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Abstract

Computational methods for automated genome annotation are critical to our commuliiifys@
make full use of the large volume of genomic sequence being generated and releagsglofe

the accuracy of these automated feature prediction tools in the genomes of higmésrosyae
evaluated their performance on a large, well-characterized sequence contitpeAdhregion of
Drosophila melanogasteiT his experiment, known as the Genome Annotation Assessment Project
(GASP), was launched in May 1999. Twelve groups, applying state of the art tools, comtribute
predictions for features including gene structure, protein homologies, promoteasiteepeat
elements. We evaluated these predictions using two standards, one based on previdgsigathre
high quality full-length cDNA sequences and a second based on the set of annotationsegeaerat
part of an in-depth study of the region by a group of Drosophila experts (Ashbeiragr1999b).
While these standards sets only approximate the unknown distribution of features &gibis e
believe that when taken in context the results of an evaluation based on them aregheariihe
results were presented as a tutorial at the conference on Intelligent Syat®étolecular Biology
(ISMB-99) in August 1999 (Reesat al,, 1999). Over 95 percent of the coding nucleotides in the
region were correctly identified by the majority of the gene finders and theatonteons/exon
structures were predicted for more than 40 percent of the genes. Homology based annotation
techniques recognized and associated functions with almost half of the genes igidine tfee
remainder were only identified by tted initio techniques. This experiment also presents the first
assessment of promoter prediction techniques for a significant number of genesge a la
contiguous region. We discovered that the promoter predictors’ high false posit&gmake their
predictions difficult to use. Integrating gene finding and cDNA/EST alignmeitts pvomoter
predictions decreases the number of false positive classdfitakiut discovers less than one-third of
the promoters in the region. We believe that by establishing standards for evglgatiomic

annotations and by assessing the performance of existing automated genome annotatitnstools
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experiment establishes a baseline which contributes to the value of ongoingdalgexsnotation

projects and should guide further research in genome informatics.
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1. Introduction: The Genome Annotation Assessment ject (GASP)

Genome annotation is a rapidly evolving field in genomics made possible by theskealge-
generation of genomic sequences and driven predominantly by computational tools. The geal of t
annotation process is to assign as much information as possible to the raw sequence etecompl
genomes with an emphasis on the location and structure of the genes. This can be accdiyplishe
ab initio gene finding, by identifying homologies to known genes from other organisms, by the
alignment of full-length or partial MRNA sequences to the genomic DNA, or through o@titns

of such methods. Related techniques can also be used to identifyfedhanes, such as the location
of regulatory elements or repetitive sequence elements. The ultimate ggaia@he annotation,

the functional classification of all the identified genes, curredédpends on discovering homologies

to genes with known functions.

We are interested in an objective assessment of the stdte aft in automated tools and techniques
for annotating complete genomes. The GASP project was organized to formulatérpsdeid
accuracy standards for evaluating computational tools and to encourage the develajpmeant
models and the improvement of existing approaches through a careful assessment amgaompa

of the predictions made by current state-of-the-art programs.

The GASP experiment, the first of its kind, was similar in many ways to the C&Sifcal
Assessment of Techniques for protein structure prediction) contests for proteitustrprediction
(Dunbracket al,, 1997; Levitt, 1997; Moulet al, 1997; Moultet al., 1999; Sipplet al, 1999;
Zemlaet al,, 1999), described at http://predictioncenter.linl.gov. However, unlike the CASP
contest, GASP was promoted as a collaboration to evaluate various techniques foegenom

annotation.
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The GASP experiment consisted of the following stages:

* Training data for théddhregion, including 2.9 megabasesfosophila melanogaster

genomic sequence, was collected by the organizers and provided to the participants.

* A set of standards was developed to evaluate submissions while the particopatipg

produced and submitted their annotations for the region.

» The participating groups’ predictions were compared to the standards, a team of
independent assessors evaluated the results of the comparison, and the results were

presented as a tutorial at ISMB-99.

Participants were given the finished sequence foitlleregion and some related training data, but
they did not have access to the full-length cDNA sequences that were sequencegBpehby
Ashburneret al. (1999b) that describes ti#ahregion in depth. The experiment was widely
announced and open to any participants. Submitters were allowed to use any atadabtdogies
and were encouraged to disclose their methods. Since we were fortunate to dttrgetgroup of
participants who provided a wide variety of annotations, we believe that our eel@atdresses

the state of art in genome annotation.

Twelve groups participated in GASP, submitting annotations in one or more of six dategbr
initio gene finding, promoter recognition, EST/cDNA alignment, protein similarity, tigye
sequence identification and gene function. Table 1 lists each participating group, tes oictime
programs or systems it used, and which of the six classes of annotations it submittethrfadidi
papers in this issue are written by the participants themselves anibaetheir methods and results

in detail.
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It should be noted that the lack of a standard that is absolutely correct makegieggtwadictions
problematic. The expert annotations described by the Drosophila experts in AshétLahi@ro99b)

are our best available resource but their accuracy will certainly imprevecsie data becomes
available. At best, the data we had in hand is representative of the true situation and our
conclusions would be unchanged by using a more complete data set. At worst, there is aHlgias in t
available data that makes our conclusions significantly misleading. Weveehat the data is not
unreasonable and that conclusions based on it are correct enough to be valuable as tbe basis f
discussion and future development. We do not believe that the values for the varigigstati
introduced below are precisely what they would be using the extra information and we @&aphas
that they should always be considered in the context of this particular annotated (dadirney

and Durbin (this issue (2000)) for a further detailed discussion of evaluating theletjonms).

In the next section we describe the target genomic sequence and the auxiliary diatknina
critical discussion of our standard sets. Section 3 gives a short description afgaishotation
methods that complements other papers in this issue, including a review art{stig gene
finding methods by Stormo (2000) and papers describing the methods used by the individual
participants. The Results section assesses the individual annotation methods amactheiaGn
discusses what the experiment revealed about issues involved in annotating cgaptetes. An

article by Ashburner (2000) in this issue provides a biological perspective on theragper

2. Data: The benchmark sequence: Thédh region in Drosophila

melanogaster

The selection of a genomic target region for assessing the accuracy of ctionaltgenome
annotation methods was a difficult task for several reasons: The genomic regditm i large

enough, the organism had to be well studied, and enough auxiliary data had tolaklave have a
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good experimentally verified "correct answer" but the data should be anonymous so finattae &t
would be possible. Thadhregion of theDrosophila melanogastegenome met these criteria.
Drosophila melanogastés one of the most important model organisms and althougdiine
region had been extensively studied, the best gene annotations and cDNAs for the regiontwer
published until after the conclusion of the GASP experiment. The 2.9 megaAdasentig was
large enough to be challenging, contained genes with a variety of sizes and ssuaturéncluded
regions of high and low gene density. It was not a completely blind test, however, sigzalse
cDNA and genomic sequences for known genes in the region were available prior to the

experiment.

2.1 Genomic DNA sequence

The contiguous genomic sequence of &t region in theDrosophila melanogastegenome spans
nearly 3 megabases and has been sequenced from a series of overlapping P1 and BAG alones a
part of the Berkeley Drosophila Genome Project (Rubin & al., 1999) and the European Drasophil
Genome Project (Ashburner & al., 1999). This sequence is believed to be of very high quidity

an estimated error rate of less than 1 in 10,000 bases, based on PHRAP quality scoreted\ deta
analysis of this region can be accessed through the BDGP web site

(http://www fruitfly.org/publications/Adh.html) as well as in Ashburmeral. (1999b).

2.2 Curated training sequences

We provided severdbrosophila melanogastespecific data sets to the GASP participants. This
enabled participants to tune their tools for Drosophila and facilitated a comparisioa editious
approaches that was unbiased by organism specific factors. The following curgbethse sets,

extracted from Flybase and EMBL, provided by the European Drosophila Genome Project at
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Cambridge, and provided by the Berkeley Drosophila Genome Project were ma@dbkevarld can

be found at http://www.fruitfly.org/GASP/data/data.html:

* A set of complete coding sequences (start to stop codon), excluding transposable elements

pseudogenes, non-coding RNAs, mitochondrial and viral sequences (2,122 entries);

* Non-redundant set of repetitive sequences, not including transposaiblents(96 entries);

* Transposon sequences, containing only the longest sequence of each transposon family and

excluding defective transposable elements (44 entries);

* Genomic DNA data from 275 multi- and 141 single-exon non-redundant genes together

with their start and stop codons and splice sites, taken from GenBank version 109;

* Asetof 256 unrelated promoter regions, taken from EPD (Cavin Petridr, 1999; Cavin

Périeret al., 2000) and a collection made by I. Arkhipova (1995);

* Anuncurated set of cDNA and EST sequences from work in progress at the Berkeley

Drosophila Genome Project.

