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Abstract

In this paper we address the classification
of 3–D objects that look similar from sev-
eral sights and can only be distinguished from
some certain viewpoints. For this purpose we
combine a statistical appearance-based object
recognition approach with an active viewpoint
selection mechanism.

For appearance-based object recognition lo-
cal features are derived from wavelet multires-
olution analysis. The recognition process is
performed hierarchically in a statistical frame-
work by a maximum likelihood estimation.
Based on this result the active viewpoint se-
lection mechanism chooses one further view
that allows a reliable classification. Hereby
the viewpoint selection mechanism can be
trained unsupervised and represents the space
of possible viewpoints continuously.

Experimental results show that our ap-
proach is well suited for a reliable classifica-
tion of similar looking objects only by one fur-
ther view.

1 Introduction

For recognition of 3–D objects in 2–D gray–
level images there exist two main approaches
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in computer vision: based on the results of
a segmentation process or directly on the ob-
ject’s appearance. Segmentation operations
detect geometric features such as lines or cor-
ners. These features as well as the relations
between them are used for object recognition
[13]. Some authors provide a statistical frame-
work for the geometric features [4, 9]. But all
the segmentation approaches suffer from two
disadvantages: segmentation errors and loss
of information contained in the image caused
by the segmentation.

Appearance–based approaches in contrast
avoid these disadvantages. They use the im-
age data, i.e. the pixel intensities, directly
without a previous segmentation process. The
simplest method is correlation of an image
with an object template. Another method
is the eigenspace approach that was intro-
duced in [6]. Thereby a large number of im-
ages are approximatively encoded by a small
number of basis images, so-called eigenimages.
[11] uses multidimensional receptive field his-
tograms which contain the results of local
filtering. We use the appearance–based ap-
proach of [8] for object recognition: local fea-
tures are derived by multi-resolution-analysis
and are modelled statistically by parametric
density functions. This approach has to be
proven to be robust with respect to changes
in illumination and to noise.

Approaches that use only a single image for
classification and recognition have one disad-
vantage: if the information in the image is



Figure 1: An example for ambiguities between
two objects, here two punches, one with a hor-
izontal stripe at the front, one with vertical
stripes at the front

not well suited to decide for a certain class
and pose, usually an error in recognition oc-
curs or the object is rejected. For example,
looking at the image in the middle of Fig-
ure 1 it is impossible to decide, which of the
punches you see, whether it is the punch with
the horizontal stripe (Fig. 1 left) or the ver-
tical stripes at the front (Fig. 1 right). A
further view on the front of the punch is re-
quired. Therefore we combine our passive
appearance–based approach with an active
viewpoint selection mechanism.

There are several approaches for viewpoint
selection. For example, [7] performs view-
point selection directly on the extracted out-
line of an object by a cluster analysis of the
trained features. [12] uses a statistical mea-
sure - called mutual information - for his ac-
tive object–recognition system. Performing
a statistical classification the most promising
viewpoint can be calculated for the complete
set of objects in a supervised training step in
advance.

Our approach for active viewpoint selec-
tion can be trained unsupervised and can han-
dle continuous viewpoints and pose spaces, in
contrast to [1], where only discrete positions
are possible. We use images of real office ob-
jects, in contrast to our previous work pre-
sented in [2], where we only examined syn-
thetic images.

In the following section we present our sta-
tistical appearance–based object recognition
approach. In section 3 we give an overview of
our active viewpoint selection mechanism. In
section 4 the experimental environment and
the results are presented. We conclude with

a summary of the results and an outlook to
future work in section 5.

2 Appearance–Based Ob-

ject Recognition

The aim of the presented object–recognition
system is the pose estimation and classifica-
tion of a rigid 3–D object from a 2–D gray–
level image. Generally for this task, there
are three degrees of freedom for the rotation
φ = (φx, φy, φz)

T and three for the transla-
tion t = (tx, ty, tz)

T . The transformations can
be split into the internal transformations in-
side the image plane with tint = (tx, ty)

T and
φint = φz and the external transformations
orthogonal to the image plane with text = tz
and φext = (φx, φy)

T . In contrast to the in-
ternal transformations, where the object only
changes its position in the image, for the ex-
ternal transformations the object varies its
appearance. In this work, the objects were
put on a turntable and the camera was fixed.
Therefore the distance of the objects to the
camera is constant, i.e. tz = 0, and we only
have one external rotation φy, i.e. φx = 0.

