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Abstract

In this paper we describe our methodology for automaticadete
tion of speaker alcoholization. Our task is restricted tiecdion

of considerable alcoholization (alcohol blood level0.8 per
mille), so that a two-class classification problem is to Heesh

In particular, our attention is focused on the influence &f th
alcohol intoxication on the prosodical aspect of the spdaan
guage. A new kind of signal intervals underlying the exi@act

of prosodic featuresphrasal unit is proposed along with a
method for their localization, which makes it possible toidv
the word segmentation of the speech signal as a precedig sta
of the classification process. We also assess the utilitgiadus
prosodic features computed on such intervals for the tas&-sp
ified above. In our experiments on unseen data, we achieved
classification rates of almost 69% when discriminating leet
alcoholized vs. not alcoholized speech.

1.

Itis a well known fact that diverse qualities of spoken |laage!

can be influenced by factors such as stress experienced by the
speaker [13], his emotions [11], or impairment of his physi-
ological functionality caused by drug or alcohol intoxicat

[10, 8, 3.

There have been several efforts to identify and classify
stress and emotions using spoken language [12, 14, 1]. Both
acoustic features (e.g. cepstral coefficients) and prodedi
tures (e.g. evolution of fundamental frequen@y) have been
used in these experiments. To the knowledge of the authors,
no experiments on automated detection of alcohol intoiinat
via spoken language have been conducted as yet. Nonethe-
less, we deem these problems to be closely related to each
other. Indeed, in [4] we find a definition of stress‘as.a
psycho-physiological state characterized by subjectivairs
dysfunctional physiological activity, and deterioratiof per-
formance”. On the other hand, similar effects can be attributed
to alcohol intoxication as well. Thus, we expect alcohobiat
ication to affect several prosodic characteristics of theken
language.

One possibility to attack this classification problem by
means ofstructural prosodic featuregs to calculate one vec-
tor of prosodic features for each signal interval corresium
to a lexical unit of speech (e.g. word) occurred in the signal
[7, 9]. Thus, a speech recognition engine must be run prior to
the actual classification. This can be a major bottlenecicesi
the word recognition rates of a system drop significantly mhe
speech abnormalities (for instance emotions [13]) aregoites
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In this paper we propose a new approach for the determi-
nation of signal intervals which underly extraction of di&
features. The strategy suggested in section 2 allows ta &lvei
employment of Automated Speech Recognition at the preced-
ing stages of the classification process, by relating theqatic
structural features to the signal intervals localized byangeof
basic prosodic featurege.g. zero-crossing rate, fundamental
frequency and energy) only. We call such intervplgasal
units

Another aspect of a classification problem is the set of the
employed prosodic features itself. In section 3 we presaunt f
different groups of features which we use in our classifocati
experiments. In section 4 an experimental evaluation cdigdir
units as signal intervals underlying the feature extracsiod of
the features themselves is given for the task, in which alcoh
intoxication is to be detected. The conclusion given inisach
summarizes the content of the paper.

2. Phrasal units

When looking for indicators of alcohol intoxication in sjpbe

we assume that these indicators are stable, i.e. they persis
throughout the entire speech signal. This observatiomalfor
three strategies to choose intervgbsogodic unit} for which
prosodic features will be computed:

e micro-intervals (e.g. 10-msec-frames);
e entire signal as a single interval,

e moderate number of macro-intervals (typical duration of
a few seconds).

From the alternatives above only the last one appears tti iesu

a time resolution which is fine enough to produce feature vec-
tors accounting for local changes in the prosodic chariasties

of the utterances (such as regression coefficientBfpbut still
allow their meaningful and reliable estimation.

A typical choice for such intervals are linguistically bese
units such as words or syllables. However, this presupposes
word or syllable recognition as the preceding step, anddn se
tion 1 we have pointed out that this is highly error prone. An
alternative to linguistically motivated units are prosmdiy mo-
tivated units. In our methodology, the corresponding speec
intervals are delimited by silence intervals which, on thei
part, are determined by means of frame-wise calculatea basi
prosodic features such as:

e fundamental frequency (where possible);
e zero-crossing rate;
e energy.
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Figure 1:An example of syntactically justified phrasal units.

