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Abstract

With the information of the complete DN A sequence of several higher eukaryotes
as well as expression patterns of thousands of genes under a variety of conditions
in our hands, we now have the possibility to computationally identify and analyze
the parts of a genome believed to be largely responsible for transcription control —
the promoters. This article gives a short overview of the state-of-the-art techniques
for promoter localization and analysis, and comments on the most recent advances

in the field.

Understanding gene regulation is one of the most exciting topics within molecular
genetics. To learn how the interplay among thousands of genes leads to the existance
of a complex eukaryotic organism is one of the great challenges, and the availability of
large amounts of information gained in the sequencing and gene expression projects both
demands and enables us to use computers to solve this task.

A key role in gene regulation is played by promoter sequences. We define this here as
the region proximal to the transcription start site (TSS) of protein encoding genes, those
transcribed by RNA polymerase 11, and leave aside distal regions such as enhancers. We
want to outline the recent developments within two areas of bioinformatics that deal with
promoters: The general recognition of eukaryotic promoters, and the analysis of these
regions to identify the regulatory elements hidden in them. This is the first step on the
way to complex models of regulatory networks. We focus on the computational point
of view, pinpointing out some classic and many recent publications, and leave a more
elaborate description, especially of the underlying biology, to the the cited papers and

reviews.



Analyzing Promoters to Find Unknown Regulatory

Elements

The interest in promoter analysis received a great boost with the arrival of microarray
gene expression data: Once you have a group of genes with a similar expression profile
(e.g., that are activated at the same time in the cell cycld'), a natural assumption is
that the similar profile is (partly) caused by and reflected in a similar structure of the
regulatory regions involved in transcription. The ultimate goal here is the automated
construction of specific promoter models containing a combination of several regulatory
elements. Research so far has focused on the detection of single motifs (representing
transcription factor binding sites) common to the promoter sequences of putatively co-
regulated genes. Although this problem might seem simple at first, it is very complex and

requires that we find

e a motif of unknown size that might not be well conserved between promoters
e in a set of sequences that do not necessarily represent the complete promoters, and

e that was in many cases grouped together by a clustering algorithm that itself can

be error-prone and include genes that are not co-expressed in wvivo.

Therefore, studies have mainly concentrated on the rather ”simple” genome of the
budding yeast S. cerevisiae — it was the first fully sequenced eukaryotic organism, and the
first one for which a comprehensive amount of expression data became publicly available.
Statistics on mapped transcription start sites’ show that its 5° UTR sequences are rather

short (a mean of 89 bp), and most of the known regulatory elements are close to the



translated part of the genes, the majority being found between 10 and 700 bp upstream
from the translation start codon. This means that for yeast, the region upstream of the
start codon can be used as a good approximation of a promoter region. Most algorithms
searching for conserved patterns in yeast promoters thus take 500-1000 bp upstream of
the start codons of supposedly co-regulated genes as data set.

There are two fundamentally different approaches to tackle the problem:

e Alignment methods aim at the identification of unknown signals by a significant
local multiple alignment of all sequences. As a direct multiple alignment would be
computationally very expensive, the methods go a different way. For example, the
CONSENSUS algorithm approximates a multiple alignment by aligning sequences
one by oné® and optimizing the information content of the weight matrix constructed
from the alignment. Other algorithms use a probabilistic approach; they consider
the start positions of the motifs in the sequences to be unknown and perform a
local optimization over the sequence to determine which positions deliver the most
conserved motif. Two important methods are Gibbs sampling' and Expectation

Maximization in the case of the MEME systent.

e FEnumerative or erhaustive methods examine all oligomers of a certain length and
report those that occur far more often than expected from the overall promoter

sequence compositior®”

. This approach has gained in popularity since the arrival
of complete genomes and is trickier than one might believe — for example, how to

count patterns that overlap themselves?

From a practical point of view, the most eye-catching difference between those methods
is maybe the shape of the result: The alignment approaches deliver a model of the motifs

4



(usually a weight matrix) built from the alignment, the enumerative methods a list of over-
represented oligomers, possibly already grouped to form consensus sequences. Figure 1

shows an exemplified flowchart to illustrate this.