For the recognition local features are used.
Therefore a grid is laid over the quadratic im-
age f = [fij ] with i, j ∈ {0, 1, ..., N − 1} as
one can see in Figure 2. The distance be-
tween the single grid points is ∆i = ∆j =
rS ∈ IR, with the sampling resolution rS for
the scale S. In the following these grid lo-
cations (i, j) will be summarized as XS =
{xm,S}m=0,...,M−1, xm,S ∈ IR2.

At each grid point xm,s a local feature vec-
tor cS(xm,S) that consists of two components
is derived from the wavelet multiresolution
analysis that is introduced by [5] at the re-
spective scale S. The first component is the
logarithmic coefficient of the scaling–function
at this position, which is the low–pass coeffi-
cient; the second is the logarithmic sum of the
amounts of the respective three coefficients of
the wavelet–function, which are the high-pass
coefficients.

These local wavelet features have three ad-
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Figure 2: Image covered by a grid for feature
extraction, the object grid is moved with same
internal transformation as the object

vantages. First, the feature values at certain
object locations do not change if the object
is translated or rotated in the image plane.
Second, if only one single point in the im-
age changes only one single local feature will
change, in contrast to this, using global fea-
tures the whole feature vector will be modi-
fied. And third, the multiresolution analysis
encourages a hierarchical proceeding that is
used for accelerating the localization process.

To simplify the notation, the index S for
the scale is omitted in the following. A rect-
angular bounding box is manually put around
the object during the training of the object so
that for all external transformations the ob-
ject will be in the bounding box. We assume
that the features cA at the grid locations in-
side this box A ⊂ X belong to our object
model and that the features cX\A at the grid
points outside this box X \ A belong to the
background.

As the object is translated and rotated in
the image plane, as one can see in the right
image of Figure 2, the object grid is moved
with the same internal transformations φint

and tint like the object. The new positions
of the grid points xm

′ can be calculated by
xm

′ = R(φint)xm + tint, with R is the rota-
tion matrix and xm

′ ∈ IR2. Since the image
grid locations and the object grid locations do
not match, the values of the features vectors
at the transformed position xm

′ will be calcu-
lated by a linear interpolation of the nearest
image feature values.

A statistical model is used for object recog-
nition. Hereby the local features c(xm) are

interpreted as random variables. The ran-
domness thereby is, among others, the conse-
quence of noise in the image sampling process
and complex changes in the environment (e.g.
lighting) conditions.

Assuming that the object features cA inside
the bounding box are independent from the
background features cX\A the object model
can be described by the density function
p(cA|B, R, t). It depends on the learned sta-
tistical model parameter set B, the transla-
tion t = tint and the rotation R = R(φz, φy).

Also, we assume that the feature vectors cA

of the object are normally distributed. Fur-
ther, we model only a local stochastical depen-
dency, i.e. a feature vector only depends on
the former feature vector in its row. This is a
reasonable compromise between accuracy and
computational complexity. Let N (c|µ, Σ) de-
note the normal distribution, then µ is the
mean vector with concatenated local feature
mean vectors µm,n, where µm,n is the mean
of the n-th element of the m-th local feature
vector, and Σ is the covariance matrix with
the elements σm,m̄,n, where σm,m̄,n is the co-
variance between the n-th element of the m-th
and the n-th element of the m̄-th local feature
vector. Because of the row dependency Σ is a
tridiagonal matrix, all the other components
of the matrix are equal to zero. So we obtain
for the density function

p(cA|B, R, t) = p(cA|µ, Σ, R, t). (1)

Since the appearance of the object varies
for the external transformation, we model the
elements µm,n of the mean vector µ and the el-
ements σ̃m,m̄,n of the inverse covariance matrix
Σ−1 as functions of the external transforma-
tion: µm,n = µm,n(φy); σ̃m,m̄,n = σ̃m,m̄,n(φy).
Assuming these functions are continuous they
can be rewritten using a set of basis functions
{br}r=0,...,∞ weighted with appropriate coeffi-
cients. We approximate

µm,n =
Lµ−1∑

r=0

um,n,rbr; (2)



with Lµ basis functions and

σ̃m,m̄,n =
Lσ−1∑

r=0

vm,m̄,n,rbr. (3)

with Lσ basis functions.
The Taylor decomposition shows that the

approximation error can be made as small as
possible by choosing Lµ resp. Lσ large enough.
The value of Lµ resp. Lσ is limited mainly by
the size of the training set for estimation. The
model parameter um,n,r, vm,m̄,n,r are estimated
by a maximum likelihood estimation in the
training, for further details see [8].