We call the prosodic units that are generated this way
phrasal units (PhU)It is remarkable that the boundaries be-
tween phrasal units correlate strongly with syntactic lauies
in the underlying text. Indeed, the detected boundariascie
most of the time (precision 85%) wiflall intonational bound-
arieswhich, according to [2], can take over the role of punctu-
ation marks in spoken language. Picture 1 shows an example
where the speech signal based upon the German text

“Endlich gab der Nordwind den Kampf auf. Nun
warmte die Sonne die Luft mit ihren freundlichen
Strahlen und schon nach wenigen Augenblicken
zog der Wanderer seinen Mantel aus.”

has been split in three phrasal units which correspond tfirdte
sentence and to the main and subordinate clauses of thedsecon
sentence. Also, intervals of silence have been localized.

The average length of phrasal units depends strongly on the
speech tempo in the corpus but typically lies between one and
three seconds.

3. Features for classification

For each prosodic unit we calculate one vector of featunes re
resenting this signal interval. At this place, we introddicer
groups of features which will be evaluated in our experiraent
The first groupPM21 consists of prosodic features which
describe macro-tendencies in the fundamental frequendy an
energy. Calculation of these features is a standard compone
of the prosody modulef the VERBMOBIL-project [9]. In par-
ticular, we consider regression coefficients and positiams
values of maxima and minima for both energy and fundamental
frequency, on- and offset positions and values for fundaaten
frequency, durations of pauses around prosodic units amé so
other features [7]. Altogether, this group contains 21fess.
Durational characteristics of voiced and unvoiced intisrva
within prosodic unit compose the second grdvigll Those
are 11 features, reflecting absolute lengths and numbers of
voiced and unvoiced intervals in the speech signal as well as
their proportions [6].
The only group of non-prosodic features that we use for our
experiments is the set of long-term cepstral coefficieiig24
This group is formed by 12 mel-cepstral coefficients alonthwi
their time differences. To calculate these coefficientsawes-
age the frame-wise computed mel-cepstral coefficients and 1
time differences over the entire signal and assume thaf @ o

coefficients to account for specific properties of the altiabd
speech such as increased nasalization.

Finally, we consider jitter and shimmer, short-term fluetua
tions in energy and fundamental frequency. Most definitiains
jitter and shimmer are rather descriptive than constractivor
instance, in [5, p.79] we read:

“Jitter means (stochastic) small frequency
changes and modulations of a signal...”

Several calculation rules have been proposed for jittesshimd-

mer (see for instance [12]). For our experiments we make use
of a linear filtering mechanism. In order to obtain sequence
of jitter values.J;, we consider the sequence Bj-values f;
computed using an ANN-driven period-synchronous method [7
pp.145-150]. This sequence is highpass-filtered via cotieol

and normalized by;:

ZO Ji—ugu
Ji == . 1
7. @
The employed filter has impulse respors€ go, . . ., gm} Set

as a sequence of binomial coefficients. For example, such a fil
ter of sizem = 2 has the impulse responge{—1, 1} and the
filter of sizem = 4 the impulse responsg=1{—1,3, -3, 1}.

The higher the filter size, the larger is the preserved pomio
high frequencies in the spectrum of the sequence of the eonse
quentFy-values. Which filter size is optimal for a classification
is one of the subjects of the discussion in section 4.2. FKinal
the average and variance of the valukswithin the prosodic
unit are computed for the last group of featud&st
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where # J; is the number of periods of fundamental fre-

Ji<Jg
guency detected in the prosodic unit, such that the correspo
ing jitter value does not exceed the given thresh@d(thus,
obvious outliers are not taken into account). Calculatides
for the shimmer-based featurés., and S4., are analogous

prosodic units possess these average values. We expeet thes but based upon the energy values of the localizggeriods.



| Alcohol Blood Level [ 0.0 | <04 [ <08 [ <12] <16 ]| <20 ] <24 |

| Recordings | 32] 20 | 20 | 18 | 20 | 7] 3]
Table 1:Distribution of recordings in the corpus over alcohol bloedel.
4. Experiment n=2|n=3|n=>5
RRpest || 70.8% | 68.6% | 68.0%

4.1. Database
For our experiments we used a collection of alcoholizedcipee

Table 2: Influence of the filter size in the calculations of jitter

samples assembled at the Police Academy of Hessen, Germany. and shimmer on the classification performance.

It contains 120 readings (approx. 87 minutes) of the German
version of the fable “The Sun and the Northern Wind”, pro-

duced by 33 male speakers in different alcoholization condi

tions with alcohol blood level varying between 0 and 2.4 per
mille. The phrasal units obtained from this corpus as dbedri

in section 2 have the following characteristics: averagation

2.3 sec, average speech tempo 20.8 PhU/min.

