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AbstractWith the information of the complete DNA sequence of several higher eukaryotesas well as expression patterns of thousands of genes under a variety of conditionsin our hands, we now have the possibility to computationally identify and analyzethe parts of a genome believed to be largely responsible for transcription control {the promoters. This article gives a short overview of the state-of-the-art techniquesfor promoter localization and analysis, and comments on the most recent advancesin the �eld.Understanding gene regulation is one of the most exciting topics within moleculargenetics. To learn how the interplay among thousands of genes leads to the existanceof a complex eukaryotic organism is one of the great challenges, and the availability oflarge amounts of information gained in the sequencing and gene expression projects bothdemands and enables us to use computers to solve this task.A key role in gene regulation is played by promoter sequences. We de�ne this here asthe region proximal to the transcription start site (TSS) of protein encoding genes, thosetranscribed by RNA polymerase II, and leave aside distal regions such as enhancers. Wewant to outline the recent developments within two areas of bioinformatics that deal withpromoters: The general recognition of eukaryotic promoters, and the analysis of theseregions to identify the regulatory elements hidden in them. This is the �rst step on theway to complex models of regulatory networks. We focus on the computational pointof view, pinpointing out some classic and many recent publications, and leave a moreelaborate description, especially of the underlying biology, to the the cited papers andreviews. 2



Analyzing Promoters to Find Unknown RegulatoryElementsThe interest in promoter analysis received a great boost with the arrival of microarraygene expression data: Once you have a group of genes with a similar expression pro�le(e.g., that are activated at the same time in the cell cycle1), a natural assumption isthat the similar pro�le is (partly) caused by and re
ected in a similar structure of theregulatory regions involved in transcription. The ultimate goal here is the automatedconstruction of speci�c promoter models containing a combination of several regulatoryelements. Research so far has focused on the detection of single motifs (representingtranscription factor binding sites) common to the promoter sequences of putatively co-regulated genes. Although this problem might seem simple at �rst, it is very complex andrequires that we �nd� a motif of unknown size that might not be well conserved between promoters� in a set of sequences that do not necessarily represent the complete promoters, and� that was in many cases grouped together by a clustering algorithm that itself canbe error-prone and include genes that are not co-expressed in vivo.Therefore, studies have mainly concentrated on the rather "simple" genome of thebudding yeast S. cerevisiae| it was the �rst fully sequenced eukaryotic organism, and the�rst one for which a comprehensive amount of expression data became publicly available.Statistics on mapped transcription start sites2 show that its 5' UTR sequences are rathershort (a mean of 89 bp), and most of the known regulatory elements are close to the3



translated part of the genes, the majority being found between 10 and 700 bp upstreamfrom the translation start codon. This means that for yeast, the region upstream of thestart codon can be used as a good approximation of a promoter region. Most algorithmssearching for conserved patterns in yeast promoters thus take 500{1000 bp upstream ofthe start codons of supposedly co-regulated genes as data set.There are two fundamentally di�erent approaches to tackle the problem:� Alignment methods aim at the identi�cation of unknown signals by a signi�cantlocal multiple alignment of all sequences. As a direct multiple alignment would becomputationally very expensive, the methods go a di�erent way. For example, theCONSENSUS algorithm approximates a multiple alignment by aligning sequencesone by one3 and optimizing the information content of the weight matrix constructedfrom the alignment. Other algorithms use a probabilistic approach; they considerthe start positions of the motifs in the sequences to be unknown and perform alocal optimization over the sequence to determine which positions deliver the mostconserved motif. Two important methods are Gibbs sampling4 and ExpectationMaximization in the case of the MEME system5.� Enumerative or exhaustive methods examine all oligomers of a certain length andreport those that occur far more often than expected from the overall promotersequence composition6;7. This approach has gained in popularity since the arrivalof complete genomes and is trickier than one might believe | for example, how tocount patterns that overlap themselves?From a practical point of view, the most eye-catching di�erence between those methodsis maybe the shape of the result: The alignment approaches deliver a model of the motifs4



(usually a weight matrix) built from the alignment, the enumerative methods a list of over-represented oligomers, possibly already grouped to form consensus sequences. Figure 1shows an exempli�ed 
owchart to illustrate this.
Di�erences of Motif Identi�cation ApproachesOne important di�erence among the approaches concerns the background model. Forexample, a simple background is to account for a di�erent overall G/C content. Withoutsuch a model, you will most likely �nd the obvious, e. g. mainly GC-rich motifs inorganisms whose promoters have a high GC content. A better model is constructed fromthe set of all promoters and takes their speci�c sequence composition into account. Withsuch a model, you avoid �nding motifs that are common to all promoters such as TATAboxes. But this also means that a speci�c model, at least for each organism, has tobe trained, and this information is not always available. Enumerative methods have touse such an elaborate background model because they need it to judge the importanceof frequent patterns. In contrast, alignment methods usually incorporate only the G/Ccontent, which makes them more prone to fail if the motif is not very well conservedamong the sequences and the sequences to be examined become too large8.Most of the enumerative algorithms need to have the size of the motif speci�ed inadvance. Because of the �xed size, they often deliver a number of similar motifs simplyshifted by one base or having mismatches. Some methods provide an automatic post-processing to group motifs to consensus strings and thus come up with a small number ofputative regulatory elements that can be examined by experts more easily. A potentialproblem here is that parts of the consensus might come from di�erent sequences.5



