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Abstract

In this paper, we consider the problem of robust local-
ization of faces and some of their facial features. The task
arises e.g. in the medical field of visual analysis of facial
paresis. We detect faces and facial features by means of ap-
propriate DCT coefficients that we obtain by neatly using
the coding capabilities of a JPEG hardware compressor.
Beside an anthropometric localization approach we focus
on how spatial coupling of the facial features can be used
to improve robustness of the localization. Because the pre-
sented approach is embedded in a completely probabilis-
tic framework, it is not restricted to facial features, it can
be generalized to multipart objects of any kind. Therefore
the notion of a ”coupled structure” is introduced. Finally,
the approach is applied to the problem of localizing facial
features in DCT–coded images and results from our experi-
ments are shown.

1. Motivation

The investigation of human faces by computer vision meth-
ods has become a major field of interest in the last decade
[10, 8]. Two areas of research can be identified: detection
and tracking of human faces, and feature detection in face
images. The latter often depends on the first. Facial fea-
tures are used for identification, access control, as well asin
multi media applications. In particular, new coding and im-
age transmission schemes depend on symbolic information
on the faces to be sent. Facial features are also of interest in
medical applications as we show in the following.

Modern multi media computers are equipped with spe-
cial hardware for image compression. Whereas formerly
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the compressed domain was regarded unsuited for image
analysis, since it suppresses high frequency information
which is crucial for edge detection, lately image process-
ing and image understanding is also partially done in the
compressed domain.

In this paper we first describe how facial features can
be easily detected in real time in JPEG encoded image se-
quences (Sect. 2). Then two approaches to localizing fa-
cial features are described. We start with an anthropometric
based approach in Sect. 3 with no explicit representation of
the relations between each of the facial features. A differ-
ent, optimization based approach for localization of facial
features using spatial dependencies between the features
is presented in Sect. 4. A medical application is outlined
in Sect. 5 and the proposals are validated by experiments
which are described in Sect. 6.

2. DCT for Facial Feature Detection

In this section we shortly describe the Discrete Cosinus
Transformation (DCT) and show how it can be used for the
facial feature locating task.

Eq. (1) gives the calculation of 8×8 Forward DCT:
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For the localization of faces and facial features two kinds
of information are used: on the one hand we use theDC co-
efficient(the coefficientF (0, 0) with no harmonic compo-
nents) to get the average color value of an 8×8 block. This
can, for example, be used to find face color regions in an



image. TheAC coefficients(all other DCT–coefficients con-
taining harmonic components) include information about
the gray value changes (or edge energy) inside a block. At
a certain abstraction the facial features eyes and mouth pro-
duce certain horizontal lines into the image. The horizontal
lines are represented by vertical edge energy. An approx-
imation of the vertical edge energy denotedbv(j, k) inside
block (j, k) is the sum of coefficients (Fig. 1, upper right)
of the first and second column of the DCT block.
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Fig. 1. DCT–Based JPEG–Encoder

Another thing makes DCT representation very interest-
ing: it can be calculated on standard PCs in real time by
means of a JPEG compressor that presently is a cheap hard-
ware component. To obtain the desired DCT coefficients,
one has to reverse the compression procedure (Fig. 1). The
steps of the Entropy Encoder and the Quantizer are reversed
in software and this can be performed in real time on a PC
(for details cf. [10]).

In the next two sections we present two different ap-
proaches for the facial feature localization problem that
both use the described DCT information.

3. Localization of Facial Features Using An-
thropometric Knowledge

The first approach for facial feature localization is an ex-
tention of the localization method presented by Wang and
Chang in [10]. In a first step a compact region with face
color is found by means of the DC coefficients (for details
cf. [10]).

The potential face region is then divided into 5 stripes
(cf. Fig. 2, left). In the left halves to stripes 2 and 3 the
right eye (regionA1 in Fig. 2, right) is found. This is done
by moving rectangular masks over the vertical edge energy
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Fig. 2. Left: Proportions of a human face.
Right: Tracked face and facial features mod-
eled as A1, A2 and A3

representation (cf Sect. 2) of the image. The mask with the
highest ratio of energy to area is considered to cover the
eye. The left eye (regionA2) is found with the optimal
mask from regionA1 in the right halves of the stripes 2 and
3. Analogically the mouth (regionA3) is located by means
of rectangular masks in the stripes 4 and 5.

Localization results are shown in Sect. 6.

4. Enhanced Coupled Localization

It was shown in the previous section that localization of the
facial features eyes and mouth can be done by means of a
physiologically motivated subdivision of the detected face
region into five equally spaced stripes. The hypotheses of
a face is rejected in a verification step, if, for example, one
eye could not be located due to differences in position or
energy.

