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Abstract

We are interested in spoken language understanding wktkin t
domain of automated telecommunication services. Our cur-
rent methodology involves training statistical languagedeis
from large annotated corpora for recognition and undedstan
Since the transcribing of large speech corpora is a rescorce
suming task, we are motivated to exploit spe&dthout tran-
scriptions. In particular, we learn the semantic assamiatfor

a task exploiting only phone-based sequences from the toftpu

a task-independent ASR-system. In this paper we presemt a ne
multipass algorithm for acquiring salient phone sequefroes
untranscribed speech corpora and evaluate their utilityHe
HMIHY task. Compared to our previous strategy, this aldwnit

is shown to produce improved call-classification resultdlevh
reducing up to 7-fold the number of salient phone-sequences
selected for training.

1. Introduction
The subject of our research is machine understanding oespok
natural language. Our current methodology comprises word-
based training which needs an annotated training corpueeat t
word level. Since the annotating of large amounts of speatz d
is time consuming and expensive, we are exploring the pbssib
ity of an understanding system that acquires lexicon, sysuta
semantics from untranscribed speech. In particular, aat-st
egy makes use of clusters of semantically meaningful phene s
guences, which we cadicoustic morphemesor classifying of
utterances. The representations of the utterances at treeph
level are obtained as an output of a task-independent plezre r
ognizer [6].

We evaluate our algorithms for tHéow May | Help You
(HMIHY) task [2], where an automated dialogue system is de-
signed to infer an appropriate machine action upon the @ervi
requests made over the phone by non-expert users. The teques
are made in form of natural language utterances and elibited
an open-end promptHow May | Help You?".

There are several differences between our methodology and
methods for inferring of words from the subword sequences de
scribed in the literature (see e.g. [1]). First of all, we lexgthe
semantic significanceséliencg of phone sequenceptfrases,
generalizing thus the problem of learning from speech atone
learning from speech and meaning. The utility of semantcs f
learning to understand language has been proven in [3, . Th
second feature incorporated in our strategy allows us tdlean
the output of an imperfect ASR by combining similar phrases
into clusters. Finally, there are no restrictions on theyterof
the extracted sequences.

this corpus represented at the phone level with these phrase
Using a ML-parser distinguishes the presented multipags al
rithm from our previously described two-pass strategy Wwhic
employed a simple filter [4, 5].

The rest of the paper is organized as follows: in the next
section we present a short overview of the data set we are
using in our experiments. Section 3 addresses acoustic mor-
phemes. The iterative procedure for extracting of the stlie
phone phrases from the training corpus is described in @ecti
4. Results of its application are presented in Section 5 tlaad
conclusion is given in Section 6.

2. Database
Our database is a collection of sentences generated from the
recordings of callers responding to the proaT&T. How
may | help you?"[2]. There are 7642 and 1000 sentences in our
training and test sets respectively. Sentences are repeelsat
the phone level and provided with semantic labels drawn from
15 call-types including an open-class denoted “OTHER” ri¢gho
lattices are produced by a task independent phone recagnize
[6]. The best-path ASR-output is denot&8R-phoneFor base-
line comparison purposes we also consider transcriptibtiea
phone level obtained by replacing every word in the wordlleve
annotations by its most likely dictionary pronunciationhi§
data set is callettanscr-phone

3. Acoustic Morphemes
In our methodology we use semantic associations of selected
sequences of phones to classify the whole utterance whose
part they are. To be selected the phone sequepbeagg
f = [pip2 ... pr] must be meaningful and entropy reducing.
Selected phrases are then combined into clustexustic mor-
phemey based on acoustic and semantic similarity measures.
These clusters are then representeHinge State Machines

4. Algorithm

The scheme of the multipass algorithm for extracting salien
phrases is shown in Figure 1. At this point we present a high-
level description of the algorithm with specific details kiped
in the subsequent sections.

On each iteration we examimphrases sequences afvents
which, on their part, either are phones (on the first itergtio
or are created based upon phrases selected on the previous it
eration. Denote by’(0) the initial corpus represented at the
phone level, we then iterate as follows:

Given: corpusC(t — 1) from the previous iteration — set of

sentences represented as finite sequences of events;

In this paper we propose a new algorithm for acquisition  Generator: createF(¢): set of phrases (subsequences of ob-

of salient phone phrases from training data. For this p&pos
we employ an iterative scheme. Every iteration includes ex-
tracting of phone phrases from the training corpus and pgrsi

1Also: Friedrich-Alexander-University Erlangen-Nuremipe

served events) consisting gf n events pruned based on
entropy and salience criteria (Section 4.1);

Stop condition: there are no significant changesAt{t) com-

pared to the previous iteration (Section 4.4);
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Figure 1: Iterative procedure for extracting salient phone

phrases from the training set.

Model: create a stochastic language modé(t) using the se-
lected phrases frorf'(¢) as a lexicon (Section 4.2);

Parsing: parse the original corpus using this model and express
it in terms of the phrases froifi(t), creating the corpus
C(t) (Section 4.3);

Loop variable: define the new set of events as the phrases from
F(t) observed irC(t) plus the 51 phones.