The alignment approach requires di�erent statistics depending on how often a patternshould be present in the sequences. For instance, MEME can be run in three modesassuming that a motif occurs exactly once, at most once, or an arbitrary number of timesper promoter sequence. The Gibbs sampler implementation listed in table 1 also allowsfor zero or multiple ocurrences. In principle, alignment methods yield one pattern per run,but they can be run several times to detect more than one motif, masking out previouslyfound sites. Gibbs sampling is a non-deterministic approach, meaning that even withoutmasking out sites, it might deliver di�erent motifs.
New directionsSome limitations of enumerative methods have been eliminated by a number of recentpublications: The motif identi�cation problem was maybe the most outstanding topic atthe ISMB 2000 conference on intelligent systems for molecular biology1 and has also beenprominent in several other publications. It is now possible to detect homo- or hetero-dimer motifs separated by a �xed9 or variable spacer length10, or a variable motif lengthin general11. To allow for mismatches, ambiguous nucleotide letters (such as R for thepurines) are now included in the oligomer alphabet.Thus it seems as if the enumerative approach is the method of choice: It exhaustiveleysearches over all possible oligomers and provides more signi�cant results because of thebackground modeling. In practice, though, alignment methods are more 
exible: Becauseof the simple background, they are not restricted to one speci�c organism. They can also�nd long motifs the detection of which is simply not feasible by an exhaustive approach.1http://ismb2000.sdsc.edu 6



Also, they deliver a weight matrix as a comprehensive model for a motif which can be usedmore 
exible than a consensus sequence for searching purposes. We therefore propose atwo-step approach: First apply an enumerative approach, and use the results to initializea weight matrix for an alignment method. Unfortunately, no such combined approach hasbeen published yet, but the Gibbs sampler given in table 1, for example, lets you specifya weight matrix to start with. Of course, this only works if both methods are available,which so far is the case for only yeast and some microbial organisms.The described methods are often applied on a set of promoters that were �rst groupedtogether using gene expression level measurements. Bussemaker et al. recently analyzedthe whole set of yeast regulatory sequences without using any information on gene ex-pression levels11, constructing a dictionary of oligomers of increasing length and using theprevious dictionary of shorter oligos as background. A new way to look at the data is tocluster genes based on both expression levels and common motifs at the same time12. Thiscan help to separate gene groups that are active under the same conditions but belong toseparate regulatory pathways.An orthologous approach is to identify elements not by analyzing di�erent promotersfrom the same organism, but promoters of the same gene from about 10 di�erent relatedspecies13. An optimal alignment of a small region of speci�ed size is constructed that takesthe phylogenetic distance into account.The question remains how we can use all these methods when we move on to theanalysis of higher eukaryotes with their highly complex genomes. The euchromatin ofD. melanogaster has a gene density of roughly one gene every 9 kilobases and an averagepredicted transcript size of 3058 bp14, leaving a huge portion of the genome as potential7



locations of regulatory elements. In this case, the alignment of noncoding sequences fromtwo related species, also known as phylogenetic footprinting, can help to narrow the searchregion and reveal conserved and potentially regulatory regions15;16. A recent publicationcloses the gap between this approach and motif identi�cation: 28 orthologous co-regulatedgene pairs from human and rat were automatically aligned to identify conserved ungappedsequence blocks, and the subsequent analysis of the conserved parts with a Gibbs samplingapproach reveiled the known motifs that were missed otherwise17. The main assumptionfor phylogenetic approaches is that the regulatory pathway itself has not diverged whichwould result in di�erent motifs with the same function.If we do not have information from related species, we can concentrate on the analysisof proximal promoter regions close to TSSs, but the length of UTRs of higher eukaryotesprevents us from assuming that the TSSs can be found immediately upstream of thecoding part of a gene. In our recent genome annotation assessment18, the 92 Drosophilagenes from the set for which full-length cDNA information was available had an averageUTR length of about 1,900 bp (17 transcripts had UTRs longer than 1,000 bp). Thismeans we have to �nd the start sites �rst.
Finding the Promoters in Genomic DNAFor a long time, bioinformaticians have tried to come up with algorithms able to identifythe TSSs in eukaryotes. This is not easy because promoters are very diverse, and evenwell-known signals such as the TATA box can be weakly conserved or missing altogether.Algorithms for general promoter recognition so far can be classi�ed into two groups:
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� Search-by-signal algorithms make predictions based on the detection of core pro-moter elements such as the TATA box or the initiator, and/or transcription factorbinding sites outside the core19.� Search-by-content algorithms identify regulatory regions by using measures basedon the sequence composition of promoter and non-promoter (typically coding andintron sequences) examples20.There are also methods that combine both ideas { looking for signals and for regionsof speci�c composition21;22.For an exact localization, promoter prediction should also mean identi�cation of TSSs.But search-by-content methods do not provide good TSS predictions because they do notlook for positionally conserved signals. To enable the comparison of di�erent algorithms,predictions are thus counted as correct if they are made within a window around anexperimentally veri�ed start site. Using this scoring, an evaluation in 1997 found thatmany algorithms identi�ed a third up to half of the start sites within genomic DNAsequences23. The programs were run ab initio, i. e. without any additional informationbut the sequence itself. The problem, though, was the vast number of false positives:Even the best algorithms had one false TSS prediction within 500{1,000 base pairs.
New Features, New Algorithms, New HopeAs a response to these rather disencouraging results, di�erent approaches for promoter�nding were pursued. One idea is to provide an accurate prediction of the TSS, but onlyfor small regions known to contain a promoter24. An "opposite" algorithm provides speci�c9



