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most of the information relevant to the task-domain or application scenario. In this
setting model-based interpretation of images isptimization problem

A basic problem occurs if a single static image or a volume-sequence of images s to
be interpreted, Examples are single MR or CT images, or volume-equences of MR or
CT images. To solve this problem processing often proceeds in three phases. Atfirst, a
segmentation of the image into segmentation objects like lines, regions, and vertices is
computed. This topic is treated in Section 3.1. Then objects or in general semantically
meaningful components in the image are classified as described in Section 3.4. Finally,
in the third phase the meaning of configurations of objects is interpreted in the context
of the task domain; this is described in Section 3.5.

If a time-sequence of images is to be interpreted, some specializations may be
necessary or advisable due to the real-time requirements. In a time-equence of images
new objects may become visible, visible objects may move out of the field of vision,
the same object may be visible on many image frames, and an object needed to achieve
some task may not yet be visible. In such cases it is not advisable to treat every image
frame completely independent of the other ones. Rather, one should distinguish the
phaseof

m jnitializing the processing by making a full and detailed analysis of usually a few
consecutive images, for example, using the techniques described in Section 3.4 and
Section 3.5,

m trackingof recognized objects as long as they are visible, see e.g. Section 2.4 and
Section 3.2.2,

m detectinghew objects entering the field of vision, that is, beattgntiveto changes
in the image content, see e.g. Section 2.4 or Section 7.4,

m actively searchindor objects which are important for the fulfilment of the task as
described in Section 3.6.

3.1 SEGMENTATION

D. PAULUS

Many applications of image processing and image analysis have been outlined in the
previous chapters of this volume. More examples can be found in medical, industrial,

military or geographical applications. We saw that singéessificationproblems can

be solved with statistical methods and that analysis and understanding of complex
patterns generally requires knowledge about the particular task domain.

But even knowledge-basedimage analysis systems tailored to a certain problem usu-
ally have some components which operate on images independently from the specific
task. These components are commonly referred to as the image preprocessing stage.
Typical operations are a variety of filters, geometric transformations and corrections,
extraction of features, like e.g. gray-level histograms.

Preprocessing is notthe only part of an image analysis system which can be designed
without knowledge about the task domain. The analysis of complex scenes usually
requires that the image is split into simpler components.
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This process is called theegmentatiomf an image. Segmentation may in some
cases be directed by the knowledge-base, but may in many cases as well be initially
performed independently of the specific task.

3.1.1 Introduction

The term ‘segmentation’ is used in many publications with slightly different meaning.
For a definition the following two statements are helpful:

Description of an image
“The description of an image is its decomposition or segmentation into simpler
constituents (or pattern primitives or segmentation objects) and their relations, the
identification of objects, events and situations by symbolic names, and if required,
an inference about its implications for the task domain.” [508, p.6]

Analysis of an image
“When analyzing (complex) patterns each pattern is given an individual symbolic
description.” [508, p.5]

Image segmentation thus is a process that transforms the image into a set of simpler
constituents. The types of the objects detected depend highly on the algorithm used.
Three major classes of algorithms are

m region-based segmentation which searches for objects fulfilling a certain homogen-
ity criterion,

m line-based systems which detect discontinuities in the image function, and
m point-segmentation which identifies interesting points.

The objects detected in the segmentation may be represented in various ways as
indicated in Table 3.1. One object in the scene may be represented by more than one
representation at the same time. An example is a line which is detected as a chain code
and is approximated by a spline.

An initial segmentation requires little if any knowledge about the structural prop-
erties of patterns. It results inssegmentation objeathich has certaimttributes A
segmentation object is an initial symbolic description of an image. Typical attributes
of segmentation objects are the location in two-dimensional image coordinates or in
three-dimensional world coordinates, gray-level and color, texture, motion, depth, sur-
face normal, shape and reliability or certainty of the detection. Attributes and relations
between them are used to represent data driven evidence of parallelism, symmetry,
curvature, and collinearity.

