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ABSTRACT
We present an approach to integrate physical properties

of DNA, such as DNA bendability or GC content, into our
probabilistic promoter recognition system MCPROMOTER.
In the new model, a promoter is represented as a se-
quence of consecutive segments represented by joint like-
lihoods for DNA sequence and profiles of physical proper-
ties. Sequence likelihoods are modeled with interpolated
Markov chains, physical properties with Gaussian distri-
butions. The background uses two joint sequence/profile
models for coding and non-coding sequences, each con-
sisting of a mixture of a sense and an anti-sense sub-
model. On a large Drosophila test set, we achieved a re-
duction of about 30% of false positives when compared
with a model solely based on sequence likelihoods.
Contact: Uwe.Ohler@informatik.uni-erlangen.de

INTRODUCTION
The notoriously difficult problem of computational pro-
moter recognition in eukaryotic DNA (Fickett and Hatzi-
georgiou, 1997) has up to now been largely based on spe-
cific features of the DNA promoter sequence: Binding
sites of transcription factors, or the base composition in
general. But a regulatory region such as a eukaryotic pro-
moter does not only contain specific sequence elements
that serve as targets for interacting proteins, but also ex-
hibits distinct physical properties reflected in its sequence
(Latchman, 1998). For example, the DNA of an actively
transcribed promoter has to be accessible and must not be
wrapped up in nucleosomes. CpG islands which hint at re-
gions of generally low methylation and therefore low like-
lihood to attract nucleosomes are characteristic for many
vertebrate promoters (Antequera and Bird, 1993). A re-
cent approach used CpG island features — GC content,
ratio of expected to observed CG dinucleotides, and length
— to find regulatory regions and aimed at the distinction
of promoter-associated from non-associated CpG islands
(Ioshikhes and Zhang, 2000).

Because of the non-existing or very weak methylation
in non-vertebrate eukaryotes such asD. melanogaster
(Gowher et al., 2000), CpG islands features cannot be ex-
ploited for eukaryotic promoter finding in general. Studies
on human andE. colipromoter sequences (Pedersen et al.,
1998; Babenko et al., 1999; Pedersen et al., 2000), though,
showed that the DNA sequence in promoters causes char-
acteristic profiles in base composition or other DNA prop-
erties such as bendability, nucleosome positioning prefer-
ence and propeller twist (see figures 1 and 2). These pro-
files are based on experimentally derived parameter tables
for di- or trinucleotides and can easily be calculated from
the sequence. Earlier, Lisser and Margalit (1994) investi-
gated such DNA structural profiles ofE. coli promoters
and used the mean value of selected properties within five
promoter segments as feature variables. By doing so, they
were able to distinguish between promoter and coding se-
quences by means of linear discriminant analysis, but they
did not integrate these features in a system for promoter
recognition.

An example where the target of a DNA interacting
protein is largely defined by its physical properties is the
P transposable element insertion site in Drosophila. Here,
no clear sequence consensus can be seen, but for a large
variety of properties, the average profile at the insertion
site shows distinct peaks (Liao et al., 2000).

One reason why property profiles have not yet been
taken into account in existing promoter prediction systems
might be that individual promoter profiles are extremely
noisy and not straightforward to use. Apart from the noise,
the profiles are calculated from the primary sequence
itself, and it was thus not clear if the properties might
already be implicitly captured in a model of the sequence
alone, or if they could lead to an improvement in promoter
recognition at all.

The very nature of the profile data demands a proba-
bilistic modeling. This enables us not only to cope with
noisy data, but also allows for a clean integration into ex-
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first base second base
A C G T

A 35.1 31.5 31.9 29.3
C 37.3 32.9 36.1 31.9
G 36.3 33.6 32.9 31.5
T 37.8 36.3 37.3 35.1

Table 1. Parameter table for protein-DNA-twist profile calculation. The
entries represent the mean twist angle in degrees.

isting probabilistic frameworks for promoter prediction.In
this paper, we explain how we did this for our probabilis-
tic promoter finding system MCPROMOTER (Ohler et al.,
2000; Ohler, 2000). To our knowledge, this is the first time
that sequence and profile models are put together for (eu-
karyotic) promoter recognition, and we are able to show
that this considerably improves the performance.

