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Abstract In this paper we introduce a formalism for optimal cameraapaater
selection for iterative state estimation. We consider méa&ork based on Shan-
non’s information theory and select the camera paramefatsnhaximize the
mutual information, i.e. the information that the captuiethge conveys about
the true state of the system. The technique explicitly takes account the a
priori probability governing the computation of the mutirgformation. Thus, a
sequential decision process can be formed by treating thetanori probability
at the current time step in the decision process as the a praability for the
next time step. The convergence of the decision processeprofben.

We demonstrate the benefits of our approach using an actjeetakcognition
scenario. The results show that the sequential decisiarepsmoutperforms a ran-
dom strategy, both in the sense of recognition rate and nuafly@ews necessary
to return a decision.

1 Introduction

State estimation from noisy image data is one of the key prablin computer vision.
Besides the inherent difficulties with developing a statéresor that returns decent
results in most situation, one important question is whette2can optimize state es-
timation by choosing the right sensor data as input. It id ¥ebwn that the chosen
sensor data has a big influence on the resulting state estim@his general contiguity
has been discussed in detail in dozens of papers in the agedivd vision where the
main goal was to select the right sensor data to solve a grarigm.

In our paper we tackle the problem of optimal sensor datacBefefor state esti-
mation by adjusting the camera parameters. The optimal zapsgameters are found
by minimizing the uncertainty and ambiguity in the staténeation process, given the
sensor data. We will present a formal information theorattric for this informal char-
acterization later on. We do not restrict the approach taiaicay sensor data once. The
approach cycles through an action selection and sensoadatisition stage where the
sensor data decided for depends on the state estimatiortlgp ¢arrent time step. One



important property of the proposed sequential decisiogs® is that its convergence
can be proven and that it is optimal in the sense of the regludti uncertainty and
ambiguity. We will demonstrate our approach in an activechijecognition scenario.

The general problem of optimal sensor data acquisition bag biscussed before.
Examples can be found in the area of active robot localindiy and active object
recognition [1], where a similar metric has been used, baitstguential implementa-
tion is missing. The most related approach, not only frormaghy@ication point of view,
but also from a theoretical point of view is the work of [L1Lh& commonness, differ-
ences and improvements to this work are discussed laterimilaB8ties can also be
found to the work of [2, 10], where a Bayesian approach [2] ek &as an approach us-
ing reinforcement learning [10] has been presented fonmily selecting viewpoints
in active object recognition. Our approach can be seen asaadtically justifiable ex-
tension to this work. Interesting related work from the apé&ontrol theory are [9,
7].

The paper is structured as follows. In the next section weriss the problem
in a formal manner and introduce the metric that is optimidedng one step of the
sequential decision process. In Section 3 we build up theesgal decision process
and give a sketch of the convergence proof which can be fourtiail in [4]. The
active object recognition scenario is described in Sectiohhe experimental results
are summarized in Section 5. The paper concludes with a suyrema an outlook to
future work.

2 Formal Problem Statement
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Figurel. General principle: reduce uncertainty and ambiguity @wace and multiple modes) in
the pdf of the state:: by choosing appropriate information-acquisition actians

The problem and the proposed solution are depicted in Fifjuke sequence of
probability density functions (pdf)(x:), z: € S over the state spacgis shown. The
sequence starts with a uniform distribution, i.e. nothsgriown about the state of the



system. Certain actions; are applied that select the sensor data at timetstEjpe fol-
lowing state estimation process results in a new probgliigtributionsp(x;41) over
the state space. Finally, aftersteps one should end up with a unimodal distribution
with small variance and the mode close to the true state ofyetem. The problem
now is twofold: first how to measure the success of a choséonacie. how close the
pdf is to a unimodal distribution with small variance. Ana¢srd, how do we compute
the action, that brings us closer to such a distribution.

The first question can be answered by using information #teoconcepts. In in-
formation theory thentropy of a pdf

H(x) = 7/ p(x¢) log(p(as))dex,

is defined which measures the amount of uncertainty in theoout of a random ex-
periment. The more unpredictable the outcome the largeentr@py is. It reaches its
maximum for a uniform pdf and its minimum at zero for a deltadtion, i.e. for an
unambiguous outcome.

The answer to the second question can also be found in infamntheory. Assume
the following setting: the system is in statg The state itself cannot be observed but an
observatioro; related with the state by a pgfo;|x:, a;). The pdf is also conditioned
on the actioru,. In information theory the conceptutual information (M) gives us a
hint on which actioru; shall be chosen. The Ml

I(x4; 0fay) / / x1)p(ot|xy, at) log < (Ot|mt’at)> dosdxz; . 1)
(o¢|ar)
T Ot
is the difference between the entroffy{x;) and the conditional entropf (x¢|o:, a;).
It describes how much uncertainty is reduced in the meantdheurue statec, after
the observation. Since we introduced the dependency orctioma, we can influence
the reduction in uncertainty by selecting that actigrnthat maximizes the Ml

a;j = argmax I(x¢;0ilar) . (2

All we need is the likelihood functiop(o:|x:, a:) and the a priori probability(x;).

