Matthias Zobel, Arnd Gebhard, Dietrich Paulus, JoachimZDEnHeinrich Niemann
Robust Facial Feature L ocalization by Coupled Features

appeared in:
Fourth IEEE International Conference on Automatic Face@asture Recognition (FG2000)
Grenoble, France
p. 2-7
2000



Robust Facial Feature L ocalization by Coupled Features

M. Zobel, A. Gebhard, D. Paulus, J. Denzler, H. Niemann

Lehrstuhl fur Mustererkennung (Informatik 5)
Universitat Erlangen—Nurnberg
Martensstr. 3, 91058 Erlangen, Germany
{zobel , gebhar d, paul us, denzl er, ni emann}@ nf or mati k. uni - er| angen. de

the compressed domain was regarded unsuited for image
Abstract analysis, since it suppresses high frequency information
which is crucial for edge detection, lately image process-
In this paper, we consider the problem of robust local- ing and image understanding is also partially done in the
ization of faces and some of their facial features. The taskcompressed domain.
arises e.g. in the medical field of visual analysis of facial In this paper we first describe how facial features can
paresis. We detect faces and facial features by means of apbe easily detected in real time in JPEG encoded image se-
propriate DCT coefficients that we obtain by neatly using quences (Sect. 2). Then two approaches to localizing fa-
the coding capabilities of a JPEG hardware compressor. cial features are described. We start with an anthropometri
Beside an anthropometric localization approach we focus based approach in Sect. 3 with no explicit representation of
on how spatial coupling of the facial features can be used the relations between each of the facial features. A differ-
to improve robustness of the localization. Because the pre-ent, optimization based approach for localization of facia
sented approach is embedded in a completely probabilis-features using spatial dependencies between the features
tic framework, it is not restricted to facial features, itrca  is presented in Sect. 4. A medical application is outlined
be generalized to multipart objects of any kind. Therefore in Sect. 5 and the proposals are validated by experiments
the notion of a "coupled structure” is introduced. Finally, which are described in Sect. 6.
the approach is applied to the problem of localizing facial
features in DCT—coded images and results from our experi- 2, DCT for Facial Feature Detection
ments are shown.
In this section we shortly describe the Discrete Cosinus
Transformation (DCT) and show how it can be used for the
1. Motivation facial feature locating task.
Eq. (1) gives the calculation o8 Forward DCT:
The investigation of human faces by computer vision meth-

ods has become a major field of interest in the last decade P B 10 c L
[10, 8]. Two areas of research can be identified: detection (u,v) = 1 (u)C(v) Z Z fz.y)-
and tracking of human faces, and feature detection in face #=0y=0
images. The latter often depends on the first. Facial fea- COS (22 4+ Dur oS (27 + 1)””7 1)
tures are used for identification, access control, as wétl as 16 16
multi media applications. In particular, new coding and im- 1
issi ici i . — f =
age transmission schemes Fiepend on symbolic mformatlo.n with C(w) = C(v) =4 V3 u,v =20
on the faces to be sent. Facial features are also of interest i 1 else

medical applications as we show in the following.

Modern multi media computers are equipped with spe-  For the localization of faces and facial features two kinds
cial hardware for image compression. Whereas formerly of information are used: on the one hand we uséx@eco-
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image. TheAC coefficientgall other DCT—coefficients con-
taining harmonic components) include information about
the gray value changes (or edge energy) inside a block. At
a certain abstraction the facial features eyes and mouth pro
duce certain horizontal lines into the image. The horizonta
lines are represented by vertical edge energy. An approx-
imation of the vertical edge energy denotedyj, k) inside
block (4, k) is the sum of coefficients (Fig. 1, upper right)
of the first and second column of the DCT block.

Jj 8x 8 Blocks 8x8 DCT-Block(j, k) Fig. 2. Left: Proportions of a human face.
! f DC - Right: Tracked face and facial features mod-
L (Rest AC) eled as A, A; and A3
T . Vertical
B I.BIOCk U k) Energy representation (cf Sect. 2) of the image. The mask with the
Orig. Image © high 0 of . idered h
v g ghest ratio of energy to area is considered to cover the
- a eye. The left eye (regionds) is found with the optimal
- 3 mask from regiond; in the right halves of the stripes 2 and
. Entropy 7] 3. Analogically the mouth (regiosls) is located by means
bCT Quantizer Encoder “g_ of rectangular masks in the stripes 4 and 5.
g Localization results are shown in Sect. 6.
DCT-Based ©
Encoder Table. : Table. : 4. Enhanced Coupled L ocalization
Specific. Specific.