To illustrate this procedure consider phone sequence from
C(0):

ayniyDTuwmeyKeyKaxlehKTKaol

which represents the senterlageed to make a collect calLet

n = 4. Under our experiment conditions the set of phrases se-
lected on the first iteration includes phrases/ D], [m ey K e},
[Kax [ and [T K ao [, and the parser segments the original se-
quence into the sequence frait{1):

ay niy_D T uw mey.K_ey Kax| eh K T.K_aoll,

wherea_b_c denotes a new event representing the phrabed.
On the2™? iteration we acquire new longer phrases:
[K.axl eh K T_.K_ao/l], [n_iy_-D T uw mey.K_eyj and

[ay niy_D T uwl, so that intoC(2) goes the sequence:

ay niy_D_T_uw.meyK_ey Kaxl eh K_T_K_ao.l.

4.1. Phrase generator

We now describe the generator module of the algorithm in more
detail. On each iteration, we prune the set of observed phras
based on three criteria. Given a phrase= [pip2... px] we
compute its:

o utility for within-language modeling (reducing entropy):
In particular, define the mutual information (Ml) ¢fas:

B P(p1...px)
I(f) = log, m

and I"'™(f) = I(f)/length,,,..(f), where
length, .. (f) is the number of phones comprised in
the phrase (k);

o utility for understanding (salience for the task):
In particular, a simple salience measure is:

Prax(f) = max. Pr(c|f).

Also a more general measure based on Kullback-Leibler
distance can be used [3];

o reliability of these characteristics:
The number of occurancgsf of the phraseg in the cor-
pus is a simple correlate of reliability. One more precise
criterion of reliability of the salience measure is given by
the multinomial significance te¢®]. It examines possi-
ble partitions of total of# f observations of phrasgin
different semantic classes. The probabilities of the par-
titions are then estimated under the null-hypotheses of
the statistical independence ¢fandc. If the sum of
probabilities of partitions which are less probable than
the actually observed one is less than some threshold
phrasef is accepted.

4.2. Creatingthelanguage model

On each iteration probability of any phrase aximum-
Likelihoodestimated within the set of phrases consisting of the
same number of eventi(f) = #f/ >, #fi. length(f) =
lengthf;) Vi. On the iteration to follow the phrases of different
lengths which survived pruning and occur in the new represen
tation of the corpus will be represented as events (and thus a
phrases consisting of one event) themselves, so that ttoddir p
abilities will be re-estimated and normalized within a $etyt

all belong to. As we proceed with the iterations and the @sce
converges (only few phrases of more than one events are-gener
ated — see next section) we finally obtain a unigram stoahasti
language model containing all selected phrases.

4.3. Parser

In our experiments we usdtnite State Machine® perform a
ML-parsing of the corpus. Therefore every phrase is pravide
with the scores equal to its mutual information (withoutgtn
normalization). Among all possible competing segmentetio
the one with the highest sum of scores is then chosen. It is not
difficult to see that the parser built this way is equivalentit
ML-parser.

4.4. Remarkson convergence

The reason why the iterative process converges is its oalati
to the EM algorithm with the phone-representations of the se
tences as observed variables and their segmentationsasqshr
as hidden variables. However, since we Viterbi-re-esémat
statistics (based on the best path returned by the ML-parser
it is not the classical version of EM-algorithm but the sdezl
EM* simplification [8]. In fact it takes only a few iterations
before the process converges. Here we say that convergence i
attained if the number of one-event-phrases selected oe som
iteration doesn't exceed 5% of the total number of phrases se
lected on this iteration.

5. Experiments
For our experiments the following strategy turned out tohze t
most successful: we divide iterations in two phases. Dutieg
first phase we reduce the entropy of the corpus: the generator
module only selects the phrases which occur frequentlygmou
in the corpus and possess relatively high values of mutf@t-in
mation (being thus important for the within-language mougl
task). In our experiments we reduced the normalized entropy
from 5.0 to 2.3 bit/phone.

Once the convergence is attained we introduce the salience
thresholdP,.... (f) combined with the multinomial significance
test in the generator module reducing thus the set of thespbra
common in the language down to the phrases which are also
charged with strong semantic associations. This strategs+
tified by the observation that shorter phone sequenceskéunli
shorter word sequences) are of low salience [4].

The thresholds for the generator module were set:
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Figure 2: Length of selected phrases after introducing ef th
salience threshold and multinomial significance test.

e mutual information:I™°"™(f) > 0.5;
e salience:Pp,q..(f) > 0.5;
e number of occurances#f > 5;

e multinomial significance thresholel = 0.05 (see [9] for
details).

We conducted our experiments using 7462 training and
1000 test utterances, each set labeled in two different \ways
described in Section 2. After the classifier [9] has beemédhi
with selected acoustic morphemes we apply it to the test-utte
ances to classify them as one of 15 call-types or reject.