To fix such false rejections the approach of Sect. 2 is im-
proved. We show that the localization of features that have
spatial relationships to each other can be done by solving
an optimization problem. The main point is aprobabilis-
tic model that represents these spatial dependencies. For
finding the locations of the features, one has to determine
those parameters of the model that maximize thea poste-
riori probability (MAP) of the model conditioned by the
current data.

The work which has mostly inspired us, is that of fea-
ture networks in [4]. There, the coupling of certain fea-
tures as well as the composition of higher level geomet-
ric constraints is used to improve the accuracy of tracking.
We focus on the coupling of features by means of a proba-
bilistic model described in Sect. 4.1. In contrast to [4] we
use a concrete model which is described in a probabilistic
framework. It will be shown that the probabilistic model is
strongly connected with the elastic, deformable contour ex-
traction process by active contours [6]. In that framework
an internal and an external energy exists. Such an elastic
coupling of features by springs was introduced in [2] for fa-



cial feature tracking and later used in [12] in the context of
deformable templates.

Our work combines the advantages of these approaches,
simplifying the joint probabilistic data association filter
(JPDAF) approach of [7] and reducing the whole estimation
process to an energy minimization problem. Our approach
can also be compared with active, elastic contours, where
the contour points are substituted by higher level features;
in our application, these features consists of the two eyes
and the mouth (Sect. 4.3). The model parameters them-
selves can be estimated in a training step. In our current
work, this is done by using a labeled training set. For this,
the probabilistic framework is advantageous, because of the
rich theory already available for parameter estimation, and
the possibility of handling uncertainty, given by noisy data.

4.1. Coupled Structure – A Probabilistic
Model

The model that is described in the following, is based on
the active rays approach that is successfully used for con-
tour based object tracking [1]. A 2D contour is represented
by different 1D rays, which originate from one reference
point. Instead of interpreting a point on a ray as a candidate
for a contour point, it can be generally seen as the location
of any given feature. So the concept of a contour in the im-
age plane, which is represented by a given set of rays, is
replaced by a general concept that we callcoupled struc-
ture.

The position of a certain feature is given by acoupled ray
̺i = (λi, φi)T with lengthλi and angleφi. The pose of the
ray is determined by the angleφi measured with respect to
a given reference line in the image (usually the horizontal
line). All coupled rays originate in a common point called
thecoupling centerm = (mx, my)T with its image coordi-
natesmx andmy (see Fig. 3). So the model, i.e. the coupled
structures is defined by

s = (̺1, . . . ,̺n,m)T . (2)

Because of the fact that the locations of the features of
the objects under consideration often change slightly (think
of a non-rigid motion of a face) and that the detection of fea-
tures is distorted by noise, it is reasonable to regard the im-
portant quantities of the model in a probabilistic way. This
can be done by modeling the variations in the concrete val-
ues of the lengthsλi and anglesφi of a ray̺i by an appro-
priate probability density function

p̺
i
(λi = l, φi = ϕ|̺i). (3)

By this representation it is intended to show explicitly the
generality of the approach. For example, it can be thought
of features that have more than one plausible location along
a certain ray. So the necessity may arise to use multi-modal

probability density functions. It is worth noting that the de-
scription can be extended to the 3–D case by using 3–D
rays. Here, the description is restricted to features lyingin
one plane.

̺3

m

̺1 ̺2

s face

p̺2
(λ2 = l)

p̺2
(φ2 = ϕ)

m

ϕ

l ̺2

Fig. 3. Modeling the spatial relations between
facial feature using a coupled structure. The
right side shows a magnification of one ray to
explain the quantities.

4.2. MAP Based Localization

We now treat the coupling structures as a random vector in
IR2n+2. Then, a maximum a posteriori estimation for local-
izing the object can be applied. Spoken in different words,
one has to seek for a parameter sets∗ = (̺1, . . . ,̺n,m)T

which maximizes the posterior distributionp(s|f ) condi-
tioned on the imagef . Using Bayes’ rule one gets

p(s|f ) =
p(f |s)p(s)

p(f )
, (4)

wherep(f |s) denotes the sensor model andp(s) the prior
of observing a certain configuration of our model. In a given
reference coordinate system we can calculatep(s) by

p(s) = p(̺1) · p(̺2) · . . . · p(̺n) · p(m). (5)

The independence assumption in (5) is valid, since the de-
pendencies between different rays are implicitly given by
the common coupling centerm . The joint probability
p(̺i) = p(λi|φi)p(φi) must be estimated from the data in
the model generation process.

Now, for a transformationT of the model, for exam-
ple, a rotation in the image plane, the corresponding density
p(T s) is given by

p(T s) = |det(JT −1(s))|p(T −1s) (6)

with JT −1 being the Jacobian of the transformationT −1.
A simple and useful transformation may be a global scaling
operation, which influences only the lengthλi of the ray̺i.