The distribution of the collected recordings over alcohol
blood level is shown in table 1. For training and classifmati
purposes the records were further divided in two classes: al
coholized (AL) and not alcoholized (NAL) with the boundary
value 0.8 per mille.

4.2. Results

We employ Artificial Neuronal Networks (ANN) as classifier,
whereby severallulti-Layer Perceptron (MLR}opologies are
trained and tested independehtlyfwo criteria are used to as-
sess the achieved classification success:

1. RRerst — the highest recognition rate over different
MLP-topologies obtained for the given set of classifica-
tion features;

2. RRavc — the average recognition rate over all investi-
gated MLP-topologies.

In both cases recognition rates are defined as the ratio of the
number of correctly classified phrasal units to the total bem
of phrasal units in the set.

Due to the data sparsity we start by splitting the corpus in
training and validation set, the latter acting as a test sttea
same time. The neuronal networks are trained with the train-
ing set and the validation set is used to first determine te be
MLP-topology for each combination of features, and then the
best set of features. BotRRgrsr and RR v ¢ are taken into
account when deciding which set of features is the most Usefu
for classification. However, since we test on the validatiet)
we give RRav ¢ more influence on this decision, arguing that
more useful features are in general capable of better fitzssi
tion, no matter how the topology of the neuronal network to be
trained is specified.

First of all, we compared the strategy which uses phrasal
units as prosodic units against the strategy which acquires
prosodic units by splitting the speech signal in equal timert
vals (with a length equal to the average length of phrasasuni
in the corpus). Using groupM21we found that the decrease
in performance in the latter case amounted to almost 3 percen
age points for bottlRRzrsr and RRav ¢, which proved the
meaningfulness of phrasal units.

Our next goal was to determine the optimal size of the
highpass-filter used to calculate the four jitter- and shenm
based classification features. For this purpose we cordliacte

1we employ MLP with no hidden layers, one hidden layer with 3 or
5 nodes and two hidden layers with respectively 5 and 3 nodes.

PM21 | JS4 | VU1l | LTM24 RRave | RRBEST
% %
+ — - 69.9 72.8
— + — 67.6 70.8
_ _ + — 59.8 62.7
— — — + 67.1 84.7
+ + — — 72.2 74.8
+ — + — 69.0 72.5
+ — — + 65.3 73.0
+ + + - 70.8 73.7
+ + + + 64.6 77.6

Table 3:Recognition rates on the validation data set using dif-
ferent classification features; used groups are marked a5 “+
unused as “-".

series of experiments using only these four features fam-tra
ing and classification. Table 2 shows the achieved values of
RRprst for filter sizesm = 2,3,5. We see that the sim-
ple definition of jitter and shimmer as the normalized défece

of two neighborFj,- and energy-values, respectively, yields the
best classification rates. In the following, we thereforegke
these definitions.

Next, we focused our attention on the optimal choice of the
set of features for our task domain. We simplified the problem
by looking for the optimal combination of the feature groups
as they were defined in section 3, instead of ascertaining the
usability of each feature for itself. Table 3 shows clasatfan
results for various combinations of feature groups.

We see that the combination of groupll21andJS4on av-
erage leads to the best recognition rates, even thoughwhere
one MLP-topology which resulted in the absolutely best geco
nition rates when using classification features flonM24.

For practical applications, it suffices to provide the entir
speech signal (record) with only one label identifying theoa
holization of the speaker. Since the alcoholization is alsta
speaker characteristic, the straightforwandjority-votingso-
lution can be applied, labeling the whole speech signalas al
holized (AL) if the majority of the phrasal units it consisif
are labeled so, and not alcoholized (NAL) otherwise. Witk th
method we obtained recognition ratBR s s = 80.2%, us-
ing the combination of feature groupdM21andJS4 Table 4
presents the confusion matrices for this combination, dase
the phrasal units as well as on the entire records.

The purpose of our next experiment was to obtain classifi-
cation results on unseen data using the features from tlupgro
PM21 and JS4 Because of the small size of the corpus we
followed aLeave-One-Oustrategy. The corpus was splitinto 5
equal parts, and 5 independent tests with the MLP-topology ¢
responding taRRsrst were conducted. The resulting recog-



Phrasal units
Reference Hypothesis
NAL | AL
NAL 155 (79.1%)| 41 (20.9%)
AL 42 (29.6%) | 100 (70.4%)
Entire records
Reference Hypothesis
NAL | AL
NAL 15(93.8%)| 1 (6.2%)
AL 3 (33.6%) | 6 (66.7%)

Table 4: Confusion matrices for phrasal units and entire

records; groupPM21andJS4
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Figure 2: Distribution of record-based recognition rates over

alcohol blood level.

nition rates amounted to 61.7% when considering each ghrasa

unit for itself, and to 68.8% when classifying record-wise.