In [11] a similar approach has been proposed in an activecotgeognition appli-
cation, with the exception that the a priori information bagn assumed to be uniform
in any case. In the next section we extend this approach tgueséal decision process
which convergence can be proven. The important differesitlat we explicitly take
into account the inherently changing prior. The prior ctemgince new sensor data
changes the information available about the true state.

3 Optimal Iterative Sensor Data Selection

From the previous section we know which actiepto select to get the sensor data
o, that best reduces the uncertainty in the state estimatiom Ehe definition of Ml
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Figure2. Sequential decision process of maximum mutual informafMMI) for camera pa-
rameter selection and Bayesian updatg(@f|o, a) based on the observed feature

it is obvious that the reduction will only be reached in theameAs a consequence
there might be observations under actigrthat result in an increase of the uncertainty.
Another, more serious problem is, that there might be at rnttaa one sensor data
acquisition step necessary to resolve all ambiguity. AnrgXa is presented later on in
the experimental section in the area of object recognition.

One way to deal with these problems is to form a sequentiasidecprocess and
to take into account the information acquired so far, whdecsieg the next action.
The sequential decision process consists of two step: tbet®m of the best action
a; based on the maximum of the mutual information (MMI) and thpl&ation of the
Bayes rule to compute the a posterior probability when treeokation has been made.
The posterior is then fed back and used as prior for the nee sitep. This is justified
by the fact that the posterior contains all information aceflito far, i.e. sensor data
fusion is implicitly done during this step. In Figure 2 the alta sequential decision
process is depicted.

By definition the iterative decision process is optimal sirach step is optimal with
respect to the prior of the stadg. Since the posterior is used as prior for the next time
step we assure that the next action is selected considéwnknowledge acquired so
far. More important is the fact that this sequential decigioocess converges, i.e. the
pdf p(x) over the state space will converge towards a certain digtoib. Only a sketch
of the proof is given in the following.

It is known that any initial distribution over the Markov dhawill converge to the
unique stationary distribution, or to the minimum of alltgiaary distributions of the
Markov chain. For a irreducible Markov chain at least onéatary distribution exists.

The key point of the convergence proof is that a irreducibbidv chain can be
defined representing the sequential decision process \j.cbrrolaries give us the
proof of convergence. The first one is that the Kullback—legitlistance between two
distribution on a Markov chain will never increase over tifibe second one is that the
Kullback—Leibler distance between a distribution on a Markhain and a stationary
distribution on a Markov chain decreases over time. If t@eanore than one stationary
distributions the convergence will be against the distidsuwith minimum Kullback—
Leibler distance to all stationary distribution. Sinceleaceducible Markov chain has
at least one stationary distribution we end up with a coreecg toward a certain dis-
tribution over the Markov chain. This distribution is diffic to compute. But by this



result we know that the sequential decision process wilvegge. This convergence is
important for practical considerations, i.e. when to stepwhole process.

In practice this convergence can also be observed. In manyrafxperiments in the
area of active object recognition the distribution conesrtp the optimum distribution
with respect to minimum entropy. Note, that it depends oratteairacy of the likelihood
functions whether the resulting distribution will identthe right state. If the likelihood
function, i.e. the relationship between state and obsernvas erroneous, the sequential
decision process cannot improve state estimation at allth@rone hand this might
be seen as a drawback, since the state estimator is not p@tirbut only the sensor
data provided for state estimation. On the other hand it igyativantage, since any
Bayesian state estimator at hand can be combined with tip@ped sequential decision
process. The more ambiguous the observations are the neostatie estimation will be
improved by our method.

Due to lack of space we have restricted us here to the ddscriph the main prin-
ciples. A more detailed discussion on the underlying infation theoretic concepts as
well as on the evaluation of the differential mutual infotioa by Monte Carlo tech-
nigues can be found in [5]. There the reader will also findrdyominds for the estimation
of the mutual information.

4 Active Object Recognition Using Viewpoint Selection

To apply our proposed method we have chosen an object reémmygsienario. We have
selected a statistical Eigenspace approach which has b&edtced in [2]. Here we
apply it as the state estimator for classification.

The key idea is that the projectien= &, f of an imagef into the Eigenspace of
a class(?, is assumed to be normally distributed, péc|f, 2;) ~ N(u,, Xx). Clas-
sification is then done not by computing the minimum distandeigenspace between
a projected test imagg and the manifold of a certain class [8] but by maximizing the
a posteriori probability};p(c|f, 0,)p(£2,;). As a consequence the prior can be explic-
itly taken into account and one does not get only the best digpotheses but also
a statistical measure for the match. For viewpoint selactie likelihood functions
p(clf, a, £2,;) for each viewpoiniz have to be estimated during training. In our case a
maximum likelihood estimation of the parameters of the Geumsis performed. Due
to lack of space only a coarse summary of the method can be.ditere details are
foundin[2,4,5].