Since color images are now provided by most CCD cameras, the ideas of image
segmentation which were introduced for gray-level images in the literature, have to
be extended to multi-channel images. This is the case for line detection, region
segmentation, as well as the identification if points of interest. In the following we
will outline the principles of segmentation in their original form. If extensions to color
images already exist, we will cite and outline them as well. If no such extension is
known yet but is feasible, we will propose it.
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Geometric object Representation

Region Contour-line
Characteristic function
Quad tree
Run length code

Lines Chain code
Polygon
Spline

Point Coordinate pair

Table 3.1. Representations of results of the segmentation for 2D images

The organization of the section is as follows: Region segmentation of intensity
images is introduced in [338]; we survey this topic in Section 3.1.2. Edge detection
and line segmentation is formalized in [469, 106]; we describe these approaches in
Section 3.1.3. Detection of corners, vertices, and interesting points is introduced in
Section 3.1.4. These segmentation strategies are applied to range images in Sec-
tion 3.1.5. The problem arises, how to represent these symbolic data; formalisms and
data structures for this purpose and implementation issues are covered in Section 3.1.6.
In Section 3.1.7 we refer to literature on performance valuation, which is crucial for
image segmentation.

Many other ideas exist for image segmentation, e.g., region segmentation using
texture information. Due to space limitation, we omit these subjects and refer to the
literature, e.g. [190].

3.1.2 Region Segmentation

In the following we describe two region segmentation algorithms and mention a third
approach. The first method extends an algorithm which was introduced in [191]. It
extends and uses the ‘split-and-merge’ algorithm of [338], to color differences. The
second is based on image morphology.

For the ‘split-and-merge’algorithm we assume that we have a quadratic colorimage
with a size which is a power of two; we organize the pixels initially as a quadtree which
is a hierarchical data structure for efficient region representation.

The color mean vectq; ; in the square window

Wi,' = [wuu]u7,,:1’...’n = [-favb]a:i,---7i+n,b:j7~»,j+n (31)
of size(n + 1) x (n + 1) is computed from the color values

fi7j = (Tabagababab)T (32)
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Figure 3.1. Example of region segmentation: color image (a), contours (b), contours
overlayed to regions (c).

at positions(a, b)T within the window W; ; by an average operation on the color
channels:

1 a=i+n b=j+n
pig=—5 Y > fur (3.3)
a=t b=y

The variance is computed as the sum of variances in the color channels in [191].
To generalize this measure to color spaces other i@, the variancer?; ; in the
squareW; ; was defined in [169] as follows, whet&.1, o) denotes the distance
betweenu; and s

a=i+n b=j+n

= S D (s i) (3.4
a=1 b=j

If the image inside a windowWV; ; is sufficiently heterogeneous, i.e., if the variance
o?; ; is greater than a threshafid, then we split the square into four sub-squares. The
minimal size of the squares is a parameter of the algorithm which can be used to tune
the speed and the desired accuracy and noise sensitivity of the segmentation.

During the subsequent merge phase, four adjacent squares which have a common
direct ancestor in the quadtree are merged if their color distance is below a threshold
Om. In afinal grouping stage, similar regions are merged if their color distance is below
a thresholdly. The result is no longer a quadtree. A typical sequence of intermediate
results of the processing steps is shown in Figure 3.1.

The so-calledvatershed transforrf30] has recently gained increasing interest in
computer vision. This morphological image segmentation method can in some cases
considerably enhance image analysis.

The watershed transform idea can be easily explained by help of a geographical
imagination. Suppose a drop of water is falling on a topographic relief—it will run
down until it reaches a local minimum. The influence zones of those local minima are
called catchment basins. As the water level increases and two basins are going to flow
together, a dam has to be built. The dam separates the local minima against each other
and can be seen as a watershed (see Figure 3.2 (right)).
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Water

Dams

Figure 3.2. One-dimensional effect of the immersion simulation on a gray-level profile
(right); cut from a real thermographic image showing the skin temperature on a human
forearm (white line on the left), implementation according to Baxes [47]. Immersion
depth 33.9°C.

The two general ideas for the watershed transform aregkbigal and thelocal
approachto watershed segmentation. In the local approach, decision about further
flow of water is based on the neighborhood of a pixel. In the global approach,
all pixels are affected by the flooding. First we invert the image and—figuratively
spoken—we put holes into each local minimum. Now the mountains are immersed
into water which passes through the prepared holes. Whenever two basins unite, a dam
is built (see Figure 3.2 (right)). The computed contour lines of these dams surround
the areas searched for. During the flooding process, only the points on the border
of the basin are required for computation. This contour based algorithm allows for
an efficient implementation with linear complexity when these points are queued and
inspected in parallel [730]. The immersion can be stopped at a certain level or can
be continued until the highest mountain is covered by water and only dams remain
visible. Partial flooding can be used to separate objects from the background. This
strategy has been applied to segment thermographic images in a medical application
[528].