5.1. Results

Our first experiment orASR-phonedetermined the optimal
value for the parametes: the maximal length of phrases in
events considered on every iteration.

Figure 2 shows for different the distributions of salient en-
tropy reducing phrases selected by the algorithm over the nu
ber of phones they consist of. The reason for the differences
in shapes the curves exhibit is that longer phrases tendsto po
sess higher values of salience and mutual information [Bis T
leads to the algorithmical artifacts: maximahyand its multi-
ples, which can be clearly seen in the distributians= 7, 10,
whereas the distribution = 4 exhibits a rather smooth shape
which also seems to be more natural.

In fact the longer phrases tend to have higher values of the
length-normalized Ml too. The dependency between
length,, .. (f) andI™°"™(f) at the end of the entropy reduc-
ing phase of iterative process is plotted in Figure 3.

The number of selected salient phrases after convergence,
the number of iterations and elapsed CPU-time are given for
differentn in the following table:

experiment| iter. selected phrases time
entr. red.| sal.+sign.test
n=2 6 5170 217 15 min
n=4 6 5168 239 20 min
n="7 5 5230 232 35 min
n =10 5 5304 237 55 min

We observe that the iterative process described in Sectias 4
a clearly better time behavior for the smaller valueso€om-
pared to the two-pass algorithm with filter (2P-F) [4] which
produced 1691 salient phrases, the multipass algorithestre
in a 7-fold reduction of salient phone phrases.
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Figure 3: Normalized mutual information of phone phrases at
the end of the first phase of the iterations:= 4.
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Figure 4: Influence of the maximal phrase length on every iter
ation (n) on the call-classification performance on speech.

To assess the impact afon the classifier performance we
employ another evaluation criterion: the ROC-curve whieh r
flects dependency of the True Classification Rate on the False
Rejection Rate, varying the rejection salience-thresfmidhe
classification.

From Figure 4 we see that the choice of parameternot
decisive for the performance of the classifier. We also &hin
the classifier on the union of phrases selected by three gsese
(n = 4,7,10), increased their number up to 363, which yielded
only a 5%-extension of the ROC-curve in the direction of the
lower False Rejection Rates (Figure 5). We conclude thus tha
differences in the sets of selected phrases we obtain ferelift
parametem don't affect the performance. Compared to 2P-F
algorithm [4] we achieved slight improvements of true ratieg
tion rates while the working area slid by 10% in the direction
of the higher False Rejection Rates (Figure 5). Higher FRR ar
explained by the fact that the most false rejections in theF2P
algorithm were caused by not finding in the test utterancgs an
acoustic morphemes at all, and the multipass algorithmoestiu
the number of selected phrases farther by factor seven.

Finally we classified on pruned lattices instead of bestgpath
(reducing thus the FRR, [5]), our new strategy incorporateel
additional improvement which allowed us to use for classifi-
cation all cluster detections made in the pruned latticethef
test utterances, weighted by the probabilities of thedafpiaths
they lie on. In the previous version of the classification an |

2We focus here on the rank one results, in contrast to the ok t
results in previous papers.
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Figure 5: Comparison of classification results for the 2P-F a
gorithm, multipass algorithm witlhk = 4 and disjunction of
multipass algorithms = 4, 7, 10.
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Figure 6: Comparison of classification results on pruned lat
tices for the 2P-F algorithm (only the most probable detesti
considered) and multipass algorithm with= 4.

tices [5] only the detections made on the most probable path
containing any detections at all were considered. The ngo+al
rithm resulted in2-3% better ROC-curves (see Figure 6) with
the 3-fold reduction in the number of selected salient psas
(multinomial significance test was not employed).

With the baseline experiment, we carried out ontthascr-
phone corpus, we proved that the multipass algorithm can
make the phone-based understanding system even outperform
the word-based systems. For this purpose we compared the
ROC-curves obtained otranscr-phoneusing the training al-
gorithm presented above with the ROC-curve on the same cor-
pus but represented at the word level and trained after ass-p
training scheme. In both cases parameter setting 4 was
used. The comparison in Figure 7 shows that automated phone-
based understanding produces results even slightly bbtar
the word-based understanding while requiring much legs-tra
ing expenses.

6. Conclusions
Our experiments show that the problem of training automated
language understanding can be attacked at the phone lavel, s
ing the considerable effort of transcribing large amourts o
training data. We described a new multipass algorithm fer ac
quisition of salient phone phrases from untranscribed dpee
corpora. This algorithm is shown to reduce the number of ex-
tracted phrases by a factor of seven while producing results
similar to our previous algorithm [4, 5]. We also obtained an
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Figure 7: Call-classification performance on text with word

based standard and phone-based multipass strategies.

improvement of the ROC-curves by 2 percentage points with
a 3-fold reduction. The best performance-to-time relati@as
achieved considering sequences of up to four events on every
iteration when splitting the iterative process in two plsadmd
entropy reducing phone phrases and select those of thenh whic
are reliably salient.
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