For the sensor modelp(f |s) a common method is ap-
plied. We express the correspondence of the models with
the sensor dataf , i.e. the probability of observingf given
the model, by a Gibbs (or Boltzmann) distribution of the
form

p(f |s) =
1

zext
exp [−Eext(f , s)] (7)

with zext being a normalizing constant. The termEext(f , s)
can be interpreted as an external energy and needs to be
specified dependent on the application. It should return high
values for image data which do not correspond to the model,
and low values for good matches.

Now, the estimation of the unknown parameters∗ can be
described as an MAP estimation

s∗ = argmax
s

p(f |s)p(s)

p(f )
. (8)

In the following subsection we give concrete examples of
the models in the area of localizing facial features as well
as concrete terms for the priorp(s) and the sensor model
p(f |s).

4.3. Localizing Facial Features

For locating the facial features eyes and mouth, it is intuitive
to model the spatial dependencies by a coupling structure
s face that consists ofthreecoupling rays with the coupling
center being the tip of the nose. There is one coupling ray
for each eye and one for the mouth (cf. Fig. 3).

Since there is only one reasonable position for each fa-
cial feature in a face, the length and the angle of each ray
are regarded as Gaussian distributed random variables, i.e.

p̺
i
(λi = l) ∝ N (λµi,

λσ2
i ), and (9)

p̺
i
(φi = ϕ) ∝ N (φµi,

φσ2
i ). (10)

Therefore it is sufficient to specify the meansl,φµi and
variancesl,φσ2

i of this distributions for each ray̺i. They
can be obtained, for example, by segmentation of a sample
set of images taken from frontal views of different persons.

For the priorp(s face) in Eq. (5) it is necessary to specify
explicitly p(̺i). For the joint probability density function
p(λi, φi) we write

p(̺i) = p(λi)p(φi).

This independence assumption was verified by applying the
χ2 test to data from 339 face images. Thus, we get for the
prior p(s face) of our model parameters

p(s face) = p(m)
3

∏

i=1

p(λi)p(φi). (11)

Assuming a Gaussian distribution of the two parametersλi

andφi as mentioned earlier and a uniform distributionp(m)
over the image plane, i.e. no knowledge is used about the
position of the face in the image, we get a distribution of
the form

p(s face) =
1

zint
exp [−Eint(s face)] , (12)

wherezint is a normalizing constant andEint(sface)

Eint(s face) =
3

∑

i=1

(λµi − λi)2

λσ2
i

+
(φµi − φi)2

φσ2
i

. (13)

The termEint(s face) can be interpreted as an internal energy
of the model [9].

Thus this MAP approach can be seen as an energy mini-
mization problem, with a termEint describing the deforma-
tion ability of the model and a second termEext (cf. Eq. (7))
given by the image data conditioned on the model.

The external energy needs to be defined for the facial
feature localization task. In Sect. 2 the features eyes and
mouth are localized by means of vertical energies within
DCT blocks. High vertical energies identify the unknown
position of the facial features. Thus, it is natural to use this
information for the coupled approach, too.

For each ray̺ i a certain rectangular areaAi(̺i) is de-
fined, for which the vertical energiesbv(j, k) of the DCT
blocks are summed up (cf. Sect. 2). This results in an exter-
nal energy for each ray̺i

iEext =
1

∑

(j,k)∈Ai(̺i
)

bv(j, k)
(14)

that has high values for bad matches and low values for
good ones. Finally, this leads to a total external energy of
the coupled structure for the facial features

Eext(f , s face) =

3
∑

i=1

iEext. (15)

With the prior of the model (5) and the sensor model (7)
defined by the external energy (15) the unknown parameter
sets∗

facecan be determined using (8).

5. Application

Facial paresis is the most frequent paralysis which occurs
isolated. At the Department of Otorhino–Larygology of our
university over 100 patients with new appearances of paral-
ysis are observed per year (cf. [11] for an overview).

The medical diagnosis of facial paresis bases on obser-
vations of a physician during the patient performs specific
mimic movements. The diagnoses is generated by means of



a medical index systems [5]. Thus a basic part of the diag-
nosis is performed on subjective human judgments. The
goal of one of our projects is the development of a system
for automatic diagnosis support and rehabilitation supervi-
sion of patients with facial paresis that also judges objec-
tively by means of measurements inside the face.

A robust localization and tracking of the face and facial
features is needed as the patient does not have to wear any
artificial markers inside the face and additionally he is al-
lowed to move slightly in front of the camera as the mimic
exercises last for about one minute.

