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Abstract

In this paper we consider the problem of object recognition and localization in a
probabilistic framework. An objects is represented by a parametric probability den-
sity, and the computation of pose parameters is implemented as a nonlinear parame-
ter estimation problem. The presence of a probabilistic model allows for recognition
according to Bayes rule. The introduced probabilistic model requires no prior seg-
mentation but characterizes the statistical properties of observed intensity values in
the image plane. A detailed discussion of the applied theoretical framework is fol-
lowed by a concise experimental evaluation which demonstrates the benefit of the
proposed approach.

1 Introduction

In high–level computer vision applicationsrecognition of objectsis a standard problem
which must be solved reliably and efficiently. In addition, it may be necessary to estimate
thepositionandorientationof objects with respect to a world coordinate system. Both
recognition and localization require models which characterize the objects’ appearance in
the image plane. These models should be generated from sample images automatically
and they have to generalize to arbitrary views under varying illumination conditions and
occlusions. Model generation, recognition as well as pose estimation given a probabilis-
tic framework can be considered in terms of standard pattern recognition and statistics:
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model generation and pose estimation correspond to regression problems, recognition to
classification.

In this paper we will treat object recognition and pose estimation asoptimization prob-
lems. Recognition is considered as a problem of statistical decision theory; localization
is defined as a parameter estimation problem. In order to perform recognition and local-
ization, an adequatemodelis required which is determined by two major components:
thestructureand theparameters. Besides recognition and localization also the automatic
construction of models can be treated as an optimization problem.

Although there are quite a few different approaches to modeling relevant properties of
objects, we will only considerprobabilistic modelshere. The reasons are: sensor signals
and associated features show a probabilistic behavior due to sensor noise, varying illumi-
nation conditions or segmentation errors; it allows a unified mathematical formulation by
providing a framework for combining evidence; statistical decision theory and estimation
theory have a sound basis and provide many useful results; probabilistic approaches had a
certain impact to various areas, in particular in speech recognition. Some references are,
for example, [1, 4, 6, 7].

2 Basic Vision Problems in Terms of Statistics

A digital imagef is considered as a matrix of discrete intensity valuesf = [fj;k]1�j;k�M ;
it was assumed here that the number of pixels isM in x– andy–direction.

The task of object recognition, that is, the discrete mapping of images to pattern
classes, is a composition of various labeling (respectively classification) processes. The
mapping from the original image to discrete classes is mostly subdivided into the follow-
ing stages:

1. Preprocessing:in the preprocessing stage images are filtered in order to remove
noise and enhance useful properties of the image.

2. Segmentation:the segmentation maps the image matrix to a matrix which de-
fines, for instance, geometric primitives, features, or in general observationsO =
fokjk = 1; : : : ; mg.

3. Classification: the final classification stage maps segmentation results to classes

� 2 
 = f
1; : : : ;
Kg. Classes are obtained from the requirements of the task–
domain.

It is recalled from statistical decision theory that theBayes classifierallows classi-
fication with minimal error probability, provided an appropriate statistical model of the
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classes is given. This model in general is a class–conditional probability densityp(OjB�)
of a set of observationsO given a class
� characterized by the parametersB�. We call
the parametric functionp(OjB�) model density. A simple example for a model density
is the Gaussian density, whereB� represents the mean vector and the covariance matrix.

Besides the recognition of objects, the position and orientation of objects provide
important information. For instance, to make a robot grasp an object, the pose parameters
have to be known. As introduced in [2], the probability density function which models
an object and which should allow for both classification and pose estimation has to use
pose dependent parameters and to include a second set of parameters. These additional
degrees of freedom represent pose parameters. If the model also contains information
about the localization (or pose) in a parameter�, the model density has the general form
p(OjB�; �). The steps towards a complete recognition system would then be, first, to
compute the maximum likelihood estimate of class specific parametersB� given the pose
parameters fromN observations, second, to estimate the pose parameter�� per class,
third, to classify by Bayes rule. The resulting equations are:

cB� = argmaxB�
p(1O; : : : ; NOjB�;

1��; : : : ;
N��) ; � = 1; : : : ; K ; (2.1)

b�� = argmax� p(OjB�; �) ; � = 1; : : : ; K ; (2.2)


� = argmax
�
p(
� j O) = argmax
�

p(OjB�; ��)p(
�)

p(O)
: (2.3)

For numerical reasons and to avoid number underflows, it is more convenient to maximize
the logarithm of probability densities.