The rest of the paper is organized as follows: After
showing some examples of profiles, we describe our
promoter prediction system and how to extend it to model
physical properties. Next, we explain how features are
calculated from a profile, and how we select among the
large number of possible properties. We close by showing
the results on a large data set of Drosophila promoter
sequences and discussing the approach.

DATA SETS AND PROFILE CALCULATION
We explored the 14 different parameter sets of physical
DNA properties compiled by Liao et al. (2000) (see
table 2). Apart from the GC content based on tri-
nucleotides which simply counts how many Guanines and
Cytosines are present in the trinucleotide centered at the
actual sequence position (see figure 1), the parameter
tables are all experimentally derived and represent values
related to physical properties of di- or tri-nucleotides
such as bendability, DNA conformation or protein-DNA-
interaction. Table 1 shows the values for protein-DNA-
twist as example.

A profile simply consists of the corresponding values
from the chosen parameter set along a given DNA
sequence. Because the parameters refer to di- or tri-
nucleotides only, those profiles are generally very noisy.
Therefore, they are smoothed with a mean value filter of
a certain fixed width, usually 20–30 bp (Pedersen et al.,
1998; Liao et al., 2000). In our experiments, we used a
mean filter of 21 bases.

Data sets
Our training set consists of non-redundantDrosophilapro-
moters, coding, and non-coding sequences. All sequences
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Fig. 1.GC content of promoters, coding, and non-coding sequences
in Drosophila. The transcription start sites of the promoters are
aligned at position 250. The profiles were smoothed with a mean
filter of width 21 and averaged over all sequences. As the profile
is based on tri-nucleotides, the mean absolute freuqency may range
from 0 to 3.

are 300 bp long; the promoters contain 250 bp upstream
and 50 bp downstream of the annotated start site. The
training set contains a total of 247 promoters, 240 non-
coding and 711 coding sequences. The promoters are a
joint set of the non-redundantDrosophilapromoters from
the Eukaryotic Promoter Database (EPD version 63, Perier
et al. (2000)) and the Drosophila promoter database of
Arkhipova (1995) following the guidelines of EPD for
non-redundant sets; the non-promoters were taken from
the training set of the GENIE gene finder for Drosophila
(Reese et al., 2000). It is essentially the same set that we
compiled for the Genome Annotation Assessment Project
(GASP, Reese et al. (2000)), with the slight difference that
we extracted the full 300 bp promoter sequences after the
Drosophila genome became public. A careful check af-
terwards resulted in the elimination of eight of the previ-
ously 255 promoter sequences. To test our approach, we
compared the predictors with and without using structural
information on the GASP set of 92 potentialDrosophila
transcription start sites.

Example profiles
Figure 1 shows the GC content profiles of the three se-
quence classes within our training set, namely coding and
intron sequences as well as promoters whose transcription
start site is aligned at position 250. The profiles are aver-
aged over all sequences in the set. Coding and non-coding
sequences, as expected, show rather uniform values with
no positional preferences. In contrast, the promoters have
a distinct profile with drops in the areas of TATA box and
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Fig. 2. Example GC content profile of one Drosophila promoter
from the training set. Even though one can see the distinct drop at
the position of the TATA box, the overall picture is considerably
different from the average profile (see figure 1).

initiator sites.
Figure 1 gives an inaccurate impression because the

profile shown is averaged over a large set of sequences and
does not reflect that some promoters lack distinct profile
features such as the TATA box valley. Moreover, even in
the case where a TATA box is present, individual profiles
show a high degree of variation from the average profile
(figure 2), resulting from the unique underlying sequence.

JOINT MODELING OF PROMOTER
SEQUENCE AND STRUCTURE LIKELIHOODS
To illustrate our approach to integrating structural fea-
tures, we briefly review our existing promoter sequence
model and then show how we extended it by adding like-
lihoods for structural properties.