Five out of the twelve participating groups reported making use of these data sets

2.3 Resources for assessing predictions: The "correct" answer

In a comparative study the gold standard used to evaluate solutions is the most innfamtiar in
determining the usefulness of the study’s results. For the resultsrteebringful, the standard must
be appropriate and correct in the eyes of the study’s audience. Since our goal was &bectvalls

that predict genes and gene structure in complex eukaryotic organisms we dreanalardtfrom a
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complex eukaryotic model organism, choosing to work with a 2.9 megabase sequence oamtig fr
the Adhregion ofDrosophila melanogasteComparing predicted annotations in such a region is
only consequential if the standard is believed to be correct, if that correctnelssdrasstablished

by techniques that are independent of the approaches being studied, and if the predictors had no
prior knowledge of the standard. Ideally it would contain the correct structure dfeajénes in the
region without any extraneous annotations. Unfortunately, such a set is impossible to miz&in s
the underlying biology is incompletely understood. We built a two-part approximation to the
perfect data set, taking advantage of data from the BDGP cDNA sequencingtprojec

(http://www. fruitfly.org/EST) and a Drosophila community effort to build a setuwfated

annotations for this region (Ashburnetral., 1999b). Our first component, known as td1ldata

set, used high quality sequence from a set of 80 full-length cDNA clones froddtheegion to

provide a standard with annotations that are very likely to be correct but cgréa@hot

exhaustive. The second component, known asttigdata set, was built from the annotations

being developed for Ashburnet al(1999b) to give a standard with more complete coverage of the
region, although with less confidence about the accuracy and independence of the annotations. We
believe that this two-part approximation allows us to draw useful conclusions aboutilibheta
accurately predict gene structure in complex eukaryotic organisms even thouastietely

perfect data set does not exist.

Eukaryotic transcript annotations have complex structures based on the compafditiodamental
features such as the TATA box and other transcription factor binding sites, the ipéinscstart

site (TSS), the start codon, 5-prime and 3-prime splice site boundaries, the stop beduooiyt
adenylation signal, exon start and end positions, and coding exon start and end positions. Our gene
prediction evaluations focused on annotations that are specific to the coding regiomérstart

codon through the various intron-exon boundaries to the stop codon, and on promoter annotations.

While other types of features are also biologically interesting we were enaldevise reliable
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methods for evaluating their predictions. Whenever possible we relied on unambiguougchiolog
evidence for our evaluations; when that was not available we combined sevesabfygadence

curated by domain experts.

Our goal for our first standard set, callstil], was to build a set of annotations that we believed
were very likely to be correct in their fine details (e.g. exact locationsjitice sites), even if we
were unable to include every gene in the region. We baggrbn alignments of 80 high quality,
full-length cDNA sequences from this region with the high quality gen@aiguence for the contig.
The cDNA sequences are the product of a large cDNA sequencing project at théeBerke
Drosophila Genome Project and had not been submitted to GenBank at the time of the experime
Working from five cDNA libraries, the longest clone for each unique transcrigtsedected and
sequenced to a high quality level. Starting with these cDNA sequences, we gereighments to
the genomic sequence using sim4 (Floggal., 1998) and filtered them on several criteria. Of the
eighty candidate cDNA sequences, three were paralogs of genesAdlinegion and nineteen
appeared to be cloning artifacts (unspliced RNA or multiple inserts into the cloettgn, leaving
us with alignments for fifty-eight cDNA clones. These alignments werdéurliltered based on
splice site quality. We required that all of the proposed splice sites includepdesi®T"/"AG”

core for the 5" and 3' splice sites respectively and that they scored highly i¢e sjies >= 0.35
threshold which gives a 98% true positive rate, and 3’ splice sites >= 0.25 which 28 &rue
positive rate) using a neural network splice site predictor trainedrosophila melanogastetata
(Reeseet al,, 1997). This process left us with forty-three sequences fromtteegion for which

we had structures confirmed by alignments of high quality cDNA sequence data wlitloundjty
genomic data and by the fit of their splice sites to a Drosophila splice site n@ftiglese forty-

three sequences, seven had a single coding exon and thirty-six had multiple coding exons. We
added start codon and stop codon annotations to these structures from the corresponding records in

thestd3data set.
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After the experiment we recently discovered four inconsistent genes sidhdataset. For two
genesPS07721.1, DS003192.the cDNA clones (CK02594, CK01083 respectively) are likely to
be untranscribed genomic DNA that was inappropriately included in the cDNA libramn other
genes fronstd3(DS00797.5ndwhb) were incorrectly reported istd1as three partial all

incomplete EST alignments (cDNA clones: CK01017, LD33192, and CK02229). In keeping with
stdTs goal of highly reliable annotations, all four sequences have been removed freihd tuata

set that is currently available on the GASP web site. The results reporteddeetiee larger, less

reliable, data set as presented at the ISMB99 tutorial.

The complete set of the original 80 aligned high quality, full-length cDNA sequemassiamed
std2.This set was never used in the evaluation process because it did not add any further

compelling information or conclusions due to the unreliable alignments.

Our goal for the second, used standard set, calid8 was to build the most complete set of
annotations possible while maintaining some confidence about their correctness. risiebat.
(1999b) compiled an exhaustive and carefully curated set of annotations for this region of the
Drosophila genome based on information from a number of sources, included BLASTN, BLASTP
(Altschul et al,, 1990), and PFAM alignments (Batemanal., 2000; Sonnhammeat al., 1998;
Sonnhammeet al,, 1997), high scoring GENSCAN (Burge & Karlin, 1997) and Genefinder
(Green, 1995) predictions, ORFFinder results (Frigsal., 1999), full length cDNA clone

alignments (including those usedstdl), and alignments with full length genes from GenBank.

This set included 222 gene structures: 39 with a single coding exon, and 183 with multiple coding
exons. Of these 222 gene structures, 182 are similar to a homologous protein in another organism
or have a Drosophila EST hit. For these structures, the intron-exon boundaries wkeel \ori

partial cDNA/EST alignments using sim4 (Floretal., 1998), homologies were discovered using

BLASTX, TBLASTX and PFAM alignments, and gene structure was verified uaingrsion of
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GENSCAN trained for finding human genes. Of the fifty-four remaining genes, fenittad EST

or homology evidence but were not predicted by GENSCAN or Genefinder, and forty werk base
entirely on strong GENSCAN and Genefinder predictions. All of this evidence waaated and

edited by experienced Drosophila biologists, resulting in a protein coding gene ddtatset t
exhaustively covers the region with a high degree of confidence and representsaivesf what

should or should not be considered an annotated gene. Their gene data set excluded the seventeen
found transposable elements (6 LINE-like elemef@sHK, Doc,andjockey and 11 retrotransposons

with long terminal repeats (LTRsppia, roo, 297, blood, mdgllke andyoyg, which almost all

contain long ORFs. Some of these ORFs code for known and some others for so far unknown

protein sequences.

Both of these data sets have shortcomings. As mentioned aidid@nly includes a subset of the
genes in the region. It also includes a pair of transcriptsréyaesent alternatively spliced products
of a single gene. While this is not incorrect, it confounds our scoring process. BecacfiNAe
alignments do not provide any evidence for the location of the start and stioms, we based those
annotations irstd1on information from thestd3set. Many of the gene structuresstu3are based
on GENSCAN and Genefinder predictions without other supporting evidence, so it is pokaible t
the fine details are incorrect, that the entries are not entirely independdret iefahniques used by

the predictors in the experiment, and that the set overestimates the number oihngdiea®gion.

See Birney and Durbin (this issue (2000)) and Henikoff and Henikoff (this issue (200firther
discussion of the difficulties of evaluating these predictions especially iprihtein homology
annotation category, in which by training these programs will recognize proteisdiguences such
as the ORFs in transposable elements as genes. They and others (see other GAS#opshii
this issue) have raised the issues of annotation oversights, transposons, and pseudogeses. |

where GASP submissions suggest a missed annotation this information has been passed on t
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biologists for further research, including screening cDNA libraries. We belieat it would have

been biased to retroactively change the scoring scheme used at the GASP exigesisad solely

on missed annotations discovered by the participant's submissions. See section 5 fon@e eka

an annotation that may be missing in the standard data sets. sid®eataset we based our

standard for what is or is not a Drosophila gene on the expert annotations provided in (Aslgburner
al., 1999hb). Itis clear that both transposons and pseudogenes are genuine features of the genome
and that gene finding technologies might recognize them. Since they were not inclustatiras

genes in the expert annotations, we decided against including them in the standard set.