3 Probabilistic Modeling of Images

One important question in probabilistic modeling is, where the noise appears. In [5] it
is shown that the noise model has to operate in the image plane. Probabilistic models of
images mostly make use of the Hemmersley Clifford theorem [9] and use Gibbs distribu-
tions to characterize images by Markov random fields. The automatic estimation of the
Gibbs distribution from sample images and the application of Markov random fields for
pose estimation and recognition is mostly unsolved still part of intensive research. As an
alternative we introduce a new modeling scheme for images which is substantially based
on products of mixture densities.

The basis for statistical modeling of images is to consider the image matrixf = [fj;k]
as a random matrix. Each entryfj;k is characterized by the components position in the
image and pixel value (gray or color value). Similar to mathematical morphology we
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interpret the image matrix as a set of random vectors

S =
n
[j; k; fj;k]

T
��� 1 � j; k �M

o
: (3.1)

The 2–D grid points and intensity values are defined as potential random measures.
The random vectors can be characterized by a conditional probability density func-

tion, which depends on the present pattern class
�. Since the appearance of objects in
the image plane changes with the objects’ pose, the density will also be parameterized
regarding the pose�. For the whole image the probability density is

p(OjB�; �) = p
�n

[j; k; fj;k]
T
��� 1 � j; k �M

o��� �; �� : (3.2)

According to the intended generality, the set of observationsO in the above equation
is the setS. The parameter vectorB� is replaced by� since no parametric form was
assumed yet.

This model density is far too general, not computationally feasible, and too abstract
for applications. Nevertheless, it can be specialized to a broad class of model densities.
The introduction of additional constraints, the consideration of dependencies of bounded
order, the incorporation of specializations, and the usage of continuous instead of discrete
random variables are basic tools which will induce feasible models and reduced parameter
sets. We consider the intensity values to be discrete random measures. The pixel coor-
dinatesj andk are assumed to be continuous. Now we consider the probability density
functions of image points dependent on intensities. A possible decomposition of (3.2) is
now

p([j; k; fj;k]
T j�; �) = p(fj;kj�) p(j; kjfj;k; �; �) ; (3.3)

where the termp(fj;kj�) represents the discrete probability to observe the intensity value
fj;k. The other factorp(j; kjfj;k; �; �) characterizes the bivariate probability density of
image points dependent on a given intensity valuefj;k. Obviously, besides the class index
� this probability has to incorporate the pose parameter�) because the spatial distribution
of gray level varies with the object’s pose. Given the assumption that relative frequencies
of intensity values do not depend on pose parameters, this probability is independent
of the position and orientation defined by�. Assuming mutually independent intensity
values and image points, we get the overall density

p(f j�; �) =
MY
j=1

MY
k=1

p(fj;kj�) p(j; kjfj;k; �; �) (3.4)

for the complete image.
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Figure 3.1: Gray–level image and the multi–modal probability density function of a se-
lected intensity value.

Let us assume thatLf intensity levelsf (l); l = 1; : : : ; Lf are distinguished. The in-
tensity levelf (l) may be an interval of gray values or also a single gray value. In the
experiments we will use fairly large intervals resulting in only 4 intensity levels. They
are determined by standard vector quantization using entropy based objectives. Since
a selected intensity levelfj;k = f (l) often appears in different places of the image, the
densityp(j; kjfj;k = f (l); �; �) is expected to be multi–modal. Density functions with
multiple modes are most commonly approximated by mixtures, i.e. convex combinations
of uni–modal densities [6].

Figure 3.1 gives an example of one factor of such a model density as defined by (3.6).
The parametric form used forp(j; kjfj;k = f (l); �; �) in this example is a normal mixture
density consisting ofi = 1; : : : ; L(l)

g = 17 Gaussian densitiesN (��;l;i; ��;l;i) for a class

� at an intensity levelf (l). If pose parameters consist of a translation, represented by
the vectort 2 IR2, and a rotation in the plane represented by an orthogonal matrixR, we
obtain the conditional density

p(j; kjfj;k = f (l); �; �) =
L

(l)
gX

i=1

p�;l;iN
�
[j; k]T ;R��;l;i + t; R��;l;iR

T
�
: (3.5)

Since the rotation matrixR 2 IR2�2 is uniquely defined by a single rotation angle�, the
space of pose parameters is three–dimensional.