Vincent[730] describes the watershed transform as a special case of amorphological
operation. For segmentation purposes, the watershed transform can be treated as a
region growing algorithm. Region segmentation requires the definition of a criterion
for homogeneity [508]. Catchment basins are homogeneous in the sense that they
contain exactly one local minimum together with the related influence zone.

3.1.3 Edge and Line Detection

Literally hundreds of edge detector schemes were proposed in the literature in the past.
They can be categorized into three types:

m Gradient based approaches which compute discrete approximations of the partial
derivativesf, and f, of the image functiory.

m Edge masks which filter the image locally by a mask modeling a particular edge
type and orientation.
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Figure 3.3. Masks for Sobel (left) and Prewitt (right) operator. Masks on the left: f,
masks on the right: f,. Note that these masks may be flipped with respect to other
literature since we choose the origin of the coordinate system on the left top.

m Local parametric models which approximate the image locally by a function mod-
eling the edge.

We briefly introduce gradient methods and outline an optimal edge detector which
uses a parametrized edge model. Edge operators create an edge image in which edges
are combined to lines. These lines can be further appoximated to geometric primitives
such as straight line segments or circular arcs. We present results of these processing
steps.

Parametric models which approximate the image function as well as edge modeles
have been proposed for edge detection [508, 529]. In the following we will briefly
show methods based in the intensity gradient.

Two of the most common operators for gradient computation in gray-level images
are the Sobel operator and the Prewitt operator. These linear operations can be com-
puted by a convolution of the input image with the masks shown in Figure 3.3. In[151]
it is shown that the Sobel mask is an approximation of the first derivative. The same
idea can be applied to color images in a straight forward manner using color vectors
instead of intensity pixels. Edge detectors result in an edge image which contain a
matrix of edge elements. These edge elements may be either a representation of the
intensity gradient, or—which is more common—an encoding as edge strénatial
edge orientatiory,; edge orientation is perpendicular to the edge gradient and the
strength is a measure computed from the norm of the gradient.

In many cases which are of practical relevance, color information does not consid-
erably increase the quality of edge detection, although color region segmentation has
been quite successful e.g. for the segmentation of traffic signs. This is due to the fact
that most color edges for real objects are also conceivable in the gray-level equivalent;
color regions can use a homogeneity predicate which is not based on intensity, e.g.,
only chrominance. Results of edge detection on the image Figure 3.1 (a) are shown in
Figure 3.4; the result of the Sobel operator on the gray-level inputimage is shown on
the left; the center image shows the edge strength for the color-Sobel operator. On the
right we have the edge orientation image computed from the gray-level operator.

Several gradient operators are listed in [508, 529]. We now assume that the horizon-
tal derivativef , and the vertical derivativg, can each be computed by a convolution
of the imagef with a mask:

£, = f*G, (3.6)
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Figure 3.4. Comparison of edge detection in gray-level and color image. Top: original
image, middle: edge strength, bottom: edge orientation. Left: gray-level segmentation,
right: color segmentation.

Lines can now be computed from edge images tracking the edge elements with
high edge strength along the direction indicated by the edge orientation. The resulting
lines are often represented as chain codes (cmp. Table 3.2). These chains can be
further approximated to find segments which are approximately straight or are circular
arcs. Various line following and approximation schemes have been introduced in the
literature, e.g. in [284]. A method that computes straight lines directly from edge
images is the application of the Hough-transform on edge images. The idea is to
represent the straight lines y= ax + b and to use the quantized parameter space
for a,b. An accumulator which holds the quantized parameter values is initialized
to 0. For each edge elemeft, fo) computed with a gradient operator at a position
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Figure 3.5. Straight lines and circular arcs from line approximation (left), and straight
lines computed by the Hough transform (right).

¢, 7], we compute the parametefrom i andj and estimate the parametefrom f,.

If the slopea is finite, we increment the accumulatorat by f.. If instead of the
parametrization above, a line representation-ascos ax +y is chosen, the parameter

array has a finite size but the results of edge detection cannot be used as parameters
directly. Local maxima in the accumulator are used as indications for straight lines in
the image.

Straight lines and circular arcs computed by the line following as described in [284],
and straigth lines computed by the Hough-transform are shown in Figure 3.5.

