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ABSTRACT

Prosody is an important factor in the quality of text-to-

speech (TTS) synthesis. Typically, acoustic parameters such
as f0 and duration are the only variables related to prosody

that are used to determine unit selection. Our study explored

adding the explicit use of linguistically and perceptually mo-
tivated prosodic categories in unit selection-based TTS. One

of our goals was to automate the process of prosodically la-

beling our TTS inventory. However, reliability among label-
ers for some ToBI[6] (Tones and Break Indices) categories

was too low[9] for successful training of an automatic prosody

recognizer. We developed a prosody labeling system simpler
and more robust than standard EToBI (English ToBI). This

\ToBI Lite" system was used successfully for automatic la-

beling of the acoustic inventory and in prosodically enriched
unit selection. A formal listening test was conducted to com-

pare subjective quality ratings for several variations of the

AT&T unit selection concatenative TTS system that di�ered
only in their method of prosodic labeling of the inventory or

their use of prosody for unit selection. The use of simple

prosodic categories in unit selection signi�cantly improved
ratings, and automatic prosodic labeling resulted in higher

ratings than manual labeling.

1. INTRODUCTION

The relationship between acoustic properties and perceived
prosody is not yet well understood, but it is nevertheless

critical for natural sounding synthetic speech. Our study ex-

plored the use of perceptually motivated prosodic categories
in unit selection-based TTS.

2. ROBUST ToBI LITE

One of our goals was to automate the process of prosodic

labeling the TTS inventory. However, the reliability among

labelers for some EToBI categories[9] was too low for success-
ful training of an automatic prosody recognizer using the full

EToBI system. Another problem was a sparse data set for

some rarely occurring prosodic events.

Transcriber agreement[9] was high (> 50%) for only two to

four of eight pitch accent types (which mark syllable promi-
nence) and for three of nine edge tone types (which mark

prosodic phrase boundaries). Perceptual judgments of sylla-
ble prominence and phrase boundaries, together with inter-

transcriber reliability results[9], provided guidelines for de-

veloping a prosody labeling system that is simpler, more ro-
bust, and easier to use[11] than standard EToBI.

2.1. Perceptual Prominence and EToBI

Simple scalar ratings by groups of non-expert listeners have

been used by several speech researchers to estimate for vari-

ous languages the relative auditory prominence in continuous
speech of syllables[3][5] and of phrase boundaries[2]. Ratings

were found to be highly consistent among listeners, and cor-

relations with various acoustic parameters related to prosody
were signi�cant.

A small scale perceptual experiment was run in order to

compare listeners' ratings of the perceptual prominence

of syllables and phrase boundaries for the same recorded
speech material that was independently labeled by four ToBI

labelers[9]. The 644-word speech database was recorded from

one female professional speaker reading text representing dif-
ferent prosodic styles. Three adult native speakers of Amer-

ican English served as listeners and independently rated syl-

lable prominence (using a 3-point scale) and phrase bound-
aries (using a binary judgment { presence versus absence of

phrase boundary). Listeners made judgments on the basis

of auditory cues only. They navigated through the speech
�le by means of an interactive waveform display with at-

tached time-aligned label �les containing words and syllable

boundaries, with a blank tier for the listeners to enter their
ratings.

Figure 1 combines results from the current perceptual promi-

nence study with results from the separate ToBI reliability

study[9] that used four di�erent individuals to independently
ToBI label the same speech data. It displays the perceptual

ratings given to syllables that previously had been assigned

ToBI tonal categories. Ratings for each of the three listeners
are plotted individually, along with the group mean.
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Figure 1: Perceptual Prominence Ratings for Pitch Accents

(A) and Percent of Phrase Boundaries Perceived for Edge
Tones (B). The group mean ratings (black bar) and ratings

for individual labelers (L1, L2, L3) are shown.

Panel A shows syllable prominence ratings (on a scale of 0

to 2) received by syllables previously classi�ed according to
the eight di�erent ToBI pitch accents plus the unaccented

case (\0"). The modal perceptual ratings for the four bi-

tonal pitch accents (L+H*, L+!H*, L*+H, and L*+!H) were
higher than the ratings assigned to the other pitch accents.

The prominence ratings for unaccented syllables were much

lower than the ratings for the remaining pitch accent types.
These results correspond well with previous psycholinguistic

experiments on nuclear accent types and prominence[1]. For

purposes of the present TTS experiment, ToBI pitch accents
were clustered into two categories according to their asso-

ciated perceptual prominence: ** for bi-tonals, * for other

accents; \0" was assigned to unaccented syllables.

Panel B displays the percentage of perceived phrase bound-
aries associated with each of the nine previously assigned

ToBI edge tones plus the unaccented case (\0"). It is evi-

dent that only major intonational phrases (marked by both
a phrase accent (H-, !H-, or L-) and a boundary tone (H% or

L%) were perceived reliably by listeners as phrase boundaries

when making a binary choice. Consequently, for the present
TTS experiment, only syllables marked by ToBI boundary

tones were classi�ed as phrase boundaries (%).