Fig. 4. Eyes clos-
ing using maximal
strength

Fig. 5. Teeth show-
ing

The symptoms of a facial paresis primarily appear in
the regions of the eyes and mouth of the patient’s face. In
Fig. 4–Fig. 5 typical symptoms of facial paresis are shown
for such regions. Fig. 4 shows the eye region of a patient
who tries to close his eyes with maximal power. In the im-
age both extreme asymmetries and functional deficits can be
observed. That applies to the second image too, where the
patient is performing the mimic exercise “Teeth Showing”
(Fig. 5). These regions of interest are then subject to further
feature detection; the features are used for an estimation for
the degree of paralysis [3].

6. Experimental Results

For validation of the proposed approach, we performed
experiments on a sample set of 335 faces of 20 differ-
ent persons. In a first step, the positions of the two eyes
and the mouth in all 335 images were achieved by hand–
segmentation. Afterwards, the complete sample set was di-
vided into a training part, which was used to estimate the
parameters values of the reference coupled structure, and
into a test part for evaluation.

To judge the quality of the results depending on the num-
ber of training examples, the 335 images were divided ran-
domly into five sets of equal size. These five sets were used
to perform five experiments with one set for training, and
four sets for test, then 10 experiments with two sets for
training and three sets for tests and so on. The whole proce-
dure was done twice with different partitions of the five im-
age sets. Thus, a total number of 10050 localizations were
conducted.

The quality of facial feature extraction by the coupled
structure was judged by computing the distances between

the estimated position of the two eyes and the mouth, and
the true position, obtained by the hand–segmentation. The
best result using 335 training images is shown in Table 2.
In Table 1 the comparable results are presented obtained by
the method described in Sect. 2, i.e. without coupling.

Results from 253 faces (82 faces not found)
µ σ min max

Left eye 1.61 1.67 0.00 13.86
Right eye 2.19 2.14 0.18 13.53
Mouth 2.14 2.12 0.18 16.60

Table 1. Euclidean error for uncoupled localiza-
tion. For each facial feature mean, standard
deviation, minimal and maximal error in units
of 8×8 blocks is given.

Results from 335 faces
µ σ min max

Left Eye 1.05 0.80 0.00 4.47
Right Eye 1.14 0.91 0.00 5.00
Mouth 1.69 1.20 0.00 6.71

Table 2. Euclidean error for coupled localiza-
tion. For each facial feature mean, standard
deviation, minimal and maximal error in units
of 8×8 blocks is given.

The error between the estimated and the true position of
the two eyes and the mouth could be reduced by0.7 blocks
using the coupled approach. In total the mean error is below
two blocks.

Finally, to show the robustness of the approach presented
in Sect. 4, we prepared some images with artificial hand-
made distortions. The results can be seen in Fig. 6. In Fig. 6
(lower right), a result for localization of the facial features
of one patient is shown.

7. Conclusion

We have described a method for localizing facial features in
DCT coded images. This method has been improved by an
approach of coupling such features in a probabilistic struc-
ture. Thus, spatial dependencies between multiple parts of
objects are modeled. This leads to an improvement in the
localization of the whole object in the case of distortions or
wrong measurements and uncertainty in feature computa-
tion.

The experiments have shown, that an improvement from
2.0 blocks error in the case of facial feature localization



Fig. 6. Results for artificially highly distorted
face images: Left eye not present (upper left).
More than one left eye visible (upper right),
and more than one mouth as well as more than
two eyes (lower left) are visible. Result of a
patient image (lower right). The boxes mark
the estimated position of the facial features.

without modeling the spatial dependencies to1.3 blocks er-
ror using the coupling structure can be achieved. The ad-
vantage of the spatial modeling becomes obvious in the case
of missing features (Fig. 6) due to occlusions or noisy data.
The result itself is quite promising just because the features
are simple and one can think of more sophisticated ones.
We expect, that the mean error can be further reduced.

Summarizing the approach we like to emphasize that the
idea of coupling different features of an object is natural and
not new — as mentioned while giving the literature review
in Sect. 4. Nevertheless, a complete formalization of this
idea in a probabilistic framework, as given in the paper, has
not be done until now. The main advantages arise from

1. the abstract description of the coupled structure, which
will include 3–D objects in our future work; the posi-
tion in 3–D can be estimated by integrating the trans-
formationT (cf. Eq. 6) in the parameter estimation
process (8).

2. the possibility to use multi–modal densities for de-
scribing the position of a certain feature,

3. the possibility to define different sensor models for
each feature. In our case, this is demonstrated by the
size of the rectangular areaAi(̺i), which differs be-
tween the two eyes and the mouth.

In our future work, we will focus on the integration of 3–D
information, to handle rotating faces, too. There, we expect
some problems with the computational effort in the practi-

cal realization of the MAP estimation by energy minimiza-
tion. Additionally, we will apply more sophisticated sensor
models to identify the facial features. Finally, the approach
will be demonstrated on a different domain, to show its gen-
erality.
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