP (o |HMM) of generatingo by this HMM?

Given ano and HMM, what is the most probablesequence of statesin HMM for
generatingo?

Given several observations, what are theparameter valuesπ,A,B maximizing
P (o |HMM)?

Efficient algorithms to solve these problems are available from the references [564,
625].

3.4 OBJECT RECOGNITION

D. PAULUS

The mapping of real world objects to the image plane including the geometric and the
radiometric parts of image formation is basically well understood [766, 219].

From an abstract point of view, a camera is thought of as a geometric engine that
projects the 3D world to the 2D image space. The most challenging problems in
computer vision which are still not solved entierly are especially related to object
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recognition [708]. Up to now, there have been no general algorithms that allow the
automatic learning of arbitrary 3D objects and their recognition and localization in
complex scenes. The termobject recognitiondenotes two problems [708]: classi-
fication of an object and determination of its pose parameters. By definition, the
recognition requires thatknowledgeor modelsof the object are available; formalisms
for such knowledge are introduced in Section 3.5. The key idea is to compare the
image with a model. The key issues thus are the choice of the representation scheme,
of the selection of models, and the method for comparison.

Two major types of objects be distinguished: On the one hand, solid objects
have to be recognized. Such problems arise, e.g., in industrial applications where a
construction robot assembles objects from several parts. On the other hand, flexible
or deformable objects impose further problems on the recognition algorithm. Such
‘objects’ are, e.g., humans or animals in observation systems.

3.4.1 Introduction

We assume thatNK object classesΩκ (1 ≤ κ ≤ NK) are known and represented as
‘knowledge’ (i.e., models) in an appropriate manner. The representation of the object
can be in two dimensions, it may use a full 3D description, or it can contain a set of
2D views of a 3D object. The object models use an object coordinate system and a
reference point (mostly on the object) as its origin.

We also assume that an image is given which may contain data in 2D, 2.5D or 3D. For
intensity images in 2D it may be either monochrome, color or a multi-channel image.
The object recognition problem can be formalized when the following sub-problems
are identified:

Theobject classificationproblem is to identify an object in the given imagef . This
may be particularily hard if the object is partially occluded, if many objects are in the
scene, if the object is small, etc. This part of the problem formally corresponds to a
functionδ

δ : f → κ; κ ∈ {1 . . .NK} . (3.60)

The pose estimateproblem is to compute pose parametersR andt for an object
Ωκ, which determine the transformation of the camera coordinate system to object
coordinates (Figure 3.12). Depending on the dimension of the input data and on the
object representation, these may be two-dimensional or three-dimensional rotation
matrices and translation vectors.

In the following we assume a 3D world containing solid objects and a 2D image.
In projective geometry, the transformation parameters can be divided into two groups.
There are several representations for the transformation parameters. In [554, 610],
in-plane and out-of-plane transformations are distinguished (see Figure 3.12). The
rotation matrixR can be described elegantly by the Rodrigues formula, quaternions or
by Euler angles (cmp. [219]). Advantages and disadvantages of these representations
for object recognition purposes are discussed in [335]

The algorithms for 3D object recognition published so far differ with respect to

the type and dimension of sensor data,
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Figure 3.12. Different components of rotation and translation of a 3D object.

the representation scheme for object models,

the object classification strategy,

the strategy for pose recognition, and

the learning of object models.

It is beyond the scope of this section to provide an exhaustive overview and a
lucid discussion of all models successfully applied in computer vision. Instead, we
describe the most common and some new approaches and give a general outline of
their characteristics.

The organization of the section is as follows: The next section introduces an
example of how geometric features can be used for object classification and pose
determination. As an example of appearance based methods, we introduce eigenspaces
in Section 3.4.3. Arguments for a probabilistic formulation of object recognition
modules are listed in Section 3.4.4 and one example of an approach using segmented
features as well as one statistical appearance based method is mentioned. The use of
invariant features for object recognition is outlined in Section 3.4.5. The architecture
of a system for active object recognition is presented in Section 3.4.6. We summarize
our review in Section 3.4.7.