Building a set for the evaluation of transcription start site or, more gengfatlpromoter

recognition, proved to be even more difficult. For the genes irAidfieregion almost no
experimentally confirmed annotation for the transcription start site existthé\5’ UTR regions in
Drosophila can extend up to several kilobases, we could not simply use the regittydipstream

of the start codon. To obtain the best possible approximation, we took the 5’ ends of annotations
from Ashburneret al (1999b) where the upstream region relied on experimental evidence (the 5’
ends of full-length cDNAs) and for which the alignment of the cDNA to the genomic sequenc
included a good open reading frame. The resulting set contained 92 genes out of the 222
annotations in thetd3set (Ashburneet al,, 1999b). This number is larger than the number of
cDNAs used for the construction of tised1set described above because we included cDNAs that
were already publicly available. The 5" UTR of these 96 genes has an averatedéagB60 base
pairs, a minimum length of 0 base pairs (when the start codon was annotated at the beginning, due
to the lack of any further cDNA alignment information; this is very likedytte only a partial 5'

UTR and therefore an annotation error) and a maximum length of 36,392 base pairs.
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2.4 Data exchange format

One of the challenges of a gene annotation study is finding a common format in which to express
the various groups’ predictions. The format must be simple enough that all of the groupgthvol

can adapt their software to use it and still be rich enough to express the various amsotati

We found that the General Feature Format (GFF) (formerly known as the Gened-Eetding
format) was an excellent fit to our needs. The GFF format is an extension of a simgoiees start,
end> record that includes some additional information about the sequence being annotated: the
source of the feature; the type of feature; the location of the feature in the segard@escore,
strand, and frame for the feature. It has an optional ninth field that can be used to groupemultipl
predictions into single annotations. More information can be found at the GFF web site:

http://www.sanger.ac.uk/Software/formats/GFBur evaluation tools used a GFF parser for the

PERL programming language that is also available at the GFF web site.

We found that it was necessary to specify a standard set freeaames within the GFF format, for
instance declaring that submitters should describe coding exons with the featureGiagie We
produced a small set of example files (accessible from the GASP websit@jdltistributed to the

submitters and were pleased with how easily we were able to work with theitses

3. Methods

Genome annotation is an ongoing effort to assign functional features to locations on theggenom
DNA sequence. Traditionally most of these annotations record information about an organis
genes, including protein coding regions, RNA genes, promoters and other gene reguéatwyts)

as well as gene function. In addition to these gene features, the following gensoalgstructure
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features are also commonly annotated: repetitive elements and general AT Co@ent measures

(e.g., isochores).

3.1 Genome annotation classes

While the GASP experiment invited and encouraged any class of annotations, most gusmiss
were for gene-related features, emphasizhgnitio gene predictions and promoter predictions. In
addition, two groups submitted functional protein domain annotations and two groups submitted
repeat element annotations. In the sections that follow we categorize and disessbmitted

predictions.

3.1.1 Gene finding

Protein coding region identification is a major focus of computational biology. A stepartcle in
this issue (Stormo, 2000) discusses and compares current methods, while an early pagetby
and Tung (1992) and a more recent review of gene identification systems by Burgadimd K
(1998) give excellent overviews of the field. Table 2 lists the six groups that peeldicotein-
coding regions with the corresponding program names. It also categorizes the sohsriissed on
the types of information used to build the model for predictions. While all groups usedis#htis
information for their models- predominantly coding bias, coding preference, and consensus
sequences for start codon, splice sites and stop codons-only two groups used proteirtysimilari
information or promoter information to predict gene structure. More than half of the groups
incorporated sequence information from cDNA sequences. In general, state-of-geea

prediction systems use complex models that integrate multiple gene featiarasunified model.
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3.1.2 Promoter prediction

The complicated nature of the transcription initiation process makes computgironabter
recognition a hard problem. We define promoter prediction as the identification of titist
start sites (TSS) of protein coding genes that are transcribed by eukarjtip8lymerase Il. A
detailed description of the structure of promoter regions and existing proprei@iction systems is
beyond the scope of this paper. Fickett and Hatzigeorgiou (1997) pravidecallent review of the

field.

We can broadly identify three different approaches to promoter prediction, withsatdea GASP
submission in each category. The first class consists of “searclybglsprograms, which identify
single binding sites of proteins involved in transcription initiation, or combinationges &
improve the specificity. The program Corelnspector by Werner's group (Sehatf 2000)
belongs to this category and searches for co-occurrences of two common bindingtsiteshe
core promoter (the core promoter usually denotes the region where the direct cotaetrbthe
transcription machinery, the holoenzyme of the transcription complex, and the DN&\gkice).
The second class is often termed "search by content", as programs within this group elg oot r
specific signals but take the more general approach of identifying the promgien igs a whole,
frequently based on statistical measures. Sometimes the promoter is spdieveral regions to
obtain more accurate statistics. The MCPromoter program (@hkdr, 1999) is a member of this
second group. In comparison with the signal-based group, the content-based systemsitesually
more sensitive but less specific. The third class can be described as “pronsatietipn through
gene finding”. Simply using the start of a gene prediction as a putative trarisargart site can be
very successful if the 5’ UTR region is not too large. This approach can be improvedlbging

homology to EST sequences and/or a promoter module in the statistical systems wgadefor
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prediction. The TSS predictions submitted by the participants of the MAGPIE arigthie groups

belong to this last class.

The notorious difficulty of the problem itself is exacerbated by the limited amountisfieg
reliably annotated training material. The experimental mapping of a TSSlw#adas process and
is therefore not routinely carried out, even if the gene itself is studied extdnsso, both training
the models and evaluating the results is a difficult task, and the conclusions wérdnathe

results must be considered with much caution.

3.1.3 Repeat finders

Detecting repeated elements plays a very important role in modeling theesiiomal structure of
a DNA molecule, specifically the packing of the DNA in the cell nucleus. It isdved that the
packing of the DNA around the nucleosome is correlated with the global sequence structur
produced predominantly by repetitive elements. Repeats also play a major rotéutiav(for a
review see (Jurka, 1998)). Two groups, Gary Benson (Tandem Repeats Finder version 2.02
(TRF)(Benson, 1999)) and the MAGPIE team using two programs (Calypso (Field, )EPalt&
(Kurtz & Schleiermacher, 1999) submitted repetitive sequence annotations. TR§0(B£999)
locates approximate tandem repeats (i.e., two or more contiguous, approximate copieserha pa
of nucleotides) where the pattern size is unspecified but falls within the raoigelfto 500 bases.
The Calypso program (Field, ) is an evolutionary genomics program. Its primacyién is to find
repetitive regions in DNA and protein sequences that have higher than averagiemmatizs. The
REPuter program (Kurtz & Schleiermacher, 1999) determines repeats of a fexaglected length

in complete genomes.
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3.1.4 Protein homology annotation

Homologies to gene sequences from other organisms can often be used to identify gydiegn-
regions in anonymous genomic sequence. In addition to the location, it is often possible thénfer t
function of the predicted gene based on the function of the homologous gene in the other organism
or of a known structural and functional protein element in the gene. While the tools in the gene
prediction category and the EST/cDNA alignment category are usually inteadidermine the

exact structure of a gene, the protein homology based tools are usually optimized to fiadvedns
parts of the sequence without worrying about the exact gene structure. TradititwsHlyda of

genome annotations has been dominated by the suite of local alignment search toolsSdf BLA
(Altschul et al,, 1990) and more global search tools such as FASTA (Pearson & Lipman, 1988).

Recent reviews in this area include (Agarwal & States, 1998; Marettik, 1999; Pearson, 1995).

In the GASP experiment two groups specializing in functional protein domain or motif
identification in genomic DNA submitted annotations. The Henikoff group found hits to the
BLOCKS+ database (http://blocks.fhcrc.org), a database consisting of cothgeotein motifs
(Henikoff et al, 1999a; Henikoff & Henikoff, 1994a; Henikoff & Henikoff, 1994b). The second
group in this category submitted results from the GeneWise program (Birney, 1989program
searches genomic DNA against a comprehensive HMM-based library (PPdterharet al,,

2000; Sonnhammaeat al,, 1998; Sonnhammaezat al,, 1997)) of protein domains. Both programs look
for conserved regions by searching translated DNA against a representatioitipferaligned
sequences. While in BLOCKS+ the multiple protein alignments consist of sets gbpedaegions
the GeneWise program searches against a gapped alignment. Both methods will tugtanghydi

related sequences.
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3.1.5 EST/cDNA alignment

Computational predictions of gene location and structure go hand in hand with EST/cDNA
sequencing and alignment techniques for building transcript annotations in genomic sequence
Either can be used as a discovery tool, with the other held in reserve for véoifica# researcher
can verify the existence and structure of predicted genes by sequencing the coregpuRNA
molecules and aligning their sequences to the original genomic sequence. Alaynatine can
start with an EST or cDNA sequence and build an alignment to the genomic sequences the¢ha
guided and/or verified by tools from the gene prediction arsenal; for example ilséhgdplice site

locations, and checking for long open reading frames and potential frame shifts.