predictions of regulatory regions (of a size of roughly 1,000 bp) via search-by-content, butgives no information whether the a�ected gene is on the leading or lagging strand, orwhere within the region the TSS itself is located25. A fundamentally di�erent approachis to construct speci�c instead of general promoter models for groups of genes such asmuscle active genes known by experiment to contain speci�c combinations of regulatoryelements26 (reviewed in detail by Werner27) | this is where promoter �nding and analysismeet.With the complete genome of many organisms at our �ngertips, interest in generalpromoter prediction has awoke again. First, there is the fact that even though the abinitio performance of the algorithms is not as good as desired, this is not the way theannotation of genomes is done. Many algorithms are used together, and limiting theanalyzed sequence to upstream from the start of a gene prediction or a cDNA alignmentreduces the number of false predictions immensely. Second, slow but constant advancehas been made | in a more recent assessment of both ab initio and gene �nder coupledpromoter predictions for Drosophila, the ab initio methods had less false positives thanbefore18, and coupling them with a gene �nder proved to be quite successful | although itlooks like it will be hard to achieve a sensitivity of more than 50%. Third, other featuresare known that can be derived from the DNA sequence28 and may be suitable for promoterrecognition:� Many vertebrate promoter regions coincide with CpG islands. These are regionswhere the C+G content is high and the CG dinucleotide occurs more frequentlythan expected, a consequence of the fact that the DNA of many promoters is un-methylated so as to be accessible to regulatory proteins. A method to discriminate10



between CpG islands in promoters and in other parts of the genome has just beenpublished29. This method can be seen as a search-by-content approach and does notdeliver a TSS prediction. The use of CpG island feature in the latest version of ourMcPromoter predictor (see table 1) has also lead to a considerable reduction of falsepositives by roughly one third. Unfortunately, CpG islands only exist in vertebrateorganisms.� Features common to promoters of all organisms are structural properties of DNA,such as bendability or conformation (a compilation was carried out by Liao et al.30).For these properties, scoring tables based on di- or trinucleotides were determinedexperimentally and can be used to calculate pro�les over the DNA sequence. Stud-ies have shown that in general, eukaryotic promoters indeed do have a distinct pro-�le when compared to coding or non-regulatory sequences28 . Whether using thesefeatures will improve recognition remains to be seen: The pro�les of individual se-quences can be very noisy and thus not easy to use, and it is not clear yet if theyprovide new information that is not accurately re
ected in the sequence itself.The most recently published promoter �nding and analysis tools are listed in table 1.More links can be found in comprehensive reviews23;27.Will we be able to �nd the regulatory regions of eukaryotes with high accuracy, andif so, will we be able to derive complex models for transcription regulation from theirsequence? The question is open, but we certainly are on the way.
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Program Name description HTTP AddressGeneral Promoter FindingPromoter2.0 search-by-signal, arti�cial neural network www.cbs.dtu.dk/services/PromoterNNPP search-by-signal, time delay neural network www.fruit
y.org/seq tools/promoter.htmlPromoterInspector search-by-content, class-speci�c oligomers www.gsf.de/biodvMcPromoter V3 signal/content, www.mustererkennung.de/HTML/English/stochastic segment model/neural network Research/PromoterCorePromoter signal/content, discriminant analysis argon.cshl.orgPromoter Analysis ToolsRSA Tools yeast and microbial exhaustive search www.ucmb.ulb.ac.be/bioinformatics/rsa-toolsGibbs sampler alignment method bayesweb.wadsworth.org/gibbs/gibbs.htmlMEME alignment via Expectation Maximization meme.sdsc.eduBBA phylogenetic footprinting by bayesweb.wadsworth.org/Bayes alignment cgi-bin/bayes align12.plPipMaker phylogenetic footprinting by identity plots bio.cse.psu.edu
Table 1: A selection of recently published WWW accessible promoter �nding and analysistools.
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Figure 1: An exempli�ed 
owchart to illustrate the two di�erent approaches for motifidenti�cation. We analyzed 800 bp upstream from the translation start sites of the 5 genesfrom the yeast gene family PHO by the publicly available systems MEME (alignment)and RSA (exhaustive search, see table 1). MEME was run on both strands, one occurenceper sequence mode, and found the known motif ranked as second best. RSA tools wasrun with oligo size 6 and non-coding regions as background, as set by the demo mode ofthe system.
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