3.4.2 Object Recognition Using Geometric Models

State-of-the-art approaches dealing with high-level vision tasks are essentially domi-
nated by model-based object recognition methods [360]. As we outline in the follow-
ing, such models consist of primitives that can be compared directly to the information
found in the segmented images. Whereas the purpose of geometric models is to facil-
itate the generation of images and models thus had to be similar to the visualization
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pipeline, the models suitable for object recognition need to have similar structure as
segmentation objects (see Section 3.1).

The classical approach is to use geometric models and to represent them explic-
itly [19]. Generally speaking, segmentation algorithms decompose given images in
primitives, reference models are matched to observations, and distance measures are
the basis for class decisions and pose estimates. The selection of discriminating im-
age features and the adequate representation of object models define herein the vital
problems which have to be solved when designing a vision system. We assume that
a segmentation objectO is created from an input imagef and that an object model
C exists which is in a format compatible with the segmentation data. A (partial)
match betweenO andC is found when a subset of the data in the model is found to
correspond to a subset of the segmentation object. A function

ζ : C → O (3.61)

is called aninterpretation. The information in the model constrains the admissible
elements in the segmentation object, e.g., by requirng parallel lines in the three-
dimensional object model to be mapped to approximately parallel lines in the seg-
mentation object. Finding an interpretation, generally is a search problem in which
data resulting from image segmentation has to be compared to data in models. Since
during search this comparison has to be done frequently, it is required for efficiency
reasons that segmentation data and model data are compatible in the sense, that a direct
comparison of primitives is possible. In particular, efficient and roboust mappings of
data represented in model primitives to that represented in segmentation data have to
exist. This is not the case, e.g. for CAD models as used in Section 4.3, since these
models contain lines which will never be segmented in the image. At least some of the
lines prepresented in the model are not present in the object; as an example we can use
wire frame models. As another example, the control points in triangulated surfaces
will not be detected roboustly in the image data, either. Free form surfaces represented
as splines, as proposed in Section 4.6 are parametrized by the spline parameters and
their control points, which usually cannot be detected by segmentation, either.

Figure 3.13 shows an example of a surface modelC = {c1, . . . , c9} and an idealized
segmented range image consisting of surface segments in a segmentation objectO =

Model Image
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Figure 3.13. Matching of segmented features to a model.
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Figure 3.14. Search space for model match for the object in Figure 3.13.

{o1, . . . , o6}. We constrain the matches such that L-shaped segments may only be
matched to the L-shaped model elements{c1, c6}. A depth-first search of a match
in Figure 3.14 left results in an incorrect interpretation assignment. In a subsequent
verification by backprojection of the hypothesized model parameters to the image and
comparison of the features it is required to find the correct match which is shown as
a dotted in Figure 3.14 right. The general problem is that features are only compared
locally. Since real image segmentation is inaccurate and not complete, a perfect match
will almost never be found for real data. One solution is to add ‘wildcards’ to the
segmentation and to the model when processing the interpretation tree. These are
nodes which can be matched to any segment or model; a wildcard model is matched to
a superfluous segment node; the same technique is used for missing segments [708].
More elaborate matching strategies for semantic models are outlined in Section 3.3.

The pose recognition problem for geometric models and matching of geometric
features is strongly related to the problems of 3D reconstruction (see Chapter 4) and
camera calibration (see Section 2.1). As noted in Section 3.4.1, the problem is to
determineR and t for an objectΩκ. Assuming a perfect match, we have a set of
points

{x
(W )
1 ,x

(W )
2 , . . . ,x

(W )
Nm

} (3.62)
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in world coordinates corresponding to points{x
(C )
1 ,x

(C )
2 , . . . ,x

(C )
Nm

} in camera coor-
dinates related by

x
(C )
i = Rx

(W )
i + t . (3.63)

What is observed are the image coordinates of the corresponding projected points
{x

(I )
1 ,x

(I )
2 , . . . ,x

(I )
Nm

}. Assuming that we are dealing with 3D world coordinates and
2D images, the complete transformation including the projection step can be expressed
a4 × 3 matrixE if points are written in homogeneous coordinates [219]. Depending
on whether the projection parameters are known from calibration or not, and whether
the images are registered (see Section 5.1), several strategies exist for the computation
of this matrix, see e.g. in [61, 593].