Assuming now mutual independence of random vectors[j; k; fj;k], the joint probabil-
ity density function of the complete image showing class
� is given by the following
product

p(f j�; �) =
MY
j=1

MY
k=1

LfY
l=1

p(fj;k = f (l)j�) p(j; kjfj;k = f (l); �; �) (3.6)

5



or in terms of logarithms:

log p(f j�; �) =
MX
j=1

MX
k=1

LfX
l=1

log
�
p(fj;k = f (l)j�) p(j; kjfj;k = f (l); �; �)

�
: (3.7)

This probabilistic model characterizes 2–D objects adequately. It provides a simple
and effective way to model irregular and textured objects (e.g. a cactus), and to localize
and recognize objects where usually algorithms based on geometric models fail.

4 Model Generation

The explicit construction of model densities by human interaction is intractable for prac-
tical applications. Model densities should be generated from sample data automatically.
The introduced model (3.6) provides several degrees of freedom. For instance, if mixture
densities are used for modeling, we have to fix the quantization of intensity levels and
to compute the number of mixture components for each interval of gray values. Once
these measures are known, we have to estimate the parameters of mixtures. This example
demonstrates that the learning of probabilistic models includes both automatic acquisi-
tion of thestructureand theparametersof the model based on empirical data. In the
above example the structure is basically defined by the number of mixture components,
and parameter estimation corresponds to the computation of the mixture parameters.

The common principle of structural and parametric learning can be summarized as
follows:

� define a (discrete or continuous) search space,
� choose an objective function which scores the actual structure or parameter set,
� use a search algorithm which guides the navigation in the search space, and
� terminate learning, if no improvement occurs or the improvement is below a certain

threshold.

In spite of the existence of this general framework, the overall complexity of structural and
parametric learning is completely different. While the estimation of parameters usually
corresponds to optimization problems of continuous functions (see e.g. (2.1)), structural
optimization implies a search problem in a combinatorial space of exponential size. In
the following we will consider both structural and parametric learning based on model
density (3.6).
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4.1 Structural Learning

Structural learning requires the computation of the number of mixture components. For
that purpose we apply a method which is widely applied in speech recognition [4]: vector
quantization. Using the k–means algorithm we can determine the clusters of intensity
values; the number of clusters corresponds to the number of mixture components. This
number is denoted byl. Vector quantization is based on selecting randomlyl initial cluster
centers. These initial centers are updated in such a way that after a number of iterations
they represent the clusters in the data as much as possible. An obvious disadvantage of
this strategy is that the number of clusters is fixed. Oncel is defined the algorithm will
always returnl cluster centers. We have to remove redundant clusters. Whenever a cluster
center is not assigned enough samples, it is canceled and merged with the closest cluster.
This results in a set of centers which define a more or less optimal number of clusters.
The problem of choosing the initial number of clusters still remains. Defining the initiall

large enough depends on the given sample set, but is usually no problem.
An illustration of the Voronoi diagram resulting from the vector quantization step for

automatic model generation can be found in Figure 4.1. The number of mixture com-
ponents in this is example is 10. The other 7 clusters are assigned to the background.

Figure 4.1: Voronoi diagram resulting from vector quantization (left) and the convex
combination of Gaussians (right) for a single intensity value

4.2 Parameter Learning

Given the number of intensity values and the structure of mixtures, learning in the second
stage reduces to aparameter estimationproblem. Since we use statistical models as
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introduced in (3.5) and (3.6), the learning of model densities requires the estimation of
the following parameters foreachclass
� andeachintensity levelf (l):

� discrete probabilitiesp(f (l)j�),
� L(l)

g discrete probabilitiesp�;l;i,
� L(l)

g mean vectors��;l;i, and
� L(l)

g covariance matrices��;l;i.

The discrete probabilitiesp(f j�) are just relative frequencies. The other parameters
which characterize the mixture density (3.5) are initialized using the cluster which result
from vector quantization (see also Section 4.1). The iterative refinement of the initial es-
timates applies the theexpectation maximization algorithm(EM algorithm) [6]. Here, the
EM algorithm is required because the assignment of observations to mixture components
is not part of the training data. The re-estimation formulas can be found in [6].

5 Maximum–Likelihood Localization

Once the model parameters are known, the statistical models can be used to localize and
classify objects according to (2.2) and (2.3). The localization of objects in the chosen
probabilistic framework corresponds to a maximum–likelihood estimation problem. This
is especially considered to be advantageous compared to standard least square or least
median methods. Least square or median estimators are known to imply biased estimates
in most cases. In contrast, maximum–likelihood estimators guarantee consistency,i.e.,
the expectation of estimates converges (at least theoretically) against its true value for
large sample size.