There are many tools for aligning sequences. While they have generally beealigpddpr

aligning sequences that are evolutionarily related, some are designed for pitications such as
recognizing overlaps among sequencing runs. Aligning EST/cDNA sequences toginalori
genomic sequence also presents a unique set of tradeoffs and issues. In some easpe Ciels
EST/genomic alignments) these tools must model evolutionary changes in the saquenc
Sometimes (e.g. for low quality EST sequences) they need to model errors in the equenc
generated by the sequencing process. For multi-exon genes, they need to model the irtnan regi
as cost-free gaps tied to a model for recognizing splice sites. Severahto@seen developed for
this task: Mott (1997) and Birney and Durbin (1997) describe dynamic programming appsoache
that include models of splice sites and intron gaps. Fleted. (1998) describsim4 a heuristic

tool that performs as well as the dynamic programming approaches and isrgfin@ugh to

support searching of large databases of genomic sequence.

Using cDNA clones and their sequences to build transcript annotations requirestst géri
operations. The tools discussed above align the cDNA sequences to the genomic sequence, but

steps must be taken to filter out clones that are merely paralogs of genes @gtlense and to
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recognize and handle various laboratory artifacts. If the clones represent SfiattBen a likely
annotation can be built by assembling a consistent model from their individual aligamesriger
ESTs or cDNAs might generate several similar alignments, and an autbtoatenust be able to
select the most biologically meaningful variant. While theresam@e gene prediction tools that can
use information about homologies to known genes or ESTs, and most talgesequencing centers
have some automated sanity checking for their database search resultsieghmeresay tools that

automate the production of transcript annotations from cDNA sequences.

3.1.6 Gene function

Gene function predictions are the most difficult annotations to produce and to evaluantCurr
technologies use similarity to proteins (or protein domains) with known function to predic
functional domains in genomic sequence. While some tools use simple sequence aligmuoents

powerful tools have developed significantly more sensitive models.

It quickly became apparent that a consistent and correct assessment of funatictigre as part
of the GASP experiment was not possible due to the incomplete understanding of the protein

products encoded by the 222 genes inAldéregion.

3.2 Evaluating gene predictions

An ideal gene prediction tool would produce annotations that were exactly correct amdyentir
complete. The fact that no existing tool has these characteristics refleatscomplete

understanding of the underlying biology as well as the difficulty to build adequate gendsnode
computer. While no tool is perfect, each tool has particular strengths and weakaedses/
performance evaluation should be in the context of an intended use. For example, resedrohers w

are interested in identifying gene rich regions of a genome for sequencing would be h#ppy w
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tool that successfully recognizes a gene’s approximate location, even if itéctigrdescribed
splice site boundaries. On the other hand, someone trying to predict protein structuoes is m
interested in getting a gene’s structure exactly right than in a tool’'satilipredict every gene in

the genome.

When assessing the accuracy of predictions, each predictionrfadlste of four categories. A true
positive (TP) prediction is one that correctly predicts the presence of adeaduialse positive

(FP) prediction incorrectly predicts the presence of a feature. A true medatN) prediction is
correct in not predicting the presence of a feature when it isn't there. A falsgivegrFN)
prediction fails to predict the existence of a feature that actually exidis.s&nsitivity (Sn) of a
tool is defined as TP/(TP+FN), and can be thought of as a measure of how successful idattool
finding things that are really there. The specificity (Sp) of a tool is definebRI€T P+FP), and can
be thought of as a measure of how careful a tool is about not predicting things that eadig’'t r
there. Burset and Guigo (1996) also use a correlation coefficient and an averagetworr
coefficient. We chose not to use these measures because they depend on predictoegettive
information and we recognize that our evaluation sets were constructed in such lzatvéhettrue
negative information is not trustworthy. These sensitivity and specificéirios are used for
evaluating the submissions in the gene finding, promoter recognition and gene idéatificging
protein homology categories. In the gene finding category they are used for alldéheée base
level, exon level and gene level. In the protein homology category they are used foewessnd

gene level only.

In one of the first reviews of gene prediction accuracy, Fickatt Tung (1992) developed a method
that measured predictors’ ability to correctly recognize coding regions in gers@guence. They
used their method to compare published techniques and concluded that in-frame hexamer counts

were the most accurate measure of a region’s coding potentiakeBamd Guig6 (1996) recognized
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that there are a wide variety of uses for gene predictions and developed meawmluekng base
level, exon level, and gene level specificity and sensitivity--that deser predictor’s suitability for

a particular task.

3.2.1 Base level

The base level score measures whether a predictor is able to correctly lzdoet in the genomic
sequence as being part of some gene. It rewards predictors that get the broad s\aegpseof
correct, even if they don't get the details such as the splice site boundariedyecirect. It
penalizes predictors that miss a significant portion of the coding sequence, vey dfet the
details correct for the genes they do predict. We used the sensitivity and sipgaikeasures

defined above as the measures of success in this category.

3.2.2 Exon level

Exon level scores measure whether a predictor is able to idemtifigs and correctly recognize their
boundaries. Being off by a single base at either end of the exon makes the predictiorcincorre
Since we only considered coding exons in our assessment, the first exon is bracketeddny the s
codon and a 5' splice site, the last exon is bracketed by a 3' splice site and the stop codon, and the
interior exons are bracketed by a pair of splice sites. As measures of suttieisscategory, we

used two statistics in addition to sensitivity and specificity. Tifissed exo(ME) score is a

measure of how frequently a predictor completely failed to identify an exon (no pdmieriap

at all), while thewrong exon(WE) score is a measure of how frequently a predictor identifies an
exon that has no overlap with any exon in the standard sets. The ME score is the percentage of

exons in the standard set for which there were no overlapping exons in the predicted skrhSimi
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the WE score is the percentage of exons in the predicted set for which there were lapmner

exons in the standard set.

3.2.3 Gene level

Gene level sensitivity and specificity measure whether a predictoréstalgiorrectly identify and
assemble all of a gene’s exons. For a prediction to be counted as a true positivehaltofliing
exons must be identified, every intron-exon boundary must be exactly correct, and all btz e
must be included in the proper gene. This is a very strict measure that addressks ability to
perfectly identify a gene. In addition to the sensitivity and specificity messbased on absolute
accuracy, we used thmissed gene@VG) score as a measure of how frequently a predictor
completely missed a gene (a standard gene is considered missed if none of its exareslapped
by a predicted coding gene) and theong genegWG) score as a measure of how frequently a
predictor incorrectly identified a gene (a prediction is considered wrong if nons ex@ns are

overlapped by a gene from the standard set).

3.2.4 Splitand Joined genes

The exon level scores discussed above measure how well a predictor recognizesebgets a
their boundaries exactly correct. The gene level scores measure how well@qredn recognize
exons and assemble them into complete genes. Neither of these scores direstisesaa
predictor’s tendency to incorrectly assemble a set of predicted exons into moressrgienes than
it should. We developed two new measugdit genegSG) andoined gene$JG), which describe
how frequently a predictor incorrectly splits a gene’s exons into multiple genteb@w frequently
a predictor incorrectly assembles multiple genes’ exons into a single genaudgethe coverage of

thestdldata set is so incomplete, we have only included split genes amedjgene scores from the
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comparison wittstd3 A gene from the standard set is considesplit if it overlaps more than one
predicted gene. Similarly, a predicted gene is considgieddif it overlaps more than one gene in
the standard set. The SG measure is defined as the sum of the number of predictedagenes t
overlap each standard gene divided by the number of standard genes that were sghtrlySthne
JG measure is the sum of the number of standard genes that overlap each predicteddethéwi
the number of predicted genes that were joined. A score of 1 is perfect and meansdhtiell

genes from one set overlap exactly one gene from the other set.