3.4.3 Appearance Based Object Recognition

Appearance based object recognition uses non-geometric models representing the in-
tensities in the projected image. Rather than using an abstract model of geometries
and geometric relations, images of an object taken from different viewpoints and under
different lighting conditions are used as object representation. Figure 3.15 shows a
set of such images. To beat the curse of dimenstionality, the images used for object
representation are transformed to lower-dimensional feature vectors. This overcomes
several problems related to standard approaches as, for example, the geometric mod-
eling of fairly complex objects and the required feature segmentation. Comparative
studies prove the power and the competitiveness of appearance based approaches to
solve recognition problems [551]. Well-known and classical pattern recognition al-
gorithms can be used for computer vision purposes, if appearance based methods are
applied: feature selection methods [572, 65], feature transforms [572, 708], or even
more recent results from statistical learning theory [723].

As the given image and the model share the same representation, the choice of
the distance function for matching images with models is simpler than for geometric
models. We rearrange the image pixelsfi,j in an image vector

f ′ = (f1,1, . . . , f1,Nx
, f2,1, . . . , f2,Nx

, . . . , fNy,1, . . . , fNy,Nx
)

T (3.64)

The comparison of two imagesf ′
1 and f ′

2 by correlation simply reduces to the dot
product of the image vectorsf ′

1 andf ′
2

s = f ′
1

T
· f ′

2 ; (3.65)

the biggers gets, the more similar are the imagesf ′
1 andf ′

2 .
Obviously, high dimensional feature vectors such this image vector will not allow

the implementation of efficient recognition algorithms [507]. The vectors have to
be transformed to lower dimensions. Commonly used transforms are the principal
component analysis [494, 376, 120] or in more recent publications the Fisher transform
[50]. In the following we motivate a linear tranformationΦ which maps the image
vectorf ′ ∈ R

Nx·Ny to a feature vectorb ∈ R
La with La ≪ Nx · Ny by

b = Φf ′ . (3.66)
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If we chooseΦ such that the distance of all features is maximized, this reduces
to a problem of eigenvalue computation. FromNa given images written as vectors
f ′
1 , . . . f ′

Na
of an object we compute the mean vector

µ =
1

Na

Na∑

i=1

f ′
i (3.67)

and from this we create a matrixV whose columns are the image vectors

V =
[
(f ′

1 − µ)| . . . |(f ′
Na

− µ)
]

. (3.68)

Eigenvalue analysis of the matrixK = V T V yields the eigenvectorsv1, . . . vNa

sorted by magnitude of the corresponding eigenvalues. A fundamental fact from linear
algebra states that an image vectorf ′

j can be written as a linear combination of the
mean image vector and the eigenvectors as

f ′
j = µ +

Na∑

i=1

b
(j)
i v i . (3.69)

An approximation off ′ can be obtained if instead ofNa eigenvectors we select only
the firstLa ≤ Na vectors. The image vectorf ′

j is represented by

b(j) = (b
(j)
1 , . . . , b

(j)
La

)
T

= Φ
(
f ′
j − µ

)
(3.70)

and the columns of the matrixΦ are the firstLa eigenvectorsv1, . . . vLa
.

Typically for Na = 100 images we choose only the firstLa = 15 eigenvectors.
For each object classκ we now record images from different viewpoints and under
changing lighting conditions, perform the transformation to eigenspace to obtain

{
b

(κ,j); j = 1 . . .Naκ

}
(3.71)

for Naκ images captured. The vectorsb(κ,j) of an object of classκ are a manifold in
eigenspace. They are used and stored as the object model. The processing steps of
this approach are exemplified in Figure 3.15.