3. ToBI LITE RECOGNITION

This ToBI Lite system was used successfully for automatic la-

beling of the acoustic inventory and in prosodically enriched
unit selection.

The automatic labeling algorithm[10] used to label the acous-

tic inventory utilizes a decision-tree based VQ that is de-

signed jointly with a HMM in which a single model state
corresponds to each possible label. In this case, there were

six possible labels (corresponding to the three levels of promi-
nence on phrasal boundaries and on non-boundaries) and the

underlying HMM was thus a fully-connected, 6-state HMM.

3.1. Training

Expert ToBI labelers prosodically transcribed several hours

of a large TTS acoustic inventory spoken by a female profes-
sional speaker[8]. The training database of 860 utterances in-

cluded read text representing di�erent prosodic styles: busi-

ness news, interactive prompts, and short laboratory sen-
tences. The collapsed ToBI labels were used for training.

That is, bi-tonal pitch accents were mapped to ** and other

pitch accents were mapped to *, and only edge tones marking
major phrases were mapped to %.

The input to the recognizer included automatic segmentation

results and acoustic parameterization. Twenty-four linguisti-

cally motivated acoustic features were derived from the wave-
form and segmentation, and extracted at the syllable level.

Some features were binary (e.g. stress, word-�nal, word-

initial, schwa) and others were continuous (e.g. normalized
duration, maximum/average pitch ratio). The desired out-

put was perceptual labels for prominence and phrasing for

each syllable, and thus a feature vector was generated for
each syllable.

Maximum Mutual Information training of the VQ decision

tree was done jointly with training of the HMM using the

iterative method described by Wightman and Ostendorf[10],
resulting a Maximum Likelihood design for the overall label-

ing model.

3.2. Testing

We �rst brie
y describe performance results obtained for a

test corpus. To objectively measure accuracy, the automatic
ToBI Lite labels were compared to collapsed manual EToBI

labels and also to manual perceptual (ToBI Lite) labels. We

then focus on a listening test that compared subjective rat-
ings of speech quality earned by experimental TTS systems

that used di�erently labeled prosodic information explicitly

for unit selection.

A test set of the 42 utterances used for both the ToBI reli-
ability study and for the perceptual prominence study was

held out from the training set. Syllable-level results on the

test set were compared to collapsed manual EToBI labels
and to perceptual ToBI Lite labels.

Compared to collapsed EToBI labels, accuracy for the

extremes of the prominence/pitch accent scale was quite

high: 83.5% of non-accented syllables and 84.9% of ** syl-
lables were correctly recognized. Recognition accuracy for

prominent (either ** or *) versus unaccented syllables was

69.3%, with a false alarm rate of 16.5%. Phrase boundaries



(%) were correctly recognized 93.4% of the time, with a false
alarm rate of 2.0%.

Compared to perceptual ToBI Lite labels, 80.9% of

non-prominent syllables and 84.8% of ** syllables were cor-

rectly recognized. Recognition accuracy for prominent (ei-
ther ** or *) versus unaccented syllables was 76.2% correct,

with a false alarm rate of 19.1%. Phrase boundaries were cor-

rectly recognized 93.0% of the time, with 1.6% false alarms.

4. ToBI LITE and UNIT SELECTION

Unit selection for synthesis is determined by a Viterbi search

for the lowest cost path through a network of possible acous-

tic inventory units. The cost function is de�ned as the sum
of target costs and concatenation costs. Concatenation costs

estimate how smoothly the units in a sequence are perceived

to join together. Target cost estimates the perceptual dis-
tance of a speci�c inventory unit from the desired target.

Units are described by a feature vector, with features such

as duration and f0. For each target unit in the utterance
to be synthesized, appropriate feature values are predicted.

The target cost is calculated as the sum of weighted feature

vector di�erences between the inventory unit and the target
unit. Feature weights are trained during the creation of a

TTS voice to optimize the mapping from feature vector dif-

ferences between units to cepstral distances between units
in the inventory. In the baseline TTS system used for this

experiment, the only features related to prosody were dura-

tion, f0, and syllable stress. These features are prosodically
ambiguous, because there is a one-to-many mapping from

them to prosodic structure.

5. PERCEPTUAL TEST

A formal listening test was conducted to determine whether

or not the expansion of target cost feature vectors to in-
clude features explicitly related to prosodic categories im-

proves perceived TTS quality. The test compared subjec-

tive quality ratings for several variations of an experimental
AT&T unit selection TTS system that di�ered only in their

method of prosodic labeling of the inventory or their use of

prosody for unit selection.

5.1. Methods

Eight experimental TTS conditions were evaluated in

the listening test:

BL (Baseline) TTS used the standard prosody module to

predict prosody from standard punctuated text input,

and did not use prosodic categories in unit selection.
Except for the last TTS system listed below (BATS),

this and the other experimental conditions used the

same 80 minute acoustic inventory for synthesis.