Differences of Motif Identification Approaches

One important difference among the approaches concerns the background model. For
example, a simple background is to account for a different overall G/C content. Without
such a model, you will most likely find the obvious, e. g. mainly GC-rich motifs in
organisms whose promoters have a high GC content. A better model is constructed from
the set of all promoters and takes their specific sequence composition into account. With
such a model, you avoid finding motifs that are common to all promoters such as TATA
boxes. But this also means that a specific model, at least for each organism, has to
be trained, and this information is not always available. Enumerative methods have to
use such an elaborate background model because they need it to judge the importance
of frequent patterns. In contrast, alignment methods usually incorporate only the G/C
content, which makes them more prone to fail if the motif is not very well conserved
among the sequences and the sequences to be examined become too largé.

Most of the enumerative algorithms need to have the size of the motif specified in
advance. Because of the fixed size, they often deliver a number of similar motifs simply
shifted by one base or having mismatches. Some methods provide an automatic post-
processing to group motifs to consensus strings and thus come up with a small number of
putative regulatory elements that can be examined by experts more easily. A potential

problem here is that parts of the consensus might come from different sequences.



The alignment approach requires different statistics depending on how often a pattern
should be present in the sequences. For instance, MEME can be run in three modes
assuming that a motif occurs exactly once, at most once, or an arbitrary number of times
per promoter sequence. The Gibbs sampler implementation listed in table 1 also allows
for zero or multiple ocurrences. In principle, alignment methods yield one pattern per run,
but they can be run several times to detect more than one motif, masking out previously
found sites. Gibbs sampling is a non-deterministic approach, meaning that even without

masking out sites, it might deliver different motifs.

New directions

Some limitations of enumerative methods have been eliminated by a number of recent
publications: The motif identification problem was maybe the most outstanding topic at
the ISMB 2000 conference on intelligent systems for molecular biology! and has also been
prominent in several other publications. It is now possible to detect homo- or hetero-
dimer motifs separated by a fixed or variable spacer length'®, or a variable motif length
in general!. To allow for mismatches, ambiguous nucleotide letters (such as R for the
purines) are now included in the oligomer alphabet.

Thus it seems as if the enumerative approach is the method of choice: It exhaustiveley
searches over all possible oligomers and provides more significant results because of the
background modeling. In practice, though, alignment methods are more flexible: Because
of the simple background, they are not restricted to one specific organism. They can also

find long motifs the detection of which is simply not feasible by an exhaustive approach.

Thttp://ismb2000.sdsc.edu



Also, they deliver a weight matrix as a comprehensive model for a motif which can be used
more flexible than a consensus sequence for searching purposes. We therefore propose a
two-step approach: First apply an enumerative approach, and use the results to initialize
a weight matrix for an alignment method. Unfortunately, no such combined approach has
been published yet, but the Gibbs sampler given in table 1, for example, lets you specify
a weight matrix to start with. Of course, this only works if both methods are available,
which so far is the case for only yeast and some microbial organisms.

The described methods are often applied on a set of promoters that were first grouped
together using gene expression level measurements. Bussemaker et al. recently analyzed
the whole set of yeast regulatory sequences without using any information on gene ex-
pression levels'!, constructing a dictionary of oligomers of increasing length and using the
previous dictionary of shorter oligos as background. A new way to look at the data is to
cluster genes based on both expression levels and common motifs at the same time'2. This
can help to separate gene groups that are active under the same conditions but belong to
separate regulatory pathways.

An orthologous approach is to identify elements not by analyzing different promoters
from the same organism, but promoters of the same gene from about 10 different related
species®. An optimal alignment of a small region of specified size is constructed that takes
the phylogenetic distance into account.

The question remains how we can use all these methods when we move on to the
analysis of higher eukaryotes with their highly complex genomes. The euchromatin of
D. melanogaster has a gene density of roughly one gene every 9 kilobases and an average

predicted transcript size of 3058 bp'4, leaving a huge portion of the genome as potential



locations of regulatory elements. In this case, the alignment of noncoding sequences from
two related species, also known as phylogenetic footprinting, can help to narrow the search
region and reveal conserved and potentially regulatory regions®!®. A recent publication
closes the gap between this approach and motif identification: 28 orthologous co-regulated
gene pairs from human and rat were automatically aligned to identify conserved ungapped
sequence blocks, and the subsequent analysis of the conserved parts with a Gibbs sampling
approach reveiled the known motifs that were missed otherwise!”. The main assumption
for phylogenetic approaches is that the regulatory pathway itself has not diverged which
would result in different motifs with the same function.