The correlation of two normalized imagesf ′
i andf ′

j with ||f ′
i || = 1 can now be

approximated by the Euclidian distance of two weight vectorsb(i) andb(j) which
yields a huge gain in computation speed:

||f ′
i

T
f ′
j || ≈ 1 − 0.5||b(i) − b(j)|| . (3.72)

For object recognition of a given image we compute its eigenspace representation
to create a vectorb using Equation 3.70. From the manifolds representing the objects
we choose the one which has minimal distance to the computed vectorb. Object
recognition is thus reduced to the problem of finding the minimum distance between
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Figure 3.15. Three different views of an object (upper row), mean vector, and eigen-
vectors v0, v15 (lower row). For the computation 72 views and 360o rotation in 5o-steps
were used. The images are taken from the COIL-data set.

an object and a model. In order to generate an image from a vectorb, we use the
pseudo-inverseΦ+ of Φ

Φ+ = ΦT
(
Φ ΦT

)−1
(3.73)

to create

f ′ = Φ+b . (3.74)

The key to success in this approach is not to create the matrix

K = V V T (3.75)

explicitly when the eigenvectors are computed. For a typical imagef of sizeNx = 256
andNy = 256, the image vectorf ′ has length216; for Na = 100 images, the matrix
V has size216 × 100; the matrixK would thus be of size216 × 216 and computation
of the eigenvectors would be unfeasible. Instead, we use either iterative methods to
compute the eigenvectors [517] or we use a result from singular value decomposition.
We compute the eigenvaluesλi and eigenvectorsv ′

j of the so-called implicit matrix

K ′ = V T V (3.76)

which is much smaller thanK . In our example, the size would be100× 100. We note
that

K ′v ′
j = V T

(
Vv ′

j

)
= λjv

′
j . (3.77)
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We multiply Equation 3.77 from left byV and get

V
(
V T V

)
v ′

j =
(
V V T

)
Vv ′

j = λj

(
Vv ′

j

)
. (3.78)

which shows that the eigenvalues ofσ′ are also eigenvalues ofσ and that the eigen-
vectors are related byV . We use these results to compute the eigenvectors forK .

3.4.4 Probabilistic Object Recognition

Probabilistic methods as presented in Section 3.2 are used in several object recog-
nition systems. A Bayesian framework for 3D object recognition requires that the
appearance of objects in the image plane is characterized using probability density
functions. These densities have to incorporate prior knowledge on objects, rotation
and translation, self-occlusion, projection to the image space, the assignments of im-
age and model features as well as the statistical modeling of errors and inaccuracies
caused by varying illumination, sensor noise or segmentation errors [335]. We call
these densitiesmodel densities.. The structure of these models can vary: It can be a
single multivariate Gaussian density, a hidden Markov model or some other type of
density (see Section 3.2).

In [337] we assumeNK possible object classes and a set of observationsO con-
sisting of feature vectorsok in a segmentation objectO = {ok ∈ R

2|1 ≤ k ≤ Nm}
where the numberNm of observed features like corners or vertices varies for differ-
ent images. Appearance and position of features in the image show a probabilistic
behavior. The statistical description of an object belonging to classΩκ consists of a
model densityp(O |Bκ,R, t) (see Section 3.2) combined with discrete priorsp(Ωκ)
1 ≤ κ ≤ NK for the probability of an object of classΩκ to appear in the scene. The
priors are estimated by relative frequencies of objects in the training samples. The set
Bκ contains the model-specific parameters for the behavior of features as well as the
parameters for the assignment of image and model features.

For the explicit definition ofp(O |Bκ,R, t) we use the observed feature setO

and the corresponding featuresCκ = {cκ,1, cκ,2, . . . , cκ,nκ
} in the model where in

generalnκ 6= Nm due to segmentation errors and occlusion. Let the parametric
density of the model featurecκ,lk corresponding took be given byp(cκ,lk |aκ,lk),
whereaκ,l (l = 1, . . . , nκ) characterize model features. For a normally distributed
3D point, for instance,aκ,lk denotes the mean vector and the covariance matrix. A
standard density transform results in the densityp(ok|aκ,lk ,R, t), which characterizes
the statistical behavior of the featureok in the image plane dependent on the object’s
pose parameters.