It was shown in the previous section that localization of the
facial features eyes and mouth can be done by means of a
physiologically motivated subdivision of the detectedefac

) ) ) region into five equally spaced stripes. The hypotheses of
Another thing makes DCT representation very interest- 5 face js rejected in a verification step, if, for example, one

ing: it can be calculated on standard PCs in real time by eye could not be located due to differences in position or

means of a JPEG compressor that presently is a cheap har%nergy.

ware component. To obtain the desired DCT coefficients, 14 fix such false rejections the approach of Sect. 2 is im-

one has to reverse the compression procedure (Fig. 1). Theyqueqd. We show that the localization of features that have

steps of the Entropy Encoder and the Quantizer are reversegpatia| relationships to each other can be done by solving

in software and this can be performed in real time on a PC optimization problem. The main point ispeobabilis-

(for details cf. [10]). _ tic model that represents these spatial dependencies. For
In the next two sections we present two different ap- inging the locations of the features, one has to determine

proaches for the facial feature localization problem that i,,se parameters of the model that maximizeahgoste-

both use the described DCT information. riori probability (MAP) of the model conditioned by the

Fig. 1. DCT-Based JPEG—Encoder

L. . ) current data.
3. Locajlzatlon_ of Facial Features Using An- The work which has mostly inspired us, is that of fea-
thropometric Knowledge ture networks in [4]. There, the coupling of certain fea-

tures as well as the composition of higher level geomet-
The first approach for facial feature localization is an ex- ric constraints is used to improve the accuracy of tracking.
tention of the localization method presented by Wang and We focus on the coupling of features by means of a proba-
Chang in [10]. In a first step a compact region with face bilistic model described in Sect. 4.1. In contrast to [4] we
color is found by means of the DC coefficients (for details use a concrete model which is described in a probabilistic
cf. [10]). framework. It will be shown that the probabilistic model is
The potential face region is then divided into 5 stripes strongly connected with the elastic, deformable contour ex
(cf. Fig. 2, left). In the left halves to stripes 2 and 3 the traction process by active contours [6]. In that framework
right eye (region4; in Fig. 2, right) is found. This is done an internal and an external energy exists. Such an elastic
by moving rectangular masks over the vertical edge energycoupling of features by springs was introduced in [2] for fa-



cial feature tracking and later used in [12] in the context of probability density functions. It is worth noting that the-d
deformable templates. scription can be extended to the 3-D case by using 3-D
Our work combines the advantages of these approachesiays. Here, the description is restricted to features Iyiing
simplifying the joint probabilistic data association filte one plane.
(JPDAF) approach of [7] and reducing the whole estimation
process to an energy minimization problem. Our approach
can also be compared with active, elastic contours, where
the contour points are substituted by higher level features
in our application, these features consists of the two eyes
and the mouth (Sect. 4.3). The model parameters them-
selves can be estimated in a training step. In our current
work, this is done by using a labeled training set. For this,
the probabilistic framework is advantageous, becauseeof th
rich theory already available for parameter estimation, an
the possibility of handling uncertainty, given by noisyalat

4.1. Coupled Structure — A Probabilistic Fig. 3. Modeling the spatial relations between
Model facial feature using a coupled structure. The
right side shows a magnification of one ray to
The model that is described in the following, is based on  explain the quantities.
the active rays approach that is successfully used for con-
tour based object tracking [1]. A 2D contour is represented
by different 1D rays, which originate from one reference
point. Instead of interpreting a point on a ray as a candidate4-2. MAP Based Localization
for a contour point, it can be generally seen as the location ) )
of any given feature. So the concept of a contour in the im- e now treat the coupling structuseas a random vector in
age plane, which is represented by a given set of rays, iS]RQ’”Q. Then, a maximum a posteriori estimation for local-
rep'aced by a genera| Concept that we mlup|ed struc- iZing the ObjeCt can be applled Spoken in different WOI’dS,
ture. one has to seek for a parameterset= (g,, ..., 0,, m)"
The position of a certain feature is given byaupledray ~ Which maximizes the posterior distributigris|f) condi-
0, = (\i, »;)T with length); and angle;. The pose ofthe  tioned on the imagg. Using Bayes'’ rule one gets
ray is determined by the angle measured with respect to
a given reference line in the image (usually the horizontal p(slf) = ]M, (4)
line). All coupled rays originate in a common point called p(f)
thecoupling centerm = (m,, m,)” with its image coordi-
natesn, andm,, (see Fig. 3). So the model, i.e. the coupled
structures is defined by

wherep(f|s) denotes the sensor model amd) the prior
of observing a certain configuration of our model. In a given
reference coordinate system we can calcylétg by
T

$= (@ e m) @ p(s) = ple)) - ples) .- pley) -p(m).  (5)