If we do not have information from related species, we can concentrate on the analysis
of proximal promoter regions close to TSSs, but the length of UTRs of higher eukaryotes
prevents us from assuming that the TSSs can be found immediately upstream of the
coding part of a gene. In our recent genome annotation assessment'®, the 92 Drosophila
genes from the set for which full-length cDNA information was available had an average
UTR length of about 1,900 bp (17 transcripts had UTRs longer than 1,000 bp). This

means we have to find the start sites first.

Finding the Promoters in Genomic DNA

For a long time, bioinformaticians have tried to come up with algorithms able to identify
the TSSs in eukaryotes. This is not easy because promoters are very diverse, and even
well-known signals such as the TATA box can be weakly conserved or missing altogether.

Algorithms for general promoter recognition so far can be classified into two groups:



e Search-by-signal algorithms make predictions based on the detection of core pro-
moter elements such as the TATA box or the initiator, and/or transcription factor

binding sites outside the core'.

e Search-by-content algorithms identify regulatory regions by using measures based
on the sequence composition of promoter and non-promoter (typically coding and

intron sequences) examples?.

There are also methods that combine both ideas — looking for signals and for regions
of specific compositior?!?2,

For an exact localization, promoter prediction should also mean identification of TSSs.
But search-by-content methods do not provide good TSS predictions because they do not
look for positionally conserved signals. To enable the comparison of different algorithms,
predictions are thus counted as correct if they are made within a window around an
experimentally verified start site. Using this scoring, an evaluation in 1997 found that
many algorithms identified a third up to half of the start sites within genomic DNA
sequences®. The programs were run ab initio, i. e. without any additional information
but the sequence itself. The problem, though, was the vast number of false positives:

Even the best algorithms had one false TSS prediction within 500-1,000 base pairs.

New Features, New Algorithms, New Hope

As a response to these rather disencouraging results, different approaches for promoter
finding were pursued. One idea is to provide an accurate prediction of the TSS, but only

for small regions known to contain a promoter**. An ”opposite” algorithm provides specific



predictions of regulatory regions (of a size of roughly 1,000 bp) via search-by-content, but
gives no information whether the affected gene is on the leading or lagging strand, or
where within the region the TSS itself is located®. A fundamentally different approach
is to construct specific instead of general promoter models for groups of genes such as
muscle active genes known by experiment to contain specific combinations of regulatory
elements (reviewed in detail by Werner’”) — this is where promoter finding and analysis
meet.

With the complete genome of many organisms at our fingertips, interest in general
promoter prediction has awoke again. First, there is the fact that even though the ab
initio performance of the algorithms is not as good as desired, this is not the way the
annotation of genomes is done. Many algorithms are used together, and limiting the
analyzed sequence to upstream from the start of a gene prediction or a cDNA alignment
reduces the number of false predictions immensely. Second, slow but constant advance
has been made — in a more recent assessment of both ab initio and gene finder coupled
promoter predictions for Drosophila, the ab initio methods had less false positives than
before'®, and coupling them with a gene finder proved to be quite successful — although it
looks like it will be hard to achieve a sensitivity of more than 50%. Third, other features
are known that can be derived from the DNA sequence®® and may be suitable for promoter

recognition:

e Many vertebrate promoter regions coincide with CpG islands. These are regions
where the C4+G content is high and the CG dinucleotide occurs more frequently
than expected, a consequence of the fact that the DNA of many promoters is un-

methylated so as to be accessible to regulatory proteins. A method to discriminate
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between CpG islands in promoters and in other parts of the genome has just been
published®. This method can be seen as a search-by-content approach and does not
deliver a TSS prediction. The use of CpG island feature in the latest version of our
McPromoter predictor (see table 1) has also lead to a considerable reduction of false
positives by roughly one third. Unfortunately, CpG islands only exist in vertebrate

organisms.