For the localization of the object in an im-
age a maximum likelihood estimation over all
possible transformation

argmax
(R,t)

p(cA|B, R, t) (4)

is performed.
To speed-up pose estimation, it consists

of four steps and is done hierarchically.
First, on a rough resolution rS0

the function
p(cA|B, R, t) is evaluated for a search grid
covering the complete possible transformation
parameter range. The best g0 transforma-
tion parameters of this global search are im-
proved by a local refinement, implemented by
a Downhill–Simplex algorithm [10]. The best
result is our pose estimation for the resolution
rS0

.
On the finer resolution rS1

, a small, local
search grid is laid around the result of the
rougher resolution rS0

, and again the g1 best
results of this search grid are improved by a
local refinement as before. The best result of
the localization on this resolution rS1

is our
pose estimation. Hereby the value of the den-
sity function p(cA|B, R, t) is a measure how
good the object model fits the image.

For the classification, at first, for each of the
possible K objects the pose is estimated, and
afterwards, the decision is reached for the ob-
ject k with the highest value of the density
function. This corresponds to a maximum
likelihood estimation over all object classes
and all possible poses:

k = argmax
κ

argmax
(R,t)

p(cA� |Bκ, R, t). (5)

("The World")
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action at
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reward qt

st+1

qt+1

Figure 3: Principles of Reinforcement Learn-
ing. A system overview.

This algorithm however has one great dis-
advantage. If two (or more) objects have
the same appearance from a certain view-
point, as exemplified in section 1, they nearly
have the same value of the density function.
Also in this case the object–recognition sys-
tem takes arbitrarily the object class with the
highest value of the density function, although
it is impossible to classify them in this pose
and the classification might be false. There-
fore this appearance-based object recognition
approach is combined with an active view-
point selection mechanism which helps to find
the right viewpoint for a reliable classifica-
tion. This active viewpoint selection mech-
anism will be described in the next section.

3 Viewpoint Selection

The viewpoint selection used for our approach
is based on the principles of the Reinforce-
ment Learning as illustrated in Figure 3 [14].
The classifier observes at time step t a state
st which represents the estimated class k (cf.
eq. (5)) and pose of the object in the real
world, which can be written as s = (k, φy)

T .
Based on this observation the viewpoint se-
lection performs an action at: the relative
movement of the camera around the object
(a ∈ [0; 360)). A reward qt+1 is given for
the action at which expresses the significance
“how good can the object be distinguished?”
of the resulting view. In contrast to the work
in [3] we define the reward as the ratio of the
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Figure 4: Source states (s, s′), executed ac-
tions (a, a′) and resulting expected destina-
tion states (s̄, s̄′). The distance d(s, a, s′, a′)
between the expected destination states is de-
noted as <)(s̄, s̄′) = ϕ.

probabilities of the two best hypothesis

q =

max
κ

max
(Rκ,tκ)

p(cA|Bκ, Rκ, tκ)

max
λ,λ6=κ

max
(Rλ,tλ)

p(cA|Bλ, Rλ, tλ)
(6)

One of the central terms of Reinforcement
Learning is the action–value function Q(s, a)
which describes the quality of performing ac-
tion a if state s was observed. This quality
measure can be written as the expected re-
ward

Q(s, a) = E{qt+1|st = s, at = a}. (7)

The simplest method (known as Monte
Carlo learning [14]) for calculating this ex-
pected reward is to average over all rewards
which were observed for a state–action pair.