The Canny-operator [106] was shown to be an optimal edge detector under fairly
general assumptions, such as the assumption of step edges and the presence of white
additive noise. It optimizes three criteria: detection, localization, and uniqueness.
The final result of the fairly mathematical derivation in [106] is that the operator
is computed from the convolution of the imagewith d¢/dn where ¢ [z,y] =
exp (— (22 +y?) / (20?)) is a two-dimensional Gaussian function ands an es-
timate of a normal orthogonal to the edge orientation which can be computed form
the edge derivatives. The edge orientation estimate as well as the parameters of the
Gaussian have to be varied to obtain the optimal result. The result of the convolution
is then analyzed to link edge elements to lines; an example is shown in Figure 3.6.

Figure 3.6.  Result of Canny operator on the image in Figure 3.1.
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3.1.4 Points, Vertices, Corners

A well-known method to find interesting points in an image is due to Moravec and is
thus called théMloravec interesbperator. He extended his own method in [490]; for
each pixel in the input image, he uses a local window

Wij = [wij,ul/]#,uzo,..n = [favb]a:i,...,i+7,b:j,...,j+7' (3.7)

The following features are computed from these windows:

6 6
2
o= o — Wi, .
MMy Z Z (Wijpv — Wijpvt1)” (3.8)
pn=0rv=0
6 6
2
Myyij = Zz(wim—wu,m» 5 (3.9
pn=0rv=0
6 6
2
Mxyij = Zz(wiﬂw_wimwlwl) 5 (3.10)
p=0v=0
6 6
2
Myx;; = ZZ(wij=H+lv—wij,pu+l) . (3.11)
pn=0rv=0

The operator now is
sz = mln {mxxij, mxyzj, myxzj,myylj}. (3.12)

The application of this operator on an image results in an interest map which is
subsequently filtered by a Laplace-operator. The extension to color images is straight
forward and uses the window

Wz‘lj = [wij:ﬂ”]uw:&...ﬁ = [-favb]a:i7...,i+77b:j,..7j+7 (3.13)

in a colorimage, i.e., the scalars; ,,,, in the Equations 3.8-3.11 are replaced by color
vectors and a suitable difference operator. The square of the intensities is replaced
by the scalar product of the resulting vectors. Figure 3.7 shows results of the interest
operators a gray-level image andi& B color image where the Euclidian distance of
color vectors was used.

Another operator is the Harris corner detector [287]: for an im@ages compute
a gradient image whose horizontal and vertical compongnéd f, are convolved
with a Gaussian mas& , of standard derivation to obtain two smoothed imagé;;
andf,:

]z.z = fz*Go :f*Gz*Goa (314)
fy = fi*xGo=fxGy*G,. (3.15)

The default value fos is o = 0.7. At each position in the image',j)T we compute

the matrix
Mij11 Mgz
Mi' = J> J> 3.16
J ( Mijo1 M 22 ) ( )
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Figure 3.7. Interest map computed by Equation 3.12 for gray-level (left) and color
images (right) overlayed to brightened input image from Figure 3.1.

with
M1 = ~z2_’ij7 (3.17)
Miji2 = feij foijs (3.18)
Mijo1r = foij- fyij (3.19)
Mijoo = 5” (3.20)

The result of the Harris operator at position j)* is now defined as
Hij = det(Ml-j) —k tr(Mij), (321)

wherek = 0.04 is a fixed value for the computation. Again, the result is an interest
map. In [174] it has been generalized to color in as

M = fli (3.22)
Miji2 = frz]fyma (3.23)
Mijo1 = foij Foiss (3.24)
Mis = fli (3.25)

Figure 3.8. Interest map computed by the Harris operator for gray-level (left) and color
images (right) overlayed to brightened input image from Figure 3.1.



90 PRINCIPLES OF 3D IMAGE ANALYSIS AND SYNTHESIS

Figure 3.9. Interests map computed for gray-level (left) and color images (right).

where the products and squares are computed by scalar products of the vectors.
Smoothing of the color gradientimages is done componentwise.

Results of the gray-level and color version of this operator on the test image ot
Figure 3.1 are shown in Figure 3.8. Figure 3.9 depicts a comparison of the three
interest operators.

In addition to point operators which are mostly useful for point detection in image
sequences, we also need detectors for points in single images. The demand for stability
and roboustness can be satisfied when a larger context is used for the computation, as
it is the case, e.g., by points which lie on lines. Points are detected by intersections
or corners on these lines. Corners are identified by the analysis of the curvature of
the lines. Thereby interesting points are found by post-processing lines resulting from
line segmentation [284]. A result of point detections based on corners and vertices is
shown in Figure 3.10.