Stochastic segment models of promoter regions
Our approach (see Ohler et al. (2000) for a description
of the algorithms) is based on the observation that
a eukaryotic promoter can generally be divided into
segments: the region upstream from the transcription start
site, the core promoter where the main initiation complex
binds, and a region downstream from the start site. The
core promoter can be further split into the TATA box
and the initiator region (Inr), separated by a spacer of
approximately 15 bp. The upstream region is divided into
two segments (see figure 3).

As one can see, this segmental structure of the promoter
model corresponds well with the GC profile in figure
1: The first 100 or so bases have a low average GC
content (state 1), followed by a gradual increase (state 2),
the decline at the TATA box (state 3), an uprise at the

spacer (state 4), another decline at the initiator (state 5)
and finally a distinct peak at the position of the GC-rich
downstream promoter element DPE (state 6, see Kutach
and Kadonaga (2000)).

This so-calledstochastic segment model(SSM) is a
generalization of a hidden Markov model. Like an HMM,
it consists of a setQ of connected states which can
be characterized by an initial state distributionπ and
state transition distributionA with entries aij . Each
stateqj contains an output distribution for the production
of symbols which can be observed from the outside.
While the output distribution of an HMM state can
only emit a single symbol per state (Rabiner and Juang,
1993), each SSM state incorporates a joint distribution
bj which generates a sequence of symbols (a whole
segment). The length of the generated segment underlies a
duration distributiondj associated with the state. Thus, the
probabilityPj(w i) that a state produces a partial sequence
w i of lengthτi is given by

Pj(w i) = dj(τi) · bj(w i|τi). (1)

With a given valid segmentation(s , τ ) =
((qs1

, τ1) . . . (qsm
, τm)) of sequencew into segments

w j , (
∑

j
τj = |w |), the probability of the sequence can

be expressed as

P (w , s , τ ) = πs1

m−1
∏

i=1

Psi
(w i)asisi+1

· Psm
(wm) (2)

Most gene finding systems which make use of stochastic
models fit into the framework of SSMs. The GenScan sys-
tem (Burge and Karlin, 1997), in particular, uses a model
structure similar to ours. The difference is that we cannot
expect the training material to be annotated in advance,
i. e. how a promoter is divided up into the six segments
that our model contains. We therefore adopted the Viterbi
training algorithm to include length distributions: First, we
determine the most likely state sequence for each training
sequence, then we treat this segmentation as the correct
annotation. The resulting training material for each state
is used to estimate the output and duration distribution. Of
course, the probabilities of the state transitions and initial
states are modified as well. The algorithm maximizes the
Viterbi score of the model, i. e., the score obtained on the
best segmentation is guaranteed to increase after each iter-
ation.

The probability of generating a sequencew with a seg-
ment model is equal to the sum of all possible segmenta-
tions over which the sequence can be produced. This can
be computed efficiently by an adaption of the forward al-
gorithm that also takes the length distribution into account.
The most likely segmentation can be computed using the
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Fig. 3. Structure of the promoter segment model.
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Fig. 4. Topology of the neural network component. In the first layer,sequence (s) and profile (p) likelihoods are grouped together. An
additional input node with the total promoter sequence likelihood as computed by the Viterbi algorithm is connected with all nodes within
the third layer of the net. For clarity, this input node and its connections are not shown.

Viterbi algorithm, in which the sum over all possible seg-
mentations is replaced by its maximum.

As submodels for each state, we use interpolated
Markov chains (Ohler et al., 1999, IMCs) of different
order, depending on the size of the segment. IMCs can be
very efficiently evaluated which allows to apply the model
on large genomic sequences. We also use IMCs for the
background model for coding and non-coding sequences,
each of which consists of two IMCs trained on sense and
anti-sense sequences.

Extending the sequence model with profile
likelihoods
The above segment model can easily be extended to
handle profile features; instead of calculating the segment
probabilities based on the sequence alone, we replace
equation 1 by the joint probability on sequence and profile:

Pj(w i,p i) = dj(τi) · bj(w i|τi) · cj(p i[w i, τi]) (3)

We include a probabilistic submodelcj in each state
that describes the likelihood of a profilep i, given the
sequence and its length. No other changes are necessary,
all algorithms that were applicable to the sequence model
can also be used for the joint sequence/profile model.
In the section on feature extraction and selection below,
we will explain which features we extract from structural
profiles and how we model those features in a probabilistic
way.

