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Abstract

In this paper we present an improved appearance-
based approach for the localization and classifi-
cation of 3-D objects in 2-D gray level images.
Thereby we calculate local feature vectors by the
coefficients of the wavelet multiresolution analysis
and model them statistically. Since the appearance

of the objects, i. e. also the size of the objects in thesigure 1: Different viewpoints for a fork. The size
image, vary due to out-of-image-plane transformaof the required fix bounding box is plotted. As one

tions, the features themselves as well as the I’egio&m see the fork takes up only a small part of the
of interest are modelled as function of the externahounding box

transformations. Further, we present and test dif-
ferent measurements for the recognition of objects
that have different sizes. The experiments on alargfhey need different view-classes, whereby adja-
dataset with more than 40000 images show that thg, viewpoints are summarized t(,) one view-
approach is well suited for this recognition task.

class.
[4] apply principal component analysis and encode
image data as “eigen-images”, whereby only one
1 Introduction “eigenspace” is necessary for all possible view-
points. Likewise [1], who model the feature by
For object recognition there are two main ap-Gaussian mixtures, needs only one view-class. Ad-
proaches: the approaches that use the results &fittedly only [4] can classify and localize objects,
a segmentation process as features and the aphereas [8] and [1] can only classify objects, but
proaches that use the image data, i.e. the pixel inot estimate its pose.
tensities, directly. In the segmentation process geo- Byt all these approaches share the same problem:
metric attributes like lines or vertices are detectedthey employ a fix bounding box that has to be so
Both, themselves [2] and the relationship betweenarge that the object lays for all external transforma-
them [9] are used as features. But these approach@gns, i. e. out-of-image-plane transformations, in-
suffer from two disadvantages: segmentation errorsjde the box. If the appearance of the object in the
and loss of informations. image varies very much for the external transforma-
Appearance-based approaches avoid these disagbns, the bounding box encloses very much back-
vantages. One approach are the so called “mulground and the object takes up only a little part of
tidimensional receptive field histograms” used bythe bounding box, as one can see in figure 1. But
[8] that contain the results of local filtering, e.g. for a reliable recognition only object features and
by Gaussian derivatives filters.  But for mod- as sparse background features as possible should be
elling 3-D transformations, e. g. a turntable rotation.considered. The problem can be decreased, but not
*This work was funded by the German Science Foundation30|_ved by using view-classes for the different view-
(DFG) Graduate College "3-D Image Analysis and Synthesis”.  points.
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Figure 2: left: image covered by the grid for the local feature vectors, thieat is enclosed by a tight
boundary (black line), the old fix bounding box [5] is plottedgray; middle: the object grid moves with
the same internal rotatiafi,; and internal translatioti..: as the objectiight: for the external rotatiogp,,,

and the external transformation (scalirtg), the number of the feature vectors that belong to the bounded
regionA, i. e. the object, changes

We use and improve the approach of [5]: Localis calculated. The advantage of local features is
features are derived from the wavelet multiresoluthat if only one pixel in the image changes, e. g. by
tion analysis and are modelled statistically by nor-noise or occlusion, only the respective feature vec-
mal distributions. So this approach is robust withtor ¢, s changes, the other feature vectors will be
respect to noise and to changes in the lightning coranchanged.
ditions. For external transformation, the means of For the feature extraction we performtimes
the feature vectors are modelled as functions of thérespective the chosen sampling resolutigih the
external transformations. wavelet multiresolution analysis [3] using Johnston

In this paper, we additionally model the size of 8-TAP wavelets. The first component of the local
the region of interest - that is the region of the ob-feature vectoe, s is the logarithmic amount of the
ject in the image - as a function of the externallow-pass coefficient on the respective position, the
transformations, so that this region enclose the obsecond component of the local feature vector is the
ject tightly for the respective transformation. Thelogarithmic sum of the amounts of the first high-
parameter of these functions are learned automapass coefficients on the respective positions [5]. We
ically in the training. The localization and classi- improve the feature extraction by using not only the
fication of the objects are performed hierarchicallyinteger values of the multiresolution analysis, but
by maximum-likelihood estimations. Thereby wethe real values. This meliorates the estimation of
propose different measurements and compare theiihe variance of the statistical model in subsection
ability to handle objects of different sizes. 2.3, and thus it improves the recognition rate. To

In the following section we describe our im- simplify the notation, we omit the index for the
proved model and present in section 3 the results adcale in the following.
the experiments for the old and the improved model.