3.2.5 Application of these measures to correct answer data sedtl1/std3

We built thestd1dataset in such a way that we believe it is correct in the details of the deatas t
describes, though we know that it only includes a small portion of the genes in the regiostdBhe
data set, on the other hand, is as complete as was possible, but does not have rigorous independent
evidence for all of its annotations. For thelldataset, we believe that the TP count (it was

predicted and it exists in the standard) and FN count (it was not predicted but it does ¢est i
standard) are reliable because of the confidence that we have in the correctiesgretiictions in

the set. On the other hand, we do not believe that the TN count (it was not predicted and it is not in
the standard set) and FP count (it was predicted but is not in the standard set)edile tadcause

they both assume that the standard correctly describes the absence of a featuzknod that

there are genes missing fratdl It follows that we believe that sensitivity is meaningful &id1
because it only depends on TP and FN but that we are less confident about the speaifieity sc

since it depends on TP and FP. A similar logic applies testd8dataset, where our confidence in

the set’'s completeness but not its fine details suggests that the TP and FPagearsable but that

the TN and FN scores are not. This means thastd8 we believe that the specificity measure can

be used to describe a predictor’s performance but that sensitivity is likelyrtoddeading.
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3.3 Evaluation of promoter predictions

We adopted the measures proposed by Fickett and Hatzigeorgiou (1997). They evalkeated t
success of promoter predictions by giving the percentage of correctly iddrtifiescription start
sites versus the false positive rate. A TSS is regarded as identifigarifgram makes one or more
predictions within a certain "likely" region around the annotated site. The falseveasite is

defined as the number of predictions within the "unlikely" regions outside the "liketyions

divided by the total number of bases contained in the unlikely set. As our annotation of the TSS i
only preliminary and not experimentally confirmed, we chose a rather large regkfi0diases
upstream and 50 bases downstream of the annotated TSS as the "likely" region. Téanpstr
region is always taken as the "likely" region, even if it overlaps with gmgoring gene annotation
on the same strand. The "unlikely" region for each gene then consists of the rest efthe g

annotation, from base 51 downstream of the TSS to the end of the final exon.

3.4 Visualization of the annotations

Generating “good” annotations generally requires integrating multiple soaféeformation, such
as the results of various sequence analysis tools plus supporting biological informat
Visualization tools that display sequence annotations in a browsable graphicalfoakmake this
process much more efficient. In this experiment we found that visualization tootsseatial in
order to evaluate the genome annotation submissions. When annotations are displajlgd visua
overall trends become apparent, for example gene-rich vs. gene-poor regionshgemes ¢
predicted by most participants vs. those that were predicted by few. Additionalke dscuss
below, a visualization tool that is capable of displaying annotations at multipdéslev detail

provides a way to examine individual predictions in detail.
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Building genome annotation visualization tools is a daunting task. Many such tools hawe bee
developed, starting with ACeDB (Eeckman & Durbin, 1995; Stein & Thierry-Mieg, 1998%. W
were fortunate in that the Berkeley Drosophila Genome Project has built a #esilie of genome
visualization tools (Helt & al., 1999) that could be extended to display the GASP subnisiVe
adapted the BDGP’s annotated clone display and editing tool, CloneCurator (étaatis1999)
which is based on a genomic visualization toolkit (Helt & al., 1999), to read the annotation

submissions in GFF format and display each team’s predictions in a unique color amanocat

CloneCurator (see Figure 1) displays features on a sequence as colored rectieglares on the
forward strand appear above the axis, while those on the reverse strand appear belasv theex
display can be zoomed and scrolled to view areas of interest in more detail. A cauifigufile

identifies the feature types that are to be displayed, and assigns colors ansl toftseth one. For

example, thestdlandstd3exons appear in yellow and orange close to the central axis.

4. Genome annotation results

The results of an experiment such as GASP are only meaningful if enough groups partiipa
were fortunate to have twelve diverse groups involved and we were verygriatethe speed with
which they were able to submit their predictions. We believe that these twedupgprovide a fair
representation of the state of the art in annotation system technology. We ablebtmissions by
electronic mail and evaluated them using shé¢landstd3data sets as described above. Before
releasing our results at the Intelligent Systems in Molecular Biology cenée in August 1999 in
Heidelberg, Germany, we assembled a team of independent assessors (AstaitnE999a) to
review our techniques and conclusions. As discussed in the introduction, the accuracy of the

various measures discussed below depends heavily on how well our standard sets lvaptuee t

Reeseet al. 11/28/2000 26



set of features in the region. These values should only be considered in the context ahtiaedst

data sets.

A detailed description of the results and the evaluation techniques we used can lse@dtioasugh

the GASP homepage http://www.fruitfly.org/GASH.

4.1.1 Gene finding

Table 3 summarizes the performance of the gene finding tools using the measuned défive.
Three groups submitted multiple submissions. The first group, Fgenes1-3, submited thre
predictions at varying stringency (for details see (Salamov & Solovyev, 2000) the GenelD
program, two submitted versions are presented, version 1 (GenelD v1) being thelorigina
submission and version 2 (GenelD v2) being a newer submission from a corrected vetbsi®n of
original program (for details see (Partal.,, 2000)). The third group with multiple submissions
used three versions of the Genie program: the first a pure statistical appeacie), the second
including EST alignment information (GenieEST) and the third usinggimdtomology information
(GenieESTHOM) (for details see (Reestenl., 2000)). For all other groups from Table 2 only one
submission was evaluated. The following sections discuss the base level, exipanel gene level

performance of these submissions.

4.1.1.1 Base level results

Several gene prediction tools had a sensitivity of greater than 0.95 at the belseTlris suggests
that current technology is able to correctly identify over 95% offdhesophila melanogaster
proteome. A few tools demonstrated a specificity of greater than 0.90 at the beks®idy

infrequently labeling a non-coding base as coding. Generally the tools have a higbigvigg
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than specificity. Two programs, Fgenes2 and GenelD, were designed to be coneabatit their

predictions and do not follow this trend.

4.1.1.2 Exon level results

There was a great deal of variability in the exon level scores. Severalhtadlsensitivity scores
around 0.75, correctly identifying both exon boundaries about 75% of the time. Their spesificitie
were generally much lower (the highest was 0.68), probably a reflection of thiedsfikition of

exon level scores both splice sites had to be predicted correatlp@ssible inaccuracies in te&l3
dataset. The low ME scores (several below 0.05) combined withaitg high sensitivities suggest
that several tools were successful at identifying exons but had trouble finding tieetoexon
boundaries. Programs that incorporate EST alignment information, such as Geni®EST a
HMMGene, had sensitivity scores that were up to 10% better than the other tools. The Bigh W
scores suggest either that the tools are over-predicting or that therenaetbat are missing even

from std3

4.1.1.3 Gene level results

All of the predictors had considerable difficulty correctly assembling coregenhes. The best

tools were able to achieve sensitivities between 0.33 and 0.44, meaning that theyaecire

little over half of the time. This value seems to be very similaDmosophilaand human

sequences, based on a recent analysis dBR@A2region in human (Hubbard, 2000). Even on the
more completstd3dataset, the programs tended to incorrectly predict many genes. The very low
MG score (as low as 4.6%) is reassuring since it suggests that sevesadteable to recognize a
gene, even if they have difficulty figuring out the exact details of its strect@omparing the WG

and MG measures suggests that existing tools tend to predict genes thaedshotore often than
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they miss genes that do exist. Since it is almost certain that there ageres that are missing
from both standard sets, this conclusion must be viewed with some skepticism. Whéleviire

several tools with good SG or JG scores, none of them performed well in both categories.

4.1.2 Promoter prediction

Table 4 shows the performance of the promoter prediction systems, grouped by approath: sear

by-signal, search-by-region, and gene prediction programs.

Gene finding programs that include a prediction of the TSS obtained the best results. Tder num
of false predictions made by the region-based programs is very high (givingath@mspecificity),
and since the signal specific programs only identify one promoter their setysisiviery low. The
high specificity of the gene finders is obviously due to the context information: all giem
predictions within gene predictions are ruled out in advance, and the location of the passible s
codon provides the system with a good initial guess of where to look for a promoter. ThéMEAG
system also uses EST alignments to obtain information on 5' UTRs, which mirroraghihestd

sets were constructed: roughly one third of the putative TSS assignments relyNés ¢bat were
publicly available in GenBank. A closer look at the results reveals thaetiem based programs
have a sensitivity that is comparable to the gene finders and the signal baseahphagt only a

single false positive, showing that both types of tools can be used for different djgpigca

Our data set, and the evaluation based on it, relies on the assumption that the 5' ends of the full
length cDNAs are reasonably close to the transcription start site. Thissitakery hard to draw
strong conclusions from the presented results. Even the most sensitive systéanslentify only
roughly one third of the start sites. This could of course be caused by the fact that timegexis
annotation is only an approximation and some of the true transcription start sites nuaatesl|
further upstream. It also hints at the diversity of promoter regions that mitrengossibilities for
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gene regulation, and at the existing bias towards housekeeping genes in the currsetsiasad

for the training of the models.

4.1.3 Gene identification using protein homology

Gene finding evaluation statistics, such as those described in section 4.1.1, can be used to
summarize the ability of a program to identify complete and accurate gené&usésitn genomic

DNA. In Table 5 we have applied the same evaluation statistics to the homology deeseh

programs GeneWise and BLOCKS+. Because these programs are not optimizedwdldeahct

exon boundary assignments, Table 5 only shows the performance for the base level andetie miss

and wrong genes.