Because of the fact that the locations of the features of . o ] o
the objects under consideration often change slightlykthi  The independence assumption in (5) is valid, since the de-
of a non-rigid motion of a face) and that the detection of fea- P€ndencies between different rays are implicitly given by
tures is distorted by noise, it is reasonable to regard the im the common coupling centem. The joint probability
portant quantities of the model in a probabilistic way. This P(€;) = P(Ai|$i)p(¢:) must be estimated from the data in
can be done by modeling the variations in the concrete val-the model generation process.
ues of the lengtha; and angles; of a ray, by an appro- Now, fo_r a _transf_ormatlori' of the model, for_exam— _
priate probability density function ple, a rotation in the image plane, the corresponding densit

p(7T s) is given by
Po,(Ni =1, 0 = ¢|0;). (3

By this representationitis intended to show explicitly the
generality of the approach. For example, it can be thoughtwith J;—1 being the Jacobian of the transformatidmn®.
of features that have more than one plausible location alongA simple and useful transformation may be a global scaling
a certain ray. So the necessity may arise to use multi-modaloperation, which influences only the lengthof the rayg, .

p(Ts) = |det(Jr-1(s))|p(T"'s) (6)



For the sensor model(f|s) a common method is ap- Assuming a Gaussian distribution of the two paramekers
plied. We express the correspondence of the medeith andg; as mentioned earlier and a uniform distributjgmn )
the sensor datg, i.e. the probability of observing given over the image plane, i.e. no knowledge is used about the
the model, by a Gibbs (or Boltzmann) distribution of the position of the face in the image, we get a distribution of
form ) the form
= —ex E s 7

pifle) “ext p|=FBextf, o)l ") P(Sface) = ZL exp [~ Eint(Stace)] » (12)
with zext being a normalizing constant. The tefax(f, s) nt
can be interpreted as an external energy and needs to b&herezj, is a normalizing constant an:(sface)
specified dependent on the application. It should returi hig 5
values for image data which do not correspond to the model, Z ( i — ¢i)?

and low values for good matches. Eim(stace) = = 902 (13)
Now, the estimation of the unknown parametéican be -
described as an MAP estimation The termEjn; ( sface) €an be interpreted as an internal energy
of the model [9].
s* = argmax IM. (8) Thus this MAP approach can be seen as an energy mini-
s p(f) mization problem, with a terni;,; describing the deforma-

tion ability of the model and a second tefay; (cf. Eq. (7))
given by the image data conditioned on the model.

The external energy needs to be defined for the facial
feature localization task. In Sect. 2 the features eyes and
mouth are localized by means of vertical energies within
DCT blocks. High vertical energies identify the unknown
position of the facial features. Thus, it is natural to uss th
information for the coupled approach, too.

For each rayp; a certain rectangular are;(o;) is de-
Sfined, for which the vertical energiés (4, k) of the DCT
blocks are summed up (cf. Sect. 2). This results in an exter-
nal energy for each ray;

In the following subsection we give concrete examples of
the models in the area of localizing facial features as well
as concrete terms for the pripfs) and the sensor model

p(fls).
4.3. Localizing Facial Features

For locating the facial features eyes and mouth, itis it
to model the spatial dependencies by a coupling structure
stace that consists ofhreecoupling rays with the coupling
center being the tip of the nose. There is one coupling ray
for each eye and one for the mouth (cf. Fig. 3).

Since there is only one reasonable position for each fa- i 1
cial feature in a face, the length and the angle of each ray Fext = (14)

> b(hk)
A

are regarded as Gaussian distributed random variables, i.e (j.k)EAi(e;)

e, (i =1) x N(*pi, *a?), and 99  that has high values for bad matches and low values for
’ ‘ good ones. Finally, this leads to a total external energy of
Do (6 = ¢) ox N(qﬁ’u‘ %2) (10) the coupled structure for the facial features

o; 1 79 1)

Therefore it is sufficient to specify the medfg:; and
variances?o? of this distributions for each rag,. They Eext(f stace) = Z Bext (15)
can be obtained, for example, by segmentation of a sample
set of images taken from frontal views of different persons. With the prior of the model (5) and the sensor model (7)
For the priom(s¢ace) in EQ. (5) itis necessary to specify  defined by the external energy (15) the unknown parameter
explicitly p(g,). For the joint probability density function  setsg, .. can be determined using (8).
p(Ai, ¢;) we write

p(e;) = p(A\i)p(ei)-

Th|s independence assumption was verified by applying the;
x? test to data from 339 face images. Thus, we get for the
prior p(s¢ace) Of our model parameters

5. Application

Facial paresis is the most frequent paralysis which occurs

isolated. At the Department of Otorhino—Larygology of our

university over 100 patients with new appearances of paral-

ysis are observed per year (cf. [11] for an overview).