:Nekwill end in section 4 with a summary and a out-5 o Region of Interest

ook.

For the object model we lay a close boundary

. around the object as one can see in the left image

2 Object Model of figure 2. We assume that the local feature vec-

tors inside the bounded regioh C X, in the fol-

lowing written asC'a = {ca,}i=o,...,.—1 belong

A grid with the sampling resolutionrs, = 2°  to the object and that the feature vectors outside

whereby s is the index for the scale, is laid the bounded regioX \ A, written asCx\4 =

over the square imag¢ as one can see in the {cx\ax}r=0,. k-1 With ex\ax € IR?, belong

left image of figure 2. These grid locations to the background. For internal rotations,. and

will be summarized in the following as{; = internal translations.. the position of the bounded

{@m s}ti—o. 11, Tm,s € IR>. On each grid regionA and the position of the object feature vec-

point 7 s a local feature vectoe(x,s) = cm,s  tors ca, are transformed with the same transfor-

2.1 Features
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mation as the object (see the image in the middle ofocal feature vectoe,,, dependent on the external
figure 2). Thereby the positions,, of the object transformation to the object or to the background.
grid are calculated byt,, = R(¢int)Tm + tint, FoOr the training of these functiors, (¢, text ).
wherebyR(¢int ) is the rotation matrix. In the fol- images of the object in front of a dark background
lowing we refer to the object grid with the index are necessary from different viewpoints. The deci-
m. Since after the transformation the positiatys  sion whether a local feature vecter, belongs to

of the feature vectors,,, normally do not coincide the object or to the background for a certain exter-
with the positionse », of the image grid, an interpo- nal transformation is taken analogly to the 2-D case
lation is necessary for calculating the feature vecand the valu&,, (¢..., text) Was set respective the
tors ¢,,. In [5] a interpolation scheme that is sim- assignment to 1 (object) or 0 (background) for this
ilar to a linear interpolation was used, in contrastexternal transformation:

we apply a bilinear interpolation. Additionally, for
. . . < SA:>§m(¢eXt,text) =0
the calculation of the geometric transformations wec,, 1 (@, text)
H H H ' 2 SA = gm((ﬁexwtext) = 1
employ no longer the inverse rotation matrix, but 2
the transposed rotation matrix; this improves nu- . . ) .
merical stability. For reducing the data-size and also handling
. viewpoints between the trained viewpoints, we
In [5] the bounded regionl was modelled by a model the single functiong,, as continuous and
rectangular box that was positioned manually. Be- 9 m

cause of the rectangular form, even for 2-D transfor_approxmate them by a sum of weighted basis func-

mations, there are feature vectors inside the bounci'—onsvr Le—1
ing box, i.e. assigned to the object, that properly € = Z v ®)
belong to the background, see the left image in fig- m e

ure 2. Furthermore the size of the bounding box =0

was fix, so for external transformations there are thghereby we u_sg polynomials for the b_as's funct_lons
same problems as we explained in the introduction?r- 1€ coefficients.,, . are leamed in the train-

Therefore we improve this approach: the form of "9 by minimizing the quadratic error between the
the bounded regionl was no longer restricted to a values of training and the approximated values of
rectangle and we now model its size as variable de@”(‘j’exm text).

pending on the external transformations. Addition-b Du(;lng the _ren(fgn't'o?‘ tlhe Sdlzs ank:i form O_f thde
ally, its size and form is calculated automatically ounded regiond is calculated by these traine