For the training of a Reinforcement Learn-
ing system a lot of these action–values Q(s, a)
are collected. Usually some ten- or hundred
thousands of action–values are necessary for a
reliable calculation of the optimal action

aopt = argmax
a

Q(s, a) (8)

for an observed state s.
To avoid this time consuming and mostly

not very accurate learning principle, an ap-
proximation Q̂(s, a) of this action–value func-
tion is introduced which is basically the

weighted average of all previously collected
action–values Q(s′, a′)

Q̂(s, a) =

∑

(s′,a′)
K(d(s, a, s′, a′))Q(s′, a′)

∑

(s′,a′)
K(d(s, a, s′, a′))

, (9)

where K(·) denotes a suitable kernel func-
tion for weighting the distance d(s, a, s′, a′) of
the two state–action pairs (s, a) and (s′, a′).
Small distances — state–action pairs that
are “close” to each other — shall be rated
high, because their stored information can
contribute a lot to the approximation. The
calculation of this distance of two state–action
pairs is done by measuring the distance be-
tween the two expected destination states s̄

and s̄′. For calculating the expected desti-
nation states we currently assume that the
pose estimation of the states are correct and
that the actions affect the environment in an
“optimal” way. For example, in Figure 3 if
the estimated pose of s is 150◦ the action
a = 60◦ results in an expected destination
state of s̄ = 210◦. In the case of bad lo-
calization results, this definition of expected
destination states has to be reconsidered.

We can now define the distance d(s, a, s′, a′)
between the two expected destination states s̄

and s̄′ as the angle between the vectors given
by the states onto the circle around the object
(see Figure 3):

d(s, a, s′, a′) =<)(s̄, s̄′) (10)

with d(s, a, s′, a′) ≤ 180◦.
This distance leads to our approxima-

tion Q̂(s, a) of any action–value (eq. (9))
with the Gaussian kernel function K(x) =
exp (−x2/D2). The kernel parameter D spec-
ifies how local (small D) or global (large D)
the approximation is working. “Local” means,
that faraway states have only a slight influence
on the approximated action–value with the re-
sult of a very detailed approximation. This
is useful if you have collected a lot of state–
action pairs. On the contrary, a “global” ap-
proximation includes data over a wider range
of distances and is suitable, if only a few
action–values are available.



Figure 5: Two stapler that only differ in the
front view, on the left image s1, on the right
image s2

Using our approximation Q̂(s, a) we are
now able to formulate the search for an op-
timal action (cf. eq. (8)) as a numerical opti-
mization problem

aopt = argmax
a

Q̂(s, a) (11)

which can be solved with one of the many
well-known numerical techniques. Currently
we use an Adaptive Random Search [15]
combined with a local simplex for solving
eq. (11).

4 Results

Our data set currently consists of four objects,
shown in the Figures 1 and 5: a punch marked
with a button with a horizontal stripe at the
front (in following called object p1), the same
punch with a button with vertical stripes at
the front (p2), and a stapler with a horizontal
stripe (s1) respectively vertical stripes (s2).
Therefore, reliable classification is only possi-
ble from the front direction, the other direc-
tions show ambiguities.

For our experiments the objects were put
on a turntable and the camera was fixed, so
we have one external rotation φy for the view-
point selection. Besides we have an internal
translation tint, because during the tests the
objects did not exactly stand on the same po-
sition on the turntable as during the training.
Therefore the search space for pose estimation
had three dimensions.

We used Johnston–Wavelets for our
appearance-based object recognition.
Lµ = 10 basis functions were applied
for µm,n and σ̃m,m̄,n was set as constant, i.e.

object rec.rate p1 p2 s1 s2

p1 46% 23 27 0 0
p2 96% 2 48 0 0
s1 70% 0 0 35 15
s2 76% 0 0 11 39

Table 1: Classification results (in percent)
and confusion matrix (absolute numbers) for
the appearance-based approach without view-
point selection

Lσ = 1. The localization was performed on
two scales, as described in section 2: the
roughest had a resolution of rS0

= 8 pixels,
here g0 = 10 maxima were locally refined,
and the finer a resolution of rS1

= 4 pixels,
here g1 = 5 maxima were locally refined.
This choice of the parameter guarantees a
high accuracy of the localization. The image
size was 256 ∗ 256 pixels.

For the training of the object recognition
120 images of each object have been taken
covering the circle around the object. Hereby
two different lighting conditions have been
used. The angle between two images is 3◦ and
therefore an object point maximally moves
four pixels between two images, which corre-
sponds to the finer resolution rS1

= 4.