3 The medical diagnosis of facial paresis bases on obser-
_ , , vations of a physician during the patient performs specific

P(stace) = p(m) E PA0)p(@0)- (1) mimic movements. The diagnoses is generated by means of



a medical index systems [5]. Thus a basic part of the diag-the estimated position of the two eyes and the mouth, and
nosis is performed on subjective human judgments. Thethe true position, obtained by the hand—-segmentation. The
goal of one of our projects is the development of a systembest result using 335 training images is shown in Table 2.
for automatic diagnosis support and rehabilitation suiperv In Table 1 the comparable results are presented obtained by
sion of patients with facial paresis that also judges objec- the method described in Sect. 2, i.e. without coupling.

tively by means of measurements inside the face.

A robust localization and tracking of the face and facial Results from 253 faces (82 faces not found)
features is needed as the patient does not have to wear any K o | min max
artificial markers inside the face and additionally he is al- Lefteye | 1.61| 1.67| 0.00 | 13.86
lowed to move slightly in front of the camera as the mimic Righteye| 2.19| 2.14 | 0.18 | 13.53
exercises last for about one minute. Mouth 2.14| 2.12| 0.18| 16.60

Table 1. Euclidean error for uncoupled localiza-

- tion. For each facial feature mean, standard
deviation, minimal and maximal error in units
of 8x8 blocks is given.

Fig. 4. Eyes clos- Fig. 5. Teeth show-

ing using maximal ing

strength

Results from 335 faces

o o min | max
LeftEye | 1.05| 0.80| 0.00 | 4.47
Right Eye | 1.14 | 0.91 | 0.00 | 5.00
Mouth 1.69| 1.20| 0.00| 6.71

The symptoms of a facial paresis primarily appear in
the regions of the eyes and mouth of the patient’s face. In
Fig. 4-Fig. 5 typical symptoms of facial paresis are shown
for such regions. Fig. 4 shows the eye region of a patient
who tries to close his eyes with maximal power. In the im-
age both extreme asymmetries and functional deficits can be
observed. That applies to the second image too, where the
patient is performing the mimic exercise “Teeth Showing”
(Fig. 5). These regions of interest are then subject to éurth
feature detection; the features are used for an estimatron f
the degree of paralysis [3].

Table 2. Euclidean error for coupled localiza-
tion. For each facial feature mean, standard
deviation, minimal and maximal error in units
of 8x8 blocks is given.

The error between the estimated and the true position of
6. Experimental Results the two eyes and the mouth could be reduced.yblocks
using the coupled approach. In total the mean error is below
For validation of the proposed approach, we performed two blocks.
experiments on a sample set of 335 faces of 20 differ-  Finally, to show the robustness of the approach presented
ent persons. In a first step, the positions of the two eyesin Sect. 4, we prepared some images with artificial hand-
and the mouth in all 335 images were achieved by hand—made distortions. The results can be seen in Fig. 6. In Fig. 6
segmentation. Afterwards, the complete sample set was di{lower right), a result for localization of the facial feads
vided into a training part, which was used to estimate the of one patient is shown.
parameters values of the reference coupled structure, and
into a test part for evaluation. 7. Conclusion
To judge the quality of the results depending on the num-
ber of training examples, the 335 images were divided ran-We have described a method for localizing facial features in
domly into five sets of equal size. These five sets were usedDCT coded images. This method has been improved by an
to perform five experiments with one set for training, and approach of coupling such features in a probabilistic struc
four sets for test, then 10 experiments with two sets for ture. Thus, spatial dependencies between multiple parts of
training and three sets for tests and so on. The whole proceobjects are modeled. This leads to an improvement in the
dure was done twice with different partitions of the five im- localization of the whole object in the case of distortions o
age sets. Thus, a total number of 10050 localizations werewrong measurements and uncertainty in feature computa-
conducted. tion.
The quality of facial feature extraction by the coupled The experiments have shown, that an improvement from
structure was judged by computing the distances betweer2.0 blocks error in the case of facial feature localization



Fig. 6. Results for artificially highly distorted
face images: Left eye not present (upper left).
More than one left eye visible (upper right),
and more than one mouth as well as more than

two eyes (lower left) are visible. Result of a
patient image (lower right). The boxes mark
the estimated position of the facial features.

without modeling the spatial dependencies tbblocks er-

cal realization of the MAP estimation by energy minimiza-

tion.

Additionally, we will apply more sophisticated senso

models to identify the facial features. Finally, the appgtoa
will be demonstrated on a different domain, to show its gen-
erality.
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