As described in Section 3.2, the probabilistic modeling of the assignment from im-
age to model features is based on discrete random vectorsζκ = (ζκ(o1), ζκ(o2), . . . ,
ζκ(oNm

))T , whereζκ defines a discrete mapping from an observed featureok to the
indexlk ∈ {1, 2, . . . , nκ} of the corresponding model featurecκ,lk , i.e.,ζκ(ok) = lk.
The non-observableassignment is eliminated by the marginalization as shown in Equa-
tion 3.51. The probabilistic modeling of the assignment from image to model features
is based on discrete random vectors. An assignment functionζκ defines a discrete
mapping from an observed featureok to the indexlk ∈ {1, 2, . . . , nκ} of the corre-
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sponding model featurecκ,lk , i.e.,ζκ(ok) = lk. A set of observed features can thus be
associated with the assignment random vectorζκ = (ζκ(o1), ζκ(o2), . . ., ζκ(oNm

))
T

which is related to the discrete probabilityp(ζκ), i.e., the matching problem is also
modelled statistically. The discrete probability ofp(ζκ) extents the probability density
function for observing the set of featuresO . Due to the statistical interpretation ofζκ,
the non-observable assignment can be eliminated by the following marginalization:

p(O |Bκ,R, t) =
∑

ζκ

p(ζκ)

Nm∏

k=1

p(ok|aκ,ζκ(ok),R, t) . (3.79)

If the structure of the model density (i.e., the number of model features and the
dependency structure of single assignments) is known, algorithms for the estimation
of the parameter setBκ exist [335]. The computation ofBκ for each object classΩκ,
κ = 1, 2, . . . , NK requiresp(ζκ) and{aκ,l}. Due to the projection of the 3D world
to the 2D image plane, the range information is lost. Furthermore, the assignment of
image and model features is not a component of the observations. The calculation of
Bκ thus corresponds to an incomplete data estimation problem which can be solved
using the Expectation Maximization algorithm (EM algorithm, cmp. Section 3.2).

The framework introduced so far requires a minor modification of the standard
Bayesian decision rule, since a segmentation objectO is given instead of a single
vector, and the unknown pose parameters are part of the probability density. The
modified Bayesian decision rule for the statistical classification of objects is:

λ = argmaxκ p(Ωκ|O) = argmaxκ p(Ωκ)p(O |Bκ,R, t) . (3.80)

The a posteriori probabilitiesp(Ωκ|O) cannot be evaluated explicitly. The pose
estimation stage has to compute the best orientation and positionR, t before the class
decision is possible. This corresponds to the maximization problem

{R̂, t̂} = argmaxR,tp(O |Bκ,R, t) , (3.81)

which requires a global optimization of a multimodal likelihood function.
This framework was used for the recognition of 3D objects based on 2D images

[335]: we assume that each input image (e.g. Figure 3.16) is transformed into a
segmentation object of 2D feature vectorsO = {ok ∈ R

2|1 ≤ k ≤ Nm}. The

Figure 3.16. Simple polyhedral 3D objects (Ω1, Ω2, Ω3, Ω4), used in the experiments
in [335].
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Figure 3.17. Experiment for object recognition with heterogeneous background.

elementsok may be points (e.g. corners or vertices) or lines, which can be detected
by several combinations of segmentation operators which all result in the uniform
segmentation object (see Section 3.1).

For segmented 2D point features,Bκ provides the parameters characterizing the
assignments as well as the accuracy and stability of the object points. Closed form
iteration formulas can be found for normally distributed point features, which allow the
estimation of mean vectors from projections without knowing corresponding features
of different views [335].

This flexible formalism of model densities can also be extended to use multiple views
for pose estimation or classification [335] which remarkably improves recognition
rates.

A combination of appearance based methods with probabilistic approaches is also
feasible. In [554], wavelet features in scale space are used for object representation,
requireing no image segmentation. These features are modeled statistically and local-
ization as well as classification is again reduced to a Bayesian decision and statistical
parameter estimation problem.

3.4.5 Features and Invariants for Object Recognition

In Section 3.4.2, segmented features are matched to model features. The match is
constrained by knowledge on the features, such as, e.g., parallelism. Such information
can be provided by segmentation algorithms and can be represented in the relation-
slot of a segmentation object. Although appearance based methods use the image
directly and do not compute segmented features, they do require that the object figure
is separated from the ground. This is usually achieve by image segmentation as well.