XXX

xR x

x X * X

Figure 3.10. Segmented Corners and Vertices indicated by crosses on the lines.



RECOGNITION AND INTERPRETATION 91

Figure3.11. Example of range image segmentation. Result of segmentation rendered
with different colors corresponding to regions of different curvature characteristics (left).
The other two images additionally show the minimal and maximal curvature coded by
the brightness of the color.

3.1.5 Segmentation of Range Images

Range images as provided by several sensor types (cf. Section 1.1) are also subject
to image segmentation. The principles introduced for intensity images can be applied
as well, if the depth information is represented as a matrix of distance values, i.e., as
a rangamage Instead of the intensity gradient, the surface gradient can be used for
detection of discontinuities. In order to be less sensitive to noise, the gradient is often
computed analytically from a parametric function whose parameters are estimated by
an error minimization on a surface patch.

Surface patches can also be detected by region segmentation. The criterion of
homogeneity can be, e.g., the minimal and the maximal curvature of the surface or the
H — K map (see Section 4.6). These parameters are invariant features with respect to
viewpoint changes and can thus be used for object recognition [59] (cmp. Section 3.4).
Often, a combination of intensity and range segmentation provides the best results.

An example of a triangle mesh that was reconstructed from multiple range images
and segmented using the curvature estimation rule of Section 4.3.1 is shown in in
Figure 3.11.

3.1.6 Data Representation

As described in Section 3.5, knowledge-based image analysis consists of a sequence
of transformations from the input image over an initial segmentation to a symbolic
description. The results of data driven segmentation thus have to be passed to an
interface which provides the transfer of the information to the symbolic processing
stage.

Data structures for the representation of the results of the segmentation process were
presented by various authors as summarized in Table 3.2. A general data structure for
the interface must have the expressional power to represent all kinds of information
resulting from any segmentation process. Surfaces, lines, regions, vertices and various
structural and temporal relations between any two of these objects may be detected
during segmentation and have to be stored in these data structures. Naturally, represen-
tations for lines use representations of points, representations for regions utilize lines,
e.g. for contour representation. The segmentation object [508, 529] has these proper-
ties and can be used as a common interface definition. To give an example, regions
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Data structure Author

Primal Sketches Marr

2.5D Sketches Marr

Recursive Structure for Line Drawings  Shapiro
Iconic-Symbolic Data Structure Tanimoto
RSE-Graph Hanson & Riseman
Line Adjacency Graph Pavlidis

Region Adjacency Graph Pavlidis

Region Graph Fisher

Spatial Data Structure Shapiro & Haralick
Segmentation Objects Niemann & Paulus

Table 3.2. Candidates for interfaces from segmentation to knowledge based process-
ing according to [530].

detected with the methods of Section 3.1.2 can be represented as chain codes and are
stored as a set of contour lines in a segmentation object; some of the contours may
be polylines composed of straight lines; data-driven estimation of parallelism results

in relations between some of these lines which are also recorded in the segmentation
object. A syntactic description of segmentation objects is given in [508, p. 74-75];

it is also mapped to a syntactic description of concepts of a knowledge base. An
object-oriented implementation of segmentation objects can be found in [529]. The
system is further extended to contain a hierarchy of image segmentation operators in
[529].

3.1.7 Performance Evaluation

Objective and general methods for the evaluation of image processing algorithms,
filtes, and segmentation are not available, yet. The major problem is to define the
evaluation criterion which often depends on the application, whereas segmentation
algorithms were implemented independently from the the application.

In order to compare the results of different algorithms which produce the same
type of segmentation results, their parameters have to be known and have to be varied
systematically. To give an example, the algorithm in Section 3.1.2 requires the choice
of several threshold8,, 6., etc. In most of the cases, the notion of a ‘good result’
will depend on the application and the task of the overal system. In the context of
active vision (Section 3.6), the ‘quality’ of a result may be chosen sub-optimal, since
higher computation speed may be crucial instead of high precision. ‘Optimal’ solutions
such as the Canny operator, may be not the right choice since they require too much
computation time or since the underlying assumptions are not valid.

Performance evaluation of computer vision systems is a problem of ongoing re-
search; the sub-task of evaluating segmentation algorithms will be useful for overall
evaluation [283]. A survey on evaluation of segmentation methods can be found in
[773].