The very low sensitivities at the base level are not surprising, becauseotrams identify only
conserved protein motifs or particular domains and make no effort to predict comehets.g
Specificity, which should be high given that only conserved protein motifs are scoasdpwer
than expected. Detailed studies of these predictions (see (Birney & Durbin, 2000pH&nik
Henikoff, 2000) in this issue) show that most of the false positive predictions wer®hit
transposable elements or to genes that are missing in the standard sets. Bampusg a
database of protein domains or conserved protein motifs. Both databases are largetatideed
to contain at least 50% of the existing protein domains. The high number of MG, 62.7% for
BLOCKS and 69.7% for GeneWise, means that these programs will miss a sighificaber of
Drosophila genes when used to search genomic DNA directly. The WG scores of 12.9% BLOCK
and 14.1% for GeneWise are lower than the gene finding programs discussed in the previous

section.
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4.1.4 Gene identification using EST/cDNA alignments

It is believed that some cDNA information exists for approximately half of threegen the

Drosophila melanogastegenome. This cDNA database (available as the EST dataset at the GASP
website) was used as a basis for the cDNA/EST alignment category. Theénsgnsi 31% for
MAGPIEEST and GrailSimilarity (Table 5) imply that the coding portion of thaikable EST data
currently covers one third of the genome’s coding sequence. The low specificépyisurprising

and suggests that the EST/cDNA alignment problem is not a trivial one. Themydyam that tried

to align complete cDNAs to genomic DNA, MAGPIECDNA, could find complete cDNésdnly

2.4% of the genes. EST alignments also resulted in high numbers of missed genegjrsytges

the EST libraries are biased towards highly expressed genes. The Bgltives suggest that some

genes are missing even fratd3

4.1.5 Selected gene annotations

The summary statistics discussed above only provide a global view of the pngdgictigrams
characteristics. A much better understanding of how the various agpme&ehave can be obtained
by looking at individual gene annotations. Such a detailed examination ahelp identify issues

that are not addressed by current systems.

In the following paragraphs, we will discuss a few interesting examples. Figsinews the color
codes of the participating groups that are used throughout this section. Genes locatetpmothe
each map are transcribed from distal to proximal (with respect to the telomehearhosome arm
2L); those on the bottom are transcribed from proximal to diStllandstd3are the expert
annotations described in Ashburregral (1999b). Just below the axis, you can see the annotations
for the two repeat finding programs. These have no sequence orientation and are tloerigfore

shown on one side. Farther away from the axis, aftét andstd3 we grouped all of thab initio
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gene-finding programs together. Next to the gene finders are the homology-basediansiotat

the bottom and the top of the figure we show the three promoter annotations, but for claritg we di
not include these annotations in the subsequent figures. (On the front page and in the legend of
Figure 1, you can see the full set of annotations of all programs, which are alsoiblectssn the

GASP website.)

Our first example is a “busy” region with twelve complete genes and one pagti@ i a stretch of
only forty kilobases (Figure 2A). This region is located at the 3’ end ofttlieregion from base
2,735,000 to base 2,775,000. Genes exist on both strands and it is striking that in this region the
genes tend to alternate between the forward and the reverse strands. Wezigbiscegion for its
gene density and because it has characteristics that are typical of the tofvtfieegion. Figure

2A vividly demonstrates that all of the gene-finding programs’ predictions gtdyhcorrelated

with the annotated genes frastd1/std3In the past gene finders had often mistakenly predicted a
gene on the non-coding strand opposite of a real gene, leading t@éadie predictions known as
“shadow exons”. Figure 2A makes it clear that gene finders have overcome thismprsbiee

there are almost no shadow exon predictions for any of the gerstd3rAnother characteristic,
captured in the high base level sensitivity and the low missing genes stgtistihat every gene in
thestd3set was predicted by at least a few groups and that most of these predictiomsvitbre

each other. Except for the second and third geB&0740.5, 1(2)35Fon the forward strand
(2,740,000 - 2,745,000), which seem to be single exon genes, all of the genes in this region are
multi-exon genes with between two and eight exons. The exon size varies widely. Thganas
that consist of only two large exons, some that consist of a mix of large and small exonenand s
that are made up exclusively of many small exons. The distribution seems to be anumtr.
Except for the long final intron in the last gene on the reverse streand) ( the region consists

exclusively of short introns.
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Predictions on the reverse strand indicate a possible gene from base 2,741,000 to base 2,745,000.
Most of the gene finders agree on this prediction but neskdtnor std3describes a gene at this
location. This could be a real gene that was missed by the expert annotation pathwiyedaacr
Ashburneret al (1999b). Neither BLOCKS+ nor GeneWise found any homologies in this region,

but we can see from the table in the previous section that many real genes do not have any
homology annotations. Interestingly, this is the only area in the region where twoigdeesf

predicted a possible gene that likely consists of shadow exons.

The fifth gene on the forward stranB$02740.10bases 2,752,500-2,755,000) shows that long
genes with multiple exons are much harder to predict than single exon gene or genes wéh only
few exons. In this region splitting and joining genes does not seem to be a problem. Repeats oc

sparsely and mostly in non-coding regions, predominantly in introns.

In contrast to the "busy" region in Figure 2A, Figure 2B highlights a region of almost sipean
which only one genel¥S01759.1is present in botlstdlandstd3 There are very few false
positive predictions by any group, but there is one case where the “false” predictidiféclognt
programs are located at very similar positions (on the reverse strand ne&@2ita800). This

suggests a real gene that is missing from both standard sets.

Figures 3A-3D depict selected genes that illustrate some interestirlgraies in gene finding.

Figure 3A show theddhand theAdhr genes that occur as gene duplicates. The encoded proteins
have a sequence identity of 33%. The positions of the two introns interrupting the coding regions
are conserved and give additional evidence to tandem duplication. Both genes are undetrtiie c
of the same regulatory promoter, tAdhrgene does not have a transcription start site of its own
and its transcript is always found as part of&dth-Adhr dicistronic mMRNA. Gene duplications

occur very frequently in the Drosophila genome - estimates show that at leasif20Pgenes

occur in gene family duplications. In an additional twisthandAdhr are located within an intron
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of another genegutspreadosp, that is found on the opposite strand (for details see Figure 3B).
Adhis correctly predicted by most of the programs, although one erroneously predicts aoreddit
first exon. Most of the programs also predict the structurldlir correctly; one program misses the
initial exon and shortens the second exon. BadiandAdhr show hits to the protein motifs in
BLOCKS+ as well as alignments to a Pfam protein domain family through Gese\Bbth genes
hit two different Pfam families and the order of these two domains is conserved getiee

structure.

Figure 3B highlights theutspreadosp gene region. This is an example of a gene with
exceptionally long (> 20 kilo base pairs) introns, making it hard for any gene finder dicpthe
entire structure correctly. In addition, there are a number of smaller genagd{imgtheAdhand
Adhrgenes discussed abow@$09219.1r.) andDS07721.Xf.)) within the introns ofoutspread
No current gene finder includes overlapping gene structures in its model; as a corsequme of
the GASP gene finders were able to predictdliéspreadstructure without disruption. This is
clearly a shortcoming of the programs since genes containing other genes araebsieved in
Drosophila(Ashburneret al. report seventeen cases for theéhregion). However, it should be
noted that most of the gene finders predict the 3' enoutdpreadccorrectly and therefore get most
of the coding region right. The region that includes the 5' enoutépreadshows a lot of gene
prediction activity but there isn’t any consistency among the predictions. One progra

(FGenesCCG3) does correctly predict ®09219.1gene.

Figure 3C shows the entire gene structure ofGaealpha 1Dgene. This gene is the most complex
gene in theAdhregion, with more than thirty exons. This is a very good example for studying gene
splitting. Several predictors break the gene up into several genes but soups gnake surprisingly
close predictions. This shows the complex structure that genes can exhibit and thatcewteioh

this complexity has been captured in the state-of-the-art prediction modelsititiissting to note

Reeseet al. 11/28/2000 34



that most of the larger exons are predicted while the shorter exons are n3sséd large complex
gene is a good candidate for alternative splicing, which can ultimbhtetetected only by extensive

cDNA sequencing.

Figure 3D shows the triple duplication of tiagf gene {dgfl, idgf2, and idgf3 on the forward
strand. Two programs mistakenly join the first two genes into a single gertbgaithers correctly

predict all three genes.

5. Discussion

The goal of the GASP experiment was to review and assess the$the art in genome annotation
tools. We believe that the noncompetitive framework and the community’s enthasiast
participation helped us achieve that goal. By providing all of the participants with a
unprecedented set &% melanogastetraining data and using unreleased information about the
region as our gold standard, we were able to establish the level playing fieldadatitrpossible to
compare the performance of the various techniques. The large size/ditlo®ntig and the
diversity of its gene structures provided us with an opportunity to compare the céipatafithe
annotation tools in a setting that models the genome wide annotations currently bemgtatt.
However, the lack of a completely correct standard set means that our résultd enly be

considered in the context of tistd1andstd3data sets.