For efficiency, the best segmentation remains solely
based on the sequence probabilities instead of running
the Viterbi algorithm using the sequence/profile product
likelihoods. The profile features are thus calculated based
on the best path delivered by application of the sequence
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Fig. 5. Overview of the MCPROMOTERsystem including profile features.

model. In the section on the segmental profile features we
will show that this approximation makes little difference
for the features that we extract from the profiles.

Allowing non-linear combination of segments
So far, the modeling of promoters allows for dependences
within a model state, but conditional independence is
assumed between the states. This does certainly not reflect
the biological reality — studies have shown that there
are dependences among the states, namely between TATA
box and initiator or TATA box and downstream promoter
element (Kutach and Kadonaga, 2000). If one of them is
weakly conserved, it is much more likely that the other one
is strong and will obtain a good score under the model.

To account for this, we added a neural network that takes
the promoter and background likelihoods and the likeli-
hoods produced by each state as input and is therefore
able to respect arbitrary dependencies between the pro-
moter parts. The network is trained on a disjoint part of
the training set after the segment models have been estab-
lished.

In principle, we are able to simply provide the se-
quence/structure product probability of equation 3 in place
of the sequence probability alone. A more promising way,
though, is to replace each likelihood input node by a se-
quence/profile double node and connect them solely with
each other in the first hidden layer. We thus automatically
derive a linear weighting for the relative importance of se-
quence and physical property, similar to the approach to

combine acoustic and linguistic evidence in speech recog-
nition. Figure 4 shows the resulting network topology. In
the experiments below, we used one output node, and six
nodes in the previous layer.

When we look for promoters in genomic sequences, we
calculate the score of the model every 10 bp, and smooth
the output of the neural network with a median filter of
width 3. We then set a threshold on the NN output and
report local maxima above the threshold as hits, along with
the exact position where the sequence model entered the
initiator state. Figure 5 shows the whole system and flow
of information.

FEATURE EXTRACTION AND SELECTION
Segmental profile features
Even after smoothing with a mean filter, the profile of
a single sequence appears rather noisy. We therefore
decided not to use position-based probabilities for the
profile values but rather use the mean profile values of
whole segments as feature variables. The likelihood of
observing a particular profile in stateqj is assumed to be
generated by a Gaussian distribution:

cj(p i[w i, τi]) :=

1
√

|2πΣ j|
exp

(

−
1

2
(x i − µj)

T
Σ

−1

j (x i − µj)

)

(4)

with
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x i =
1

τi

τi
∑

k=1

pk
i (5)

being the mean of the profile values within segment
s i (according to some parameter set), andµj and Σ j

the parameters of the Gaussian. We therefore have the
following setup for profile feature calculation:

1. Compute a profile of a selected physical property
over the sequence and smooth it with a mean filter
of width 21.

2. Compute the segmentation of the actual 300 bp
window with the sequence-based model.

3. Calculate the mean profile values for the six seg-
ments.

4. Judge these values with a corresponding Gaussian
distribution for each segment.

These features are then fed into the neural network input
layer along with the corresponding sequence likelihoods,
as described in the previous section. Similar profile
distributions are also used for the coding and non-
coding background classes. In contrast to the sequence
background that consists of mixture models for sense
and anti-sense, the profiles are the same on both strands.
Because we use a distribution only on the mean value
within a segment, small changes in the segmentation
result in small changes of the likelihood; it is therefore
justified to calculate the optimal segmentation based on
the sequence alone (see equation 3).

Classification based on structural profile features
To select among the many possible parameter sets, we first
studied how well a classification based on every single
property could be achieved. We performed three cross-
validation experiments on the data, each time leaving aside
a different third as an independent test set. Half of the
training data was used to train the Gaussian distributions
(similar to the outlined algorithm, but with training of
the Gaussian distributions in step 4), the other half as
an independent data set to train a neural network that
combines the likelihoods of the Gaussians. This neural
network is a multi-layer perceptron with eight inputs, six
hidden and one output node (corresponding to the network
in figure 4 without sequence likelihoods), and is trained
with simple back-propagation.