Despite of this theoretically proven advantage, the practical computation of the
maximum–likelihood estimate is hard since we are looking for a global maximum of a
multi–modal (log) likelihood function (see also Figure 6.2). An exhaustive grid search
to estimate the pose parameters is computationally infeasible. Here we suggest to use
marginals of model densities to speed up the global search. Projections of random vari-
ables reduce the dimensionality of the search space. The optimization of the multi–modal
model density is based on a three–stage maximization process as originally introduced in
[2].

The considered random vectors are triples[j; k; fj;k]. Their probability density func-
tion is defined by (3.6). For a selected gray–levelf we can compute marginals which
allow the definition of hierarchical probabilistic models. The considered marginals are:

p([j; f ]j�; �) =
Z
k
p([j; k; f ]j�; �) dk ; and (5.1)
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p([k; f ]j�; �) =
Z
j
p([j; k; f ]j�; �) dj : (5.2)

Remarkably, these marginals with respect to image point coordinatesj andk induce the
invariance of densities with respect to parts of the pose parameters. The marginal (5.1)
does not depend on translations along they–axis, and the integral (5.2) eliminates the
parametertx of the original translation vector. We make use of this important observation
within the optimization module and implement a three–stage maximization procedure:

1. We compute a setH of local maxima(�; ty) of the bivariate density (5.1).

For this global optimization problem we apply a grid search technique based on
40�70 equidistant sample points of the 2–D parameter space. At each grid location
we start local optimizations using the downhill simplex algorithm.

2. We take the rotation angles of(�; ty) 2 H, maximize (5.2) with respect totx, and
get a listL of triples(�; tx; ty).

3. The elements ofL are used as initializations for local optimizations of the original
model density (3.6).

The following experimental evaluation will show the efficiency of this global optimization
algorithm which use marginals to decompose the search space.

6 Experiments

The description of the experimental evaluation of the proposed probabilistic approach is
divided up into four subsections. First we describe the experimental setup. This includes
the definition of considered pattern classes, training and test sets, applied measurements,
and the used hardware. The other sections treat the three stages model generation, pose
estimation, and classification as defined by (2.1), (2.2), and (2.3):

6.1 Experimental Setup

In the experiments we consider four different objects. Each object is assigned to a differ-
ent class. We have selected objects which allow no robust segmentation of point features.
Recognition algorithms which are based on geometric transformations of point features,
for instance, will definitely fail for these objects [3, 2]. Figure 6.1 shows images of the
objects used in the experiments. For the estimation of model parameters we have50 im-
ages of each object. The background is homogeneous. The localization and classification
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experiments use another200 images,50 of each object. Of course, training and test sets
are disjoint. The correct pose parameters of the test images are known, because we have
used a calibrated turn table to generate different views. The given reference values are
used for the evaluation of the localization algorithm. The resolution of the gray–level
images is 320�240 pixels. The originally 256 gray–levels are quantized to four intensity
values. One intensity value characterizes the background, the other three gray–levels are
assigned to the object. The quantization is done by the maximization of an entropy based
criterion (c.f. [8], Chapter 20). The training modules use all pixels to estimate the model
parameters. The localization algorithm, however, gets only 128 image points for the first
series of experiments, and 512 for the second. The recognition experiments are based on
512 sampling points. The selection of image points is done uniformly using 128 resp.
512 equidistant grid points. Due to this sampling, the runtime system usesonly 0.16%
resp. 0.66% of the available image data. All experiments run on a Silicon Graphics O2
(R10000, 195 MHz).

Figure 6.1: Objects used for localization and recognition experiments: toy car, cactus,
candy box, beetle

6.2 Estimation of Model Parameters

The parameters of the model densities are computed using the vector quantization method
and the parameter estimation techniques as introduced in Section 4. Each model density
is a product ofM2 weighted mixtures of Gaussians according to (3.6). Due to the chosen
quantization of gray–levels, we have to compute for each of the four gray–levelsf l; l =
1; : : : ; 4 the weight factorsp(f lj�) and the mixturesp(j; kjf l; �; �). Table 1 summarizes
the total number of 2–D Gaussians used in the probabilistic models. Figure 4.1 illustrates
the result of vector quantization and of the final density estimation for a single gray–level.
In this case, we need 10 Gaussians to model the spatial distribution of a certain gray–level.