5.1 Assessing the results

The most difficult part of the assessment was developing a benkHorahe predicted annotations.
By dividing the predictions into different classes and developing class-spewtirics that were

based on the best available standards, we feel that we were able to make a fokanaigation of

Reeseet al. 11/28/2000 35



the submissions. While most of the information that was used to evaluate the submigssons
unreleased, some cDNA sequences from the region were in the public databases. Asisgque
projects move forward, it will become increasingly difficult for future exp@nts to find similarly
unexplored regions. This makes it very different from the CASP protein structedécgion
contests, which can use the 3-dimensional structure of a novel target proteinthkbdwvn to the

predictors.

As discussed in the introduction, the lack of an absolutely corrantisird against which to evaluate
the various predictions is a troubling issue. While we believe that the standarsLigitiently
represent the true nature of the region and that conclusions based on them are iniérestistdoe
remembered that the various results can only be evaluated in the context of ttwrspléte data
sets. This also makes GASP more difficult and less clear cut than CASP, thleé3edimensional

protein structure is experimental solved at least to some degree of resolution.

It should also be noted that the gene finding tools with the highest specificity haeakdgal in
common with GENSCAN, the gene prediction tool used in the development stdBdataset.
This suggests thatd3s origins might have led to a bias favoring GENSCAN-like predictors.
Becausestd1was exclusively created using full-length cDNA alignments, this set nlightiased

towards highly expressed genes, because the cDNA libraries were not normalized.

5.2 Progress in genome wide annotation

The rapid release of completed genomes, including the imminent releaselfob@phila
melanogasteand human genomes, has driven significant developments in genome annotation and
gene finding tools. Problems that have plagued gene finding programs, such as pretuntiony s

exons, restricting predictions to a single strand, recognizing repeats, andtalyciaentifying
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splice sites have been overcome by the current state of the art. In this sectidiscugs some of

the remaining issues in genome annotation that the GASP experiment highlighted.

Successful gene prediction programs use complex models that integrate indorfnan statistical
features that are driven by the 3-dimensional protein-DNA/RNA interactibmsy make integrated
predictions on both strands and have been tuned to predict all the genes in gene rich regions and
avoid over-predicting genes in gene poor regions (Figure 2A and 2B). While most of thampsogr
identify almost all the existing genes (as evidenced by the sensitivity asglngigene statistics)
there is significant variation in their ability to accurately predictgse gene structures (see the
specificity statistics, particularly at the exon level). If any globafmenance conclusion can be
drawn it is that the probabilistic gene finders (mostly HMM based) seem to bengltable. The
integration of EST/cDNA sequence information into #ieinitio gene finders (see HMMGene,
GenieEST, and GRAIL (Figures 2B-2F)) significantly improves gene prexdtistiparticularly the
recognition of intron-exon boundaries. Some groups submitted multiple annotationsAaftthe
region using programs that were tuned for different tasks. The suite of Fgenearmsogiiows very
nicely the results of such a 3-part submission. The first Fgenes submission €aGeEng version
adjusted to weight sensitivity and specificity equally. The second submissigen@s?2) is very
conservative and only annotates high-scoring genes. This results in a highcstyeuifi a low
sensitivity. The third submission (FGenes3) tries to maximize sensiaividyavoid missing any
genes, at the cost of a loss in specificity. These differently twagidnts may be useful for different

types of tasks.

A comparison (data not shown) to a gene finding system that was trained on human data showed

that it did not perform as well as the programs that were trainedrosophiladata.

None of the gene predictors screened for transposable elements, which hawral®structure.
As described in Ashburnat al. (1999b), theAdhregion has seventeen transposable element
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sequences. Eliminating transposons from the predictions or adding them to the starslanaliebt
have reduced the false positive counts, raising the specificity and loweringEand/WG scores.
While this accounts for a portion of the high false positive scores we believéhtrat may also be
additional genes in this region not annotatedtishd Future biological experiments (Rubin, 2000) to
identify and sequence the predicted genes that were not includggd3dshould improve the

completeness and accuracy of the final annotations.

There were fewer submissions of homology-based annotations than thabertitio gene finders
and their results were significantly affected by their false posititestaA significant portion of
those false positives were matches to transposable elements, some appeaatichies to pseudo-
genes, and others are likely to be real but as yet un-annotated genes. The homoldgy-base
approaches seem to be the most promising technique for inferring functions for newlgt@dedi

genes.

Even using EST/cDNA alignments to predict gene structures is natrgde as expected. Paralogs,
low sequence quality of mMRNAs, and the difficulty of cloning infrequently expressed/AsRhake
this method of gene finding more complex than believed and it is difficult to guarantee
completeness with this method. Normalized cDNA libraries and other more soptestic
technologies to purify genes with low expression levels, along with improved aligreme

annotation technologies, should improve predictions based on EST/cDNA alignments.

5.3 Lessons for the Future

In order to fully assess the submitted annotations, the “correct answer” must lzevedp©Only
extensive full-length cDNA sequencing can accomplish this. A possible approach waiald be
design primers from predicted exons/genes in the genomic sequence and then use hghridizat
technologies to fish out the corresponding cDNA from cDNA libraries. For promotergiieat,
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another way to improve the “correct answer” is to make genome-to-genomengligs with the
DNA of related species (e.dC. BriggsaeversusC. elegansD. melanogasteversusD. virilis).
More detailed guidelines, including how to handle ambiguous features such as pseudogenes and

transposons, will make the results of future experiments even more useful.

A successful system to identify all genes in a genome should consist of a combinagiomdfo
gene finding, EST/cDNA alignments, protein homology methods, promoter recognition amd repe
finding. All of the various technologies have advantages and disadvantages and arteditoma

method for integrating their predictions seems ideal.

Beyond the identification of gene structure is the determination of gene functions.oMbst
existing prototypes of such systems are based on sequence homologies. Whila gusdsstarting
point it is definitely not sufficient. The state of the art for predicting function iotein sequences
uses the protein’s three-dimensional structure, but the difficulty of accunatedicting three-
dimensional structure from primary sequences makes applying these techniquegteteom
genomes problematic. The new field of structural genomics will hopefully give moswers in

these areas.

Another approach to function classification is the analysis of ggpeession data. Improvements in
transcription start site annotations, along with correlation in expression prafiieald be very

helpful in identifying regulatory regions.

6. Conclusions

The GASP experiment succeeded in providing an objective assessment of curreatchpprto
gene prediction. The main conclusions from this experiment are that current methode of ge

predictions are tremendously improved and that they are very useful for genomesnatations
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but that high quality annotations also depend on a solid understanding of the organism in question

(e.g.,recognizing and handling transposons).

Experiments like GASP are essential for the continued progress of automatediannoethods.

They provide benchmarks with which new technologies can be evaluated and selected.

The predictions collected in GASP showed that for most of the genes overlapping ipresifobm
different programs existed. Whether or not a combination of overlapping predictions would do
better than the best performing individual program was not explicitly tested iexpisriment. For
such a test additional experiments such as cDNA library screening and subsequienifill

cDNA sequencing in this selectddihtest bed region would be necessary. These experiments are
currently under way and it would be interesting to perform a second GASP experiment when m

cDNAs have been sequenced.

We believe that existing automated annotation methods are scalable and thanthéeutkist will
occur when the complete sequence ofEmesophila melanogastegenome becomes available.
This experiment will set standards for the accuracy of genome-wide annotation piravéthe

credibility of the annotations done in other regions of the genome.