The performance of the individual features can be seen
from table 2. We use the equal recognition rate (ERR)
for classification into promoter/non-promoter and the
integral over the receiver operating characteristics (ROC)
as measures. A ROC curve shows the recognition rate
(true positives) for pre-selected values of false positives,
in our case 0 to 100 percent in one-percent steps. Then,

physical property ERR ROC

tri-nucleotide CG content 68.2 7336
DNA bendability 61.5 6519
A-philicity 66.1 7291
protein induced deformability 64.3 6909
B-DNA twist 50.7 5054
protein-DNA twist 71.5 7772
Z-DNA stabilizing energy 67.8 7362
nucleosome positioning 66.8 7252
stacking energy 64.3 7133
propeller twist 70.6 7650
duplex stability (disrupt energy) 61.6 6698
DNA denaturation 63.8 6982
DNA bending stiffness 70.7 7633
duplex stability (free energy) 65.0 7136

Table 2.Classification of promoters based on physical properties ofDNA.

the trapezoid rule is used to numerically compute the
integral. The highest achievable value is 10,000 (100*100,
i.e. perfect recognition for all rates of false positives);a
random classification results in a value of 5,000. ERR
gives the recognition performance at the point where the
rate of true positives equals the rate of true negatives; the
ROC integral judges the performance in a more global
manner. In our case, ERR and ROC are highly correlated
and lead to the same ranking in most cases.

As we can see, a classification based on the profile
means of the six promoter segments already results in a
surprisingly high classification performance for many of
the parameter sets. The physical property leading to the
highest classification rate is protein-DNA-twist (71.5%
ERR). Only B-DNA twist leads to a classification that is
just slightly above chance (50.7% ERR).

Combination of several features
The next step is the combination of several of the
features. A feature selection scheme should be based
on both classification performance and correlation of the
feature under consideration to the already existing feature
set (Niemann, 1983). Many of the 14 parameter sets
are highly correlated (see Liao et al. (2000) and the
web supplement at http://www.fruitfly.org/∼guochun/pins.
html), and even if a certain feature delivered a good
classification rate when used on its own, it will not
improve much on the overall classification when it is
correlated too closely to a feature in the current set.

The properties that gave the best results after protein-
DNA-twist are DNA bending stiffness and propeller twist.
The parameters of propeller twist are correlated with the
ones of protein-DNA-twist with a correlation coefficient
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(CC) of 0.68, the ones of bending stiffness with a CC
of -0.11. We therefore used the mean values of both
bending stiffness and protein-DNA-twist and trained a
two-dimensional Gaussian with full covariance matrix
for every segment. Although the parameters are hardly
correlated, this did not lead to an improved recognition
rate.

Instead, we added the coefficient of the regression line
computed for the values of protein-DNA-twist within a
segment as additional feature: Even though the individual
values do not properly reflect it, a distinct ascent or descent
such as the increase in GC content before the TATA box
(see figure 1) might be visible from a regression line.
This resulted in a slightly improved recognition rate (ROC
integral value of 7812).

For some features, a modeling of the profile with a
mixture distribution can be advantageous; e. g. for GC
content, this should account for different GC isochores, or
for TATA-box containing versus TATA-less promoters. In
the case of protein-DNA-twist, the training of a mixture
with two components by the expectation-maximization
algorithm lead to two almost identical distributions in
all cases and therefore to equal classification results. We
manually checked this result for the TATA box region:
For the three cross-validations experiments, we divided
the training set into TATA box containing and TATA-less
promoters†, and trained two Gaussians on the respective
subsets. In all three cases, the parameters differed only
slightly (Fisher criterion score,(µ1 − µ2)

2/(σ2

1
+ σ2

2
),

between5.3 · 10−7 and 1.2 · 10−6). We consequently
used only one two-dimensional Gaussian distribution with
the mean value and the regression line coefficient of the
protein-DNA-twist profile as features.