If we can find features of an object that are invariant with respect to a certain class
of transformations, e.g., illumination changes, changes in size, viewpoint changes,
etc., we can use these features to index into a set of models. Clearly, these features
must have at the same time invariant properties as well as the discriminative power to
separate object classes.

Several intuitive invariant features can be defined on 2D lines and contours. To give
an example, the area of a region divided by its contour length is invariant to rotation,
scaling, and translation. More complex invariant features can be found which yield,
e.g., affine invariant descriptors.
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Figure 3.18. Circle skewed to an ellipse under projective transformation and its invari-
ant properties using the cross ratio.

A well-known projective invariant which is of practial interest is the cross-ratio of
four 2D pointsx1, x2, x3, andx4 on a straight line

||x1 − x3||

||x1 − x4||
·
||x2 − x4||

||x2 − x3||
. (3.82)

In fact, the cross ratio is invariant under any collineation, i.e., under every transforma-
tion which transforms straight lines into straigth lines. Straight lines can be found with
reasonable reliability by image segmentation (see Section 3.1). The four points on
such lines can be identified, e.g., when line intersections are searched. The geometric
relations for the cross ration are outlined in Figure 3.18.

Acquiring an object model using this approach is simple, as we represent an object
class by a set of invariant features. We use one image of each object class to compute
feature vector for each object class and store it. For recognition we detect the features
in the given image and compare to the stored feature vectors.

Color in many cases provides very useful cues to identify objects. It is relatively
insensitive to view point changes and can be regarded as a non-geometric feature,
which is invariant with respect to minor changes in the position parameter of an object.
Changes which are caused by changes in the lighting conditions have be eliminated to
provide such invariance properties.

In order to identify color objects in a scene, color histograms are used in [679]. A
color image[fij ]1≤i≤Ny,1≤j≤Nx

is searched for an object which is characterized by its
histogram in some quantization. The color space is divided into cubes and the number
of vectors is determined which fall into the cubes. This number is divided by the total
number of color vectors. The histogram is denoted byT = [T l]l=1...NL

whereNL

denotes the number of cubes. A functionζ maps a color pixel to the index in the
histogram, and permits to use arbitrary quantizations; e.g. for anRGB histogram with
4×4×4 bins (L = 64) and for color components in the range from 0 to 255 we might
choose

ζ :

{
R

3 → {1, . . . , L}

fij = (rij , gij , bij)
T
→ ⌈rij/64⌉ · 16 + ⌈gij/64⌉ · 4 + ⌈bij/64⌉

. (3.83)
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The elements of the histogramT are defined as

T l =
1

NxNy

|{(i, j)|ζ(fij) = l, i = 1, . . . , Ny, j = 1, . . . , Nx}| . (3.84)

A close-up view of the object is recorded and the histogramT is computed from
this image. Then, an image[f ′

ij ]1≤i≤N ′

y,1≤j≤N ′

x
of the scene is recorded and a color

histogramS = [Sl]l=1...L of this image is computed with the same quantization. The
sizes of the images may however be different. The elements of the histogramS are
defined as

Sl =
1

N ′
xN ′

y

∣∣{(i, j)|ζ(fij) = l, i = 1, . . . , N ′
y, j = 1, . . . , N ′

x

}∣∣ . (3.85)

The ratio histogramQ = [Ql]1≤l≤L is computed from the object histogramT and the
histogramS = [Sl]1≤l≤L of the imagef by

Ql =

{
0 if Sl = 0

min
{
1, T l

Sl

}
otherwise

. (3.86)

If for a bin with index l is empty, i.e.,Sl = 0, then the corresponding color is not
present in the scene, i.e., no pixel can be found that is mapped to this bin. Thus,
this case never occurs in backprojection. In addition, the approximate size of the
object in the image is needed for the algorithm; this size is represented by a mask
D = [D ij ],D ij ∈ {0, 1} covering the object.

The values of the ratio histogram are thus in the range[0, 1] ⊂ R. An intermediate
imageg = [gij ](1 ≤ i ≤ Ny, 1 ≤ j ≤ Nx) of the same dimension as the input image
is computed asgij = Qζ(fij) where the functionζ is used to find the appropriate bin

for the color vectorfij at position(i, j)
T . The convolution ofg with the object mask

D yields the output imageh . Local maxima in the output image indicate possible
positions of the object.