e Features common to promoters of all organisms are structural properties of DNA,
such as bendability or conformation (a compilation was carried out by Liao et al3°).
For these properties, scoring tables based on di- or trinucleotides were determined
experimentally and can be used to calculate profiles over the DNA sequence. Stud-
ies have shown that in general, eukaryotic promoters indeed do have a distinct pro-
file when compared to coding or non-regulatory sequences®. Whether using these
features will improve recognition remains to be seen: The profiles of individual se-
quences can be very noisy and thus not easy to use, and it is not clear yet if they

provide new information that is not accurately reflected in the sequence itself.

The most recently published promoter finding and analysis tools are listed in table 1.
More links can be found in comprehensive reviews??7,

Will we be able to find the regulatory regions of eukaryotes with high accuracy, and
if so, will we be able to derive complex models for transcription regulation from their

sequence? The question is open, but we certainly are on the way.
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Program Name

description HTTP Address

General Promoter Finding

Promoter2.0

search-by-signal, artificial neural network www.cbs.dtu.dk/services/Promoter

NNPP search-by-signal, time delay neural network www.fruitfly.org/seq-tools/promoter.html
PromoterInspector search-by-content, class-specific oligomers www.gsf.de/biodv
McPromoter V3 signal/content, www.mustererkennung.de/HTML/English/

stochastic segment model/neural network ~ Research/Promoter
CorePromoter signal/content, discriminant analysis argon.cshl.org

Promoter Analysis Tools

RSA Tools yeast and microbial exhaustive search www.ucmb.ulb.ac.be/bioinformatics/rsa-tools
Gibbs sampler alignment method bayesweb.wadsworth.org/gibbs/gibbs.html
MEME alignment via Expectation Maximization meme.sdsc.edu
BBA phylogenetic footprinting by bayesweb.wadsworth.org/

Bayes alignment cgi-bin/bayes_align12.pl
PipMaker phylogenetic footprinting by identity plots  bio.cse.psu.edu

Table 1: A selection of recently published WWW accessible promoter finding and analysis

tools.
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A C G T
1 -2.571 1.967 -2.584 -2.523
2 1.643 -2.585 -2.577 -2.583
3 -2.580 1.970 -2.582 -2.583
(log-odds) | 4 -2.581 -2.583 1.927 -2.546
weight matrix | 5 -2.583 -2.583 -2.584 1.715
6 -2.583 -2.526 1.926 -2.584
7 -2.578 0.735 1.235 -2.583
8 -0.390 -2.582 1.620 -2.584
9 0.438 -2.576 0.696 -0.348
alignment 10 -0.410 1.276 -2.571 -0.335
method 11 -2.583 -2.574 0.702 1.023
extraction of 12 1.340 -2.582 -0.158 -2.583
regulatory .. . CACTCACACGTGG GACTAGCAC. . .
group of genes regions .. . CGTCGGGCCACGTGC TCACTTG. . .
withsimilar | ——————>  TTCACACGTGG GTTTAAAAAGGCA. . .
expression profiles ... TGGCACGTGC AATGAAC. . .
. TTTCCAG CACGTGG GGOGGAAATT. . .
cgcacg. . ..
. gcacgt. ..
; ..cacgtg..
?;?;;anve cluster 1 ...acgtgc.
....cgtgcg
cgcacgtgcg
aaacgt. ..
.aacgtg. .
cluster2 ..acgtgc.
clusters of ...cgtgeg
over-represented aaacgt gcg
oligomers
cccacg. . ..
. ccacgt. ..
cluster 3 - cacgtg. .
...acgtgc.
....cgtgcg
cccacgtgcg

Figure 1: An exemplified flowchart to illustrate the two different approaches for motif
identification. We analyzed 800 bp upstream from the translation start sites of the 5 genes
from the yeast gene family PHO by the publicly available systems MEME (alignment)
and RSA (exhaustive search, see table 1). MEME was run on both strands, one occurence
per sequence mode, and found the known motif ranked as second best. RSA tools was

run with oligo size 6 and non-coding regions as background, as set by the demo mode of

the system.
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