EXPERIMENTS AND RESULTS
To test our new model on a realistic data set, we trained
the integrated model as in figure 5; half of our data was
used to train the distributions (i. e., the Markov chains
for the sequence and Gaussians for the structure), then
the likelihoods of other half were computed and used as
features to train the neural network.

We applied this model on the extensive GASP promoter
data test set. The criteria for success were the same as
in the GASP experiment: A promoter was considered to
be found if there was a hit in the region from -500 to
+50 of the annotated 5’ end of the full-length cDNA to
genomic alignment. The region from +50 up to the end of
the annotation of the gene was used as “negative region”.
The total positive region is 50,600 bases long, and the
negative region consists of 802,580 bases.

Figure 6 shows the results we obtained (a) for the

†MatInspector public domain release (Quandt et al., 1995) with a hit above
0.7 core and 0.8 total similarity for TBP site within position -50 and 0.

true positives

320300280260240220200180
26

28

30

32

34

36

38

40

Profile

SSM
SSM/NN

false positives

Fig. 6. Results of promoter recognition. Shown are the absolute
numbers of true and false positives for different thresholds. We
compare the result of our previous segment model (SSM, see Ohler
(2000)) with the new results obtained by a segment model/neural
network hybrid (SSM/NN) and the model including profile features
(Profile).

stochastic segment models as reported by Ohler (2000),
(b) the stochastic segment/neural network model without
profile features, and (c) the model with profile features as
in figure 5. The different rates of true and false positives
are obtained by using several threshold values of the neural
network classifier.

It becomes clear that both the combination of likeli-
hoods with a neural network and especially the integration
of profile features significantly reduce the number of false
positives. At a slightly lower absolute recognition rate (32
instead of 33 promoters), the number of false predictions
is reduced by roughly 30% (from 1/3,530 to 1/4,740 bases)
when taking profile features into account.

DISCUSSION
We present a first step towards an integration of sequence
and structural profile likelihoods in a probabilistic pro-
moter recognition system. Our approach models a pro-
moter as a sequence of consecutive segments, each of
which is evaluated for both sequence and profile likelihood
and represented by possibly arbitrarily complex sequence
and profile submodels. The likelihoods produced by each
state are finally combined in a neural network to allow for
a non-linear weighting of the segments and for a linear
weighting of sequence and profile likelihood contribution.

The idea of modeling the structural profiles solely by a
Gaussian distribution on their mean values within a seg-
ment is clearly a very simple one. Nevertheless, the clas-
sification of promoter and non-promoter sequences us-
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ing only these simple profile features achieves recognition
rates of up to 71.5%. The ranking in table 2 contains the
result if the same single property is taken into account for
all segments. It therefore represents an overall picture, and
we cannot necessarily conclude from it what is most or
least important for promoter function in the organism. In
contrast, in their study ofE. coli promoters, Lisser and
Margalit (1994) combined three properties calculated on
five segments with linear discriminant analysis. They ob-
served that while one property contributed much to the
overall classification within one segment, another one was
specific for a different promoter segment. This might be
an explanation for the fact that the combination of several
profiles in our model did not improve on the recognition
so far: The considered properties are chosen based on the
overall classification and included in all of the segments.
Instead, one could think of first assessing the quality of
the properties for each individual segment independently,
and then model only on the suitable ones by the Gaussian
distribution.

As the general setup of equation 3 allows for arbitrary
models to represent the profile likelihood, a more exact
modeling of the profile slope, e. g. with continuous hidden
Markov models, is also worth exploring. It remains to be
tested whether this will lead to a further improvement or
if the profile data simply is too noisy. Besides, there are
other DNA physical properties that we did not consider
so far; a more extensive collection can be found in the
PROPERTY database (Ponomarenko et al., 1999). We are
currently including the profile likelihoods in our vertebrate
promoter predictor as well; the non-linear modeling by a
neural network and additional CpG island features already
delivered promising results. Most important of all, though,
is that a clear improvement on ourDrosophila data set
is visible, and that the incorporation of structural features
helps us to recognize promoters more reliably.

The MCPROMOTER system can be accessed at http:
//promoter.informatik.uni-erlangen.de.
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