A disadvantage of the color backprojection method is its sensitivity to illumination
changes. This can be helped by preprocessing with a color constancy algorithm.

If an object is supposed to be at position(i, j)T in the image and the size is estimated
to bea × b, then it is reasonable to create a local histogram at position(i, j)

T for a
sub-image of the estimated size and to compare this histogram to the histogram given
for the close-up view of the object. The size of this mask has to be known before using
this method.

A simple distance measurement is the sum of distance squares (sum of squared
differences, SSD):

SSD(S ,T ) =

L∑

l=1

(T l − Sl)
2. (3.87)

The following quadratic form can be used as weighted version ofL2-norm:

dA(S ,T ) =

√
(S − L)

T
A(T − L) (3.88)
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whereA weighs the color distances in the color channels. Statistical methods can be
used to compare the histograms, for example, theχ2-test:

χ2
S ,T =

L∑

l=1

(Sl − T l)
2

T l + Sl

(3.89)

The number of degrees of freedom isL − 1 − |{l|T l = Sl = 0}|. If the histograms
are given in absolute frequencies and their sum is equal, then this degree is reduced by
one. More information on object recognition using color histograms can also be found
in [610].

3.4.6 Active Object Recognition

For real scenes and computer vision problems of practical interest, the examples
described so far are too much academic. Real-world scenes rarely contain isolated
objects and homogeneous backgrounds, the scenes are rather cluttered, the objects are
partially occluded, relatively small, etc.

The strategy of active vision which will be introduced in Section 3.6 can be suc-
cessfully applied to combine recognition modules, 3D estimation, and model-based
camera actions in order to solve the object recognition task in real-world indoor scenes
[6]. This system actively moves the camera and changes the parameters of the lens
to create high resolution detail views. Camera actions as well as top-level knowledge
are explicitly represented in a semantic network; the control algorithm of the semantic
network used to guide the search is independent of the camera control; this semantic
network will be introduced in Section 3.6. Objects are hypothesized using color infor-
mation (see Section 3.4.5) and verifyed using geometric matching (see Section 3.4.2)
based on segmented color regions (see Section 3.1). The active component is neces-
sary, since the objects are too small to be detected in the wide-angle view robustly,
using any of the above mentioned methods.

An example scene containing office objects, object hypotheses by color backpro-
jection, and close-up views of the objects is shown in Figure 3.19 (top). In a sequence
of images which is recorded when the camera is moved latereally in front of the scene,
interesting points are selected by one the methods proposed in Section 3.1.4. Tracking
of these points and analysis of their trajectory is used to recover the distance of these
points to the camera. Figure 3.19 (bottom) shows two projections of these points.
This sparse 3D information permits to estimate the size of the object maskD used in
histogram backprojection Figure 3.19 (bottom right).

3.4.7 Conclusion

Most systems on object recognition reported in the literature use models which are
represented explicitely. The choices for object models are geometric descriptions,
appearance-based models or statistical models. None of the approaches guarantees
satisfactory results for general problems, if it is used in an isolated module. Instead, a
combination of modules is required.
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Figure 3.19. Office scene (top left), close up views used for hypotheses (top right),
two projections of 3D points (bottom left), color backprojection for red punch (bottom
right). The red punch searched for is shown in the close-up views on the top right.

Traditionally, geometric approaches were dominant e.g., in [333]. Recently, statis-
tical methods are gaining more and more interest, e.g., in [262, 335, 406]. Support
vector machines as proposed in [723, 708] promise a further step into this direction.

Although the object recognition problem is a central task in almost any computer
vision system, it is still not completely solved and there is still room for improvement.

3.5 IMAGE UNDERSTANDING

H. NIEMANN

The term model-based image understanding is used in different meanings, of which
we mention in particular:

The interpretation of images or image sequences using a semantic model in the
sense of Section 3.2.

Examples of this approach are [473, 509, 562, 410]; a main source of knowledge are
the geometric and task-specific properties of objects and events; its usage depends