Reliable estimates of model parameters depend on sufficient sets of training samples
which are available in our case: Given the image resolution and the available set of train-
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object Gaussians
toy car 24
cactus 53
candy box 46
beetle 85

Table 1: Number of mixture components per object

ing images for each class, the total number of samples used for parameter estimation of
each class is50 � 320 � 240 � 4 � 106. In case of the beetle, these observations are used to
compute4 + 85(1 + 2 + 3) = 514 parameters.

6.3 Localization

Object localization corresponds to the problem of computing the position and orientation.
Here we use the automatically generated models and determine position and orientation
by a maximum–likelihood estimate (2.2). The computation of the rotation angle and the
translation vector is based on the three–stage search procedure as introduced in Section 5.
Figure 6.2 shows the multi–modal functions which have to be optimized. Obviously we
need global maximization techniques to compute the parameters we are looking for.
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Figure 6.2: Objective functions for localization: the optimal translation parameters are
defined by the maximum of the bivariate function on the left, the rotation angle by the
global maximum on the right

Table 2 shows the standard deviation�� of the estimated rotation angle�, which
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is measured in degrees, and the standard deviations�tx and�ty of the components of
translation vectort = (tx; ty)

T . The right column summarizes the mean runtimetmean of
pose estimations measured in seconds. A visualization of estimated pose parameters for
one example is shown in Figure 6.3.

object �� �tx �ty tmean

toy car 2.79 0.96 1.29 7.9
cactus 78.41 4.64 8.46 11.0
candy box 2.84 1.77 1.77 13.1
beetle 78.4 5.23 3.75 18.8

object �� �tx �ty tmean

toy car 2.15 0.57 0.96 24.6
cactus 1.51 0.40 0.39 63.3
candy box 1.42 1.11 0.66 37.7
beetle 58.00 2.63 0.99 68.1

Table 2: Localization results using 128 (left) and 512 (right) equally sampled gray–levels

Figure 6.3: Correct and wrong results of the localization module; for visualization pur-
poses a reference segmentation result is re–projected into the image using the estimated
parameters.

The localization using 128 sample image points is remarkably precise for the toy car
and the candy box. The low accuracy of the rotation angles of the cactus and the beetle
show that the number of sample points is too low. An increase of the number of image
points for localization (right part of Table 2) clearly decreases the variance of angles for
the cactus and the beetle. The symmetry properties of the beetle, however, are the reason
for the high deviations of the rotation angle estimates. Only a more detailed sampling of
the image in those areas which resolve ambiguities in rotations will lead to estimates of
higher accuracy.
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A highly interesting question is the relationship between the number of mixture com-
ponents, the number of pixels used for localization, and the accuracy of the resulting
estimate. We consider the candy box. Figure 6.4 plots the average deviation of the es-
timated rotation angle in dependency of the number of mixtures and the cardinality of
sample points. This plot shows that at least 128 uniformly distributed sample points are
required for the estimation of the rotation angle.
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Figure 6.4: Localization results for the candy box using a different number of mixture
components and sampling points

6.4 Recognition

The recognition experiments using 200 test images, 50 of each object, show a recognition
rate of 100 % if four gray–levels are used. The overall runtime is less than three minutes
(mean runtime 174.5 sec), where the computationally expensive part of the recognition
module is the estimation of pose parameters. The most probable position and orientation
of objects is required to evaluate the a posteriori probabilities (see (2.3)).

7 Summary and Conclusion

We have introduced a new modeling scheme which allows for statistical object recogni-
tion and localization. The proposedBayesian classifierallows the unified incorporation
of prior knowledge and class specific densities. It is remarkable that the implemented
classifier requires no explicit computation of geometric features like points or lines. Just
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object recognition rate [%]

toy car 100
cactus 100
candy box 100
beetle 100

object recognition rate [%]

toy car 100
cactus 100
candy box 100
beetle 90

Table 3: Recognition rates using 512 uniformly sampled gray–levels and three (left) resp.
four intensity values (right)

the spatial distribution of intensity values is used. The theoretical results of this paper
provide algorithms for automatic model generation, for pose computation, and for classi-
fication. The experimental evaluation proves that the proposed approach allows accurate
estimations of pose parameters and recognition rates of 100 % for the given examples.
An obvious and still open problem is incorporation of the projection mapping and the
generalization of the proposed approach from 2–D to 3–D object recognition and pose
estimation.
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