7. URLs
7.1 Gene finding
HMMGene: http://www.cbs.dtu.dk/services/THMMGene/
GRAIL: http://compbio/ornl.gov/droso
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Fgenes: http://genomic/sanger.ac.uk/gf/gf.shtml

GenelD:

http://www1/imim.es/~rquigo/AnnotationExperiment/index.
html
Genie: http://www.neomorphic.com/genie

7.2 Promoter prediction

MCPromoter: http://www5.informatik.uni-

erlangen.de/HTML/English/Research/Promoter

Corelnspector: http://www.gsf.de/biodv

7.3 Protein homology

BLOCKS+: http://blocks.fhcre.org

http:/blocks.fhcrc.org/blocks-bin/getblock.sh?<block name>

GeneWise: http://www.sanger.ac.uk/Software/Wise2/

7.4 Repeat finders

TRF; http://c3.biomath.mssm.edu/trf.test.html
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Figures
Figure 1 (GASP)
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Figure 2A (busy region)
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Figure 2B (desert)
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Figure 3A (Adh-Adhr)
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Figure 3B (outspread)
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Figure 3C (Ca-alpha 1D)
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Figure3D (idgf)
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Figure legends

Figure 1 (GASP)

This figure is a screen shot from the CloneCurator program (Heras, 1999). It features the
genome annotations of all 12 groups for the 2.9 megaBdbeegion. The main panel shows the
computational annotations on the forward (above axis) and reverse sequence strandaxis¢low
Genes located on the top half of each map are transcribed from distal to proximalésptect to
the telomere of chromosome are 2L); those on the bottom are transcribed from proxinsaato di
Right below the axis are the two repeat finding results displayed, followed byerefeisets from
Ashburneret al. (stdlandstd3, followed by the twelve submissions of gene finding programs,
followed by the two protein homology programs and eventually, farthest away from thelaei
four promoter recognition programs. The left panel gives the color-coded legend footiranr

and the number of predictions made by the programs.
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Program Color Reference in this | Reference
Identifier Genome Research
Issue
TRF seafoam Benson (1999)
Calypso lightblue Field (1999)
stdl yellow Unpublished conservative alignment of
cDNAs
std3 orange Ashburnet al. (1999b)
Grailexp redorange Uberbacher and Mural (1991)
GeneMarkHMM | red Besemer and Borodovsky (1999)
GenelD hotpink Guigo (1992)
FGenesCGG1 pink Solovyeat al(1995)
FGenesCGG2 magenta Solovyehal (1995)
FGenesCGG3 purple Solovyetal(1995)
HMMGene cornflower Krogh (1997)
MAGPIEexon blue Gaasterland (1996)
MAGPIE turquoise Gaasterland (1996)
Genie seagreen Reeskal. (1997)
GenieEST green Kulp (1997)
GenieESTHOM | chartreuse Kulp (1997)
GeneWise red unpublished
BLOCKS pink Henikoff et al. (1999Db)
MAGPIEProm purple unpublished
LMEIMC blue Ohleret al. (1999)
LMESSM darkgreen Ohlezt al. (2000)
GenieProm chartreuse Reese (2000)
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Figure 2A (busy region)

Annotations for the following known genes described in Ashbueted. (1999b) are shown for the

region from 2,735,000 - 2,775,000 (from the left to the right of the map):

crp (partial, rev.)DS02740.4f), DS02740.5f), 1(2)35Fb(f), heix(r), DS02740.8f), DS02740.9

(r), DS02740.1@f), anon-35F&(r), SedX(f), cni (r), fzy(f), cact(r).

Figure 2B (desert)

Annotations for the following known gene described in Ashbuetexl. are shown for the region

from 600,000 - 635,000 (from the left to the right of the map):

DS01759.1r).

Figure 3A (Adh-Adhr)

Annotations for the following known genes described in Ashbueted. are shown for the region

from 1,109,500 - 1,112,500 (forward strand only) (from the left to the right of the map):

Adh, Adhr

Figure 3B (outspread)

Annotations for the following known genes described in Ashbueted. are shown for the region

from 1,090,000 - 1,180,000 (from the left to the right of the map):

outspreador osp(r), Adh(f), Adhr (f), DS09219.Xr), DS07721.Xf).
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Figure 3C (Ca-alpha 1D)

Annotations for the following known gene described in Ashbueterl. are shown for the region

from 2,617,500 - 2,640,000 (forward strand only) (from the left to the right of the map):

Ca-alphalD

Figure 3D (idgf)

Annotations for the following known genes described in Ashbueted. are shown for the region

from 2,894,000 - 2,904,000 (forward strand only) (from the left to the right of the map):

idgf1, idgf2, idgf3
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Tables

Table 1: Participating Groups and associated annotation categories

Program name

Gene
finding

Promo
ter
recogn
ition

EST/c
DNA
Align
ment

Protein
Simila
rity

Repeat

Gene
functio
n

Mural et al.
Oakridge, US

GRAIL

X

Parraet al.
Barcelona, ES

GenelD

Krogh
Copenhagen,
DK

HMMGene

Henikoff et al.
Seattle, US

BLOCKS

Solovyevet al.
Sanger, UK

FGenes

Gaasterlanet
al.
Rockefeller,
us

MAGPIE

Bensoret al.
Mount Sinai,
us

TRF

Werneret al.
Munich,
GER

Corelnspector

Ohleret al.
Nuremberg,
GER

MCPromoter

Birney
Sanger, UK

GeneWise

Reesect al.
Berkeley/Sant
a Cruz, US

Genie

Reeseect al.

11/28/2000
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Table 2: Gene finding submissions

Program Statistic| Promotern EST/cDNA | Protein
name S Alignment | similarity

Mural et al.

Oakridge, US | GRAIL X X

Guigo et al.

Barcelona, ES | GenelD X

Krogh

Copenhagen, | HMMGene X X X

DK

Solovyevet al.

Sanger, UK FGenes X

Gaasterlandet

al.

Rockefeller, MAGPIE X X X

US

Reeseet al.

Berkeley/Sant | Genie X X X X

a Cruz, US

Reeseet al. 11/28/2000 55




Table 3

Fge Fge Fge Gen | Gen [ Gen | Gen | Gen | HMM | MAG | GRA
nes nes nes e e ie ie ie Gen PIE IL
1 2 3 D | ID EST | EST |e exo
vl v2 HOM n
Base
level ;’&1 089 |049 [093 |048 |086 |096 |097 [097 |097 |096 |0.81
;‘33 077 |086 |060 |084 |083 |092 |091 |083 |091 |063 |086
Exon
level ;’&1 065 |044 |0.75 |027 |os8 |0.70 |0.77 |079 |o068 |0.63 |0.42
333 049 |068 |024 |029 |034 |057 |055 |052 |053 |0.41 |o0.41
2"5{%) 105 |455 |56 |544 |211 |81 |48 |32 |48 |121 |243
\Sf\t’('fef%) 316 |17.2 |533 |479 |474 |17.4 |201 |228 |202 |s02 |287
Gene
level ftr(‘ﬂ 030 |009 |037 |002 |026 |040 |0.44 |044 |035 |033 |0.14
;‘33 027 |o18 |0.10 005 |0.10 |0290 |028 |026 |030 |021 |0.12
0,
gﬂtgl(@ 93 |348 |93 |441 |139 |46 |46 |46 |69 |26 |162
0,
Z‘t’(%(”’) 243 |248 |523 |222 |305 |107 |130 |155 |14.9 |550 |23.7
sG 110 |1.10 |211 |1.06 |1.06 [117 |115 |1.16 |1.04 [1.22 |1.23
G 106 |1.09 |1.08 |162 |111 |108 |1.00 |109 |1.12 |1.06 |1.08
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Table 4

System Name Sensitivity Rate of false positive | Rate of predictions in
predictions in region (a) | region (b) (2,570,232
(853,180 bases) bases)

Corelnspector 1(1%) 1/853,180 1/514,046

MCPromoter V1.1| 26 (28.2 %) | 1/2,633 1/2,537

MCPromoter V2.0| 31 (33.6 %) | 1/2,437 1/2,323

GeniePROM 25 (27.1 %) | 1/14,710 1/28,879

GenieESTPROM | 30 (32.6 %) | 1/16,729 1/29,542

MAGPIE 33 (35.8 %) | 1/14,968 1/16,370
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Table 5

BLOCKS GeneWis MAGPIE MAGPIE GRAIL
e cDNA EST Similar
ity
Base sn
level std1 0.04 0.12 D.02 0.B1 0.3]
Sp 080 | 0.82 055  0B2 0.8
std3 ) ) ) ) .81
Gene
MG (%) 4
level stdl 62.7 69.7 05.3 27.9 41.9
0,
WG (%) 12.9 14.1 0.0 443 7.4
std3
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Table legends

Table 1: Participating Groups and associated annotation categories

Table 2: Gene finding submissions

Table 3: Evaluation of gene finding systems. The evaluation is divided in three categdass
level, exon level and Gene level. The different statistical features egpare Sensitivity$n),
Specificity (Sp), Missed ExonME), Wrong Exon WE), Missed GeneNIG), Wrong Gene\(VG),
Split Gene §G) and Joined Genel(). "std1' and "std3' indicate against which standard set the

statistics are reported.

Table 4: Evaluation of promoter prediction systems. We show the sensitivity for ideshtifie
transcription start sites in comparison to the false positive rate for nor-d@éhs and general

gene regions: (a) the "unlikely" region defined as the rest of the gene sta@tingses downstream
from its annotated transcription start site; (b) the general gene region, spammmbalf the

distance to the previous and next annotated genes including the annotated TSS (taken $tdf the

annotation).

Table 5: Evaluation of similarity searching. Base and gene levelsttasi are shown. The base level
is described using Sensitivits () and Specificity §p) and the statistics for the gene level are given

as Missed GeneG) and Wrong GeneW/G).
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