5 Experimentsand Results

Five toy manikins form the data set (cf. Figure 3). There arly gertain views from
which the objects can be distinguished. The main differeicthe objects are the small
items that the manikins carry (band, lamp, quiver, gun, peth

The experimental setup consists of a turntable and a rolmtvath a camera
mounted that can move around the turntable. The actions (¢, 8)” define the po-
sition of the camera on the hemisphere around the objectsHiistical eigenspace
approach is used as classifier. The state the class of the object.



Figure3. The first view is ambiguous with respect to the objects in ienbgo and three. The

second and third view allow for a distinction of objects twwldhree but not to distinguish object
one from four (the objects with and without quiver on the Ba&imilar arguments hold for the
two objects shown in the last three images.

We compared our viewpoint planning with a random strategyfewpoint selec-
tion. Table 1 summarizes the results. The planning basedainmum mutual infor-
mation outperforms a random strategy, in both recognitada and number of views
necessary for classification. In most cases the object caedmgnized within three
views at the latest. Also the maximum a posteriori probgtsifter the decision for one
class is larger in the mean for the viewpoint planning, iatlicg more confidence in the
final decision (for example, object trumpét97 vs. 0.65). In contrast to other view-
point selection approaches, for example based on reinfegntlearning [3], we do not
need to train the optimal sequence. All necessary infoonasi already encoded in the
likelihood functions, which are provided by the Bayesiaassifier.

planned viewpoint control random viewpoint control

. mean nomean max. mean ngmean max. p
object |rec.rate | ..o poster. prob. Wrec. rate  |iews poster. prob.
band 86 1.13 0.98 77 4.28 0.95
lamp 97 1.14 0.98 93 4.94 0.96
quiver 99 1.0§ 0.99 95 3.09 0.97
gun 90 2.19 0.97 80 8.96 0.69
trumpe 99 2.29 0.97 70 8.89 0.65
average 94.2 1.56 0.97 83.0 6.03 0.84

Table 1. Results for viewpoint planning and random viewpoint con(d®0 trials per object):
Recognition rate, mean number of views, and the mean of thxédmoan a posteriori probability
for the right class after the decision.

In Figure 4 (left) the Ml is shown at the beginning of the satfig# decision process,
i.e. the prioris assumed to be uniform. Theandy—axis are the motorsteps for moving
the turntable and the robot arm, to select positions of theeca on the hemisphere. The
motorstep values correspond to a rotation betw@and360 degree for the turntable
and—90 to 90 degree for the robot arm. The Ml is computed by Monte Carlaation
[5]. The maximum in this 2D function in the case of viewpoiakction defines the best



action (viewpoint) to be chosen. In Figure 4 (right) the esponding view of the object
is shown (for one of the objects as an example). This viewtpsiplausible, since the
presence of the quiver as well as the lamp can be determioglasthree of the five
objects can already be distinguished.
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Figure4. Left: Ml in the viewpoint selection example assuming a unifgorior (computed by
Monte Carlo evaluation). The andy are the motorsteps for the turntable and robot arm, respec-
tively. Along thez axis the Ml is plotted. Right: best view decided by the maximum in the MI
(a = (2550, 1500)). As example, object band is shown.

In general the computation time depends linearily on thelremof actions and the
number of classes. In practice, for viewpoint selectios than one second is needed on
a Pentium 11/300 for the computation of the best action udi6g0 samples, 5 classes
and a total of 3360 different actions (positions on the hphese).

6 Conclusion

We have presented a general framework for sensor dataiealéttstate estimation.
The approach has been applied to the optimal selection oéiGaparameters (view-
point) in active object recognition. It is worth noting thié approach is not restricted to
camera parameter selection but can be applied in any situatiere the sensor acqui-
sition process can be influenced. One examples is gaze tantere the pan/tilt/zoom
parameters of a camera are changed [5]. Another example bedghe adaptive change
of illumination to enhance relevant features.

The approach presented in this paper is independent fromstéte estimator at
hand. The only requirement is that the state estimator mrasige likelihood functions
for the observation given the state. The big advantage efftitt is, that any state



estimator can be improved by our method as long as the stittagsr does not return
systematically wrong results.

Compared to previously published work our approach formsqaential decision
process and its convergence can be proven. In contrastrtimregment learning ap-
proaches [3] for active object reconition we do not needdmtthe optimal sequence.
Thus, the typical tradeoff between exploitation and exgtion in reinforcement learn-
ing does not exist for our framework. All relevant infornmatinecessary to decide for
an optimal action is already encoded in the likelihood fioret and the prior. The prior
is computed step by step during the recognition processhanikelihood functions are
assumed to be provided by the state estimator. Experimeotges! that the framework
works in an object recognition scenario with a state of thelassifier and outperforms
a random strategy.

In our current work we extended this approach to state estmaf dynamic sys-
tems and we will modify the algorithms in a way that also contius actions spaces
can be handled.
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