BL+TA (Baseline with text annotated) TTS was
identical to BL except that, instead of automatically

predicted prosody, it used input text that was prosod-

ically annotated to correspond with the ToBI labels
assigned by transcribers to the naturally spoken test

utterances. This was done to ensure more variety in
the target prosody of the test utterances than would be

predicted by TTS from text input alone. If the target

prosody were too limited, there would be less oppor-
tunity to observe di�erences among the experimental

TTS systems. All the remaining experimental TTS

systems also used the same annotated text as input.

ASU (Accented/stressed/unstressed) TTS used three

general prosodic categories of syllable prominence ex-

plicitly in unit selection: accented, stressed but unac-
cented, and unstressed. The presence of syllable accent

was determined from manual ToBI labels.

HTL (Hand ToBI Lite) TTS used manually assigned

ToBI labels collapsed and mapped into the simpler ToBI

Lite format. Three levels of prominence and two cate-
gories for phrase boundary resulted in six possible com-

binations. In this and the other TTS conditions listed

below, prosodic category and syllable stress were inde-
pendent features used for determining target costs.

HTL+L (ToBI Lite plus L*) TTS used an expanded

ToBI Lite model that included the L* pitch accent as
a separate prominence category along with ** and *.

It was separated because the falling pitch and lower f0
range of L* distinguish it acoustically from the other ac-
cents with * perceptual prominence. HTL+L categories

were mapped from manually assigned ToBI labels.

ATL (Auto ToBI-L) TTS used automatically labeled

ToBI Lite categories in unit selection.

ATS (Auto ToBi-Lite and Segmentation) TTS used

automatically labeled ToBI Lite categories in unit selec-

tion and an automatically phonetically segmented and
aligned inventory.

BATS (Big ATS) TTS was like ATS but with an acoustic

inventory �ve times larger (400 minutes). This condi-
tion took advantage of the speed of automatic labeling

to label a much larger database than had been manually

labeled.

Twelve test utterances were synthesized by each combi-

nation of TTS system and each of two methods of speech rep-

resentation, HNM[7] and PSOLA[4]. Two di�erent speech
representations were used for greater generalizability. Half

of the test utterances were interactive telephone service

prompts, and half were sentences from business news arti-
cles. All were less than 10 seconds in duration, and all were

present in the acoustic inventory. Recordings of the test ut-

terances by the same female speaker used for the TTS inven-
tory were included as a reference condition in the listening

test. Stimuli were normalized for level, 40-6500 Hz bandpass

�ltered, and presented over calibrated headphones. There
was a total of 204 test utterances in the listening test.

Listeners and Test Procedures: Forty-three listeners

participated in the one-hour listening test. They were adult



American English speakers with no known speech or hear-
ing de�cits. They were tested in four groups of 10 or 11

listeners; each group was presented a di�erent random or-
der of test utterances. There were 8,772 observations in the

experiment.

5.2. Results and Discussion

As shown in Figure 2, two TTS conditions, ATL and ASU,

were rated signi�cantly higher than the others. The fact that
ATL was signi�cantly better than HTL indicates that auto-

matic ToBI Lite labeling was superior to ToBI Lite mappings

from manual ToBI labeling. ASU's superiority over HTL and
BL+TA indicates that the inclusion within a single feature

set of even simple binary information about accent in addi-

tion to lexical stress led to a signi�cant improvement. There
was no signi�cant increase in ratings when prosodically an-

notated text was used (BL+TA) rather than automatic TTS

assignment (BL) to determine tone placement and type. The
expansion of ToBI Lite to include L* accents as a separate

category (HTL+L) did not improve perceived TTS quality.

Although automatic prosodic labeling improved TTS qual-
ity over manual labeling, the automatic segmentation of ATS

and BATS conditions clearly resulted in signi�cantly poorer

quality. This result was due to very low ratings for one or
two test utterances, rather than to consistently lower scores.

The listening test allowed the problems to be identi�ed and

subsequently remedied.

A repeated measures ANOVA was used to analyze the lis-
tening test data. There was a signi�cant main e�ect of TTS

condition (F(7,294) = 12.147, p < 0:0001). Newman Keuls

tests with � = 0:05 were performed to compare the TTS
conditions.

6. CONCLUSIONS

The explicit inclusion of very simple but robust and per-

ceptually salient prosodic classi�cations in features used for

unit selection signi�cantly improved perceived TTS quality.
Automatic prosodic labeling resulted in signi�cantly higher

opinion scores than manual labeling. This somewhat sur-

prising result probably in part re
ects the greater consis-
tency of automatic recognition techniques. Automation of

prosodic labeling also provides a tremendous practical ad-

vantage through reducing by several orders of magnitude the
time needed to develop a new synthetic voice.
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