Finally, the diagram in figure 2 makes clear that most dif-
ficulties occur when dealing with alcohol blood level close t
0.8 per mille, the threshold that we have chosen as a boundary
between two classes (AL and NAL). Almost all records exhibit
ing very high or very low degree of alcoholization were class
fied correctly, whereas the vast majority of mistakes werdana

within close proximity of the boundary.

5. Conclusion

We have shown that the problem of automated recognition of
alcohol intoxication in human speakers can be tackled using

important for successful classification.

In our experiments on a two-class classification problem

(alcoholized vs. not alcoholized), we achieved a recogmiti
rate of almost 69% on unseen data, most problems being en-
countered in the region close to the boundary between the two
classes.
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prosodic speech characteristics. We also have demorkstrate [12]

how to extract prosodic features with good classificatioitr ab

ities from a speech signal without a lexical segmentatiothef

signal (e.g. word extraction). Indeed, it appears to be-suffi

cient for a successful classification to relate vectors nfcst
tural prosodic features to signal intervals localized Igolsy

means of basic prosodic features. Moreover, we have shown

that such intervals (calleghrasal unit$ often correspond to
syntactic structures of the language.

[13]

We also determined the set of structural prosodic features [14]

capable of the best classification in the domain of automated
Along with features which de-
scribe macro-tendencies in the fundamental frequency and e

detection of alcoholization.

ergy, jitter- and shimmer-based characteristics turnédambe

6. References

Amir N. and Ron STowards an Automatic Classification
of Emotions in SpeechCSLP’98, Sydney, v. 3, pp. 555—
558.

Batliner A., Kompe R., Kiel3ling A., Mast M., Nie-
mann H. and Noth EM=Syntax+Prosody: A Syntactic—
Prosodic Labelling Scheme for Large Spontaneous Speech
DatabasesSpeechComm, North Holland, v. 25, pp. 193—
222,1998.

Brenner M. and Cash J.RSpeech Analysis as an Index of
Alcohol Intoxication — the Exxon Valdez AccideAtia-
tion, Space and Environement Medicine, 1992.

Gaillard A.W.K. and Wientjes C.J.E.Mental Load and
Work Stress as Two Types of Energy Mobilizatidrork
and Stress, pp.141-152, 1994.

Hess W.:Pitch Determination of Speech SignaBpringer
Series of Information Sciences, Springer—Verlag, Berlin,
1983.

Huber R.: Prosodisch-linguistische Klassifikation von
Emotion PhD. dissertation, University of Erlangen—
Nuremberg, 2001.

KieR3ling A.: Extraktion und Klassifikation Prosodis-

cher Merkmale in der Automatischen Sprachverarbeitung
Berichte aus der Informatik, Shaker Verlag, Aachen,
1997.

Klingholz F., Penning R. and Liebhardt ERecognition of
Low-Level Alcohol Intoxication from Speech Sigrialur-
nal of the Acoustical Society of America, n. 84, pp. 929—
935, 1988.

Kompe R.: Prosody in Speech Understanding Systems
Lecture Notes for Artificial Intelligence, Springer—Vegla
Berlin, 1997.

Lester L. and Skousen R.The Phonology of Drunke-
ness Papers from the Parasession on Natural Phonology,
Bruck, Fox and LaGaly (Eds.), Chicago Linguistic Soci-
ety, Chicago, 1974.

Scherer K.R.:Speech and Emotional Statd3arby J.K.
(Ed.), Grune and Stratton, New York, 1981.

Slyh R.E.,Nelson W.T. and Hansen E.GAnalysis of
Mrate, Shimmer, Jitter and’y, Contour Features across
Stress and Speaking Style in the SUSAS Database
ICASSP’99, Phoenix, Arizona, v. 4, pp. 2091-2094.

Steeneken H.J.M. and Hansen J.H®peech under Stress
Conditions: Overview of the Effect on Speech Production
and on System PerformanckCASSP’99, Phoenix, Ari-
zona, V. 4, pp. 2079-2082.

Zhou G., Hansen J.H.L. and Kaiser J.MMethods for
Stress Classification: Nonlinear Teo and Linear Speech
Based FeaturesICASSP’'99, Phoenix, Arizona, v. 4,
pp. 2087-2090.