Afterwards we tested the object recognition
on 50 new images of each object, taken from
randomly selected viewpoints. The localiza-
tion of one object requires about 25 seconds
on a SGI O2 (R10000, 150 MHz), the mean
error for internal translation tint is 1.2 pix-
els and for the external rotation φy is 1.7◦.
For the classification the pose estimation of
all four objects is required, therefore the com-
puting time takes about 100 seconds for an
image. The single results of the classification
and the confusion matrix are shown in table
1.

The overall recognition rate is 72%. As ex-
pected, the object–recognition algorithm con-
fused the two punches as well as the two sta-
pler very often, because three sides of them
have the same appearance. Only between
125◦ and 235◦ it is possible to distinguish



object rec.rate p1 p2 s1 s2

p1 100% 50 0 0 0
p2 100% 0 50 0 0
s1 98% 0 0 49 1
s2 100% 0 0 0 50

Table 2: Classification results (in percent) and
confusion matrix (absolute numbers) for the
appearance-based approach with active view-
point selection

them. Hereby the punch 2 has a good recogni-
tion rate and punch 1 a bad one, because for a
similar appearance the value of density func-
tion of punch 2 is nearly always a little bit
higher as of punch 1 and therefore the clas-
sifier decided for this punch. These results
are compared in the following with the active
viewpoint selection approach.

For the training the function Q(s, a) has
been estimated by performing for each object
30 random movements of the turntable. Be-
ing in state st, i.e. having a class and pose
estimate for the object, a random camera
movement at was chosen. The resulting view
was used to classify the object. As a result,
the reward was returned, which was stored in
Q(st, at). It is worth mentioning that this is a
unsupervised training step. This means also
that the system is not told whether or not a
classification result is correct.

In Figure 6 you see an example for
the action-values and the approximation of
Q̂(s, a) of s2 in state s = (4, 180◦)T . In this
position you see the back of the stapler and
it is impossible to take a reliable decision.
Therefore the reward for the angles around
this position is low and high for a movement
in the area from 125◦ and 235◦, where the but-
ton with the vertical stripes is visible.

For the test of our viewpoint selection ap-
proach the value of the kernel parameter D
has been set to 20. For each object 50 exper-
iments have been performed. The turntable
has been positioned randomly and an image
is taken. Based on the classification and lo-
calization result the decision for the next view
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Figure 6: Collected action-values and ap-
proximation of Q̂(s, a) for s2 in state s =
(4, 180◦)T , it is the backside of stapler 2. For
the approximation the value of the kernel pa-
rameter D has been set to 20.

was made. The next image from the new, cal-
culated viewpoint is taken and used to classify
the object. Thus, only one new viewpoint is
used in this case.

The classification rates for the four objects
using viewpoint selection are shown in table
2. Only one classification failed. The failure
was caused by a wrong localization about 180◦

of s1, and therefore the second viewpoint was
ambiguous. So we got an overall classification
rate of 99.5% compared to a rate of 72% with
a strategy which randomly chooses views.

The computation of one Q̂(s, a) takes about
9 · 10−4 seconds. The optimization algorithm
needs an average of 90 function evaluations of
Q̂(s, a) which results in a total time needed
for one viewpoint selection of 0.08 seconds.

5 Conclusions

In this paper we have presented a frame-
work for appearance-based object recognition
using an active viewpoint selection mecha-
nism. For the recognition local feature derived
from the wavelet multiresolution analysis are
used, a hierarchical process is performed for
accelerating the localization. The statistical
appearance-based approach has been proven
to be robust with respects to noise and to vari-
ations in the lighting conditions.

By combining this approach with an ac-



tive viewpoint selection mechanism the classi-
fication results can be improved from 72% to
nearly 100%, although the objects can only be
distinguished from one direction. Hereby only
one action, i.e. one additional view is required.
The advantages of our active viewpoint se-
lection mechanism are that it can be trained
automatically without user interactions and
that the possible viewpoints are continuous in
space.

Our future work will concentrate on the ac-
celeration of the object recognition approach,
the extension to more external transforma-
tions and the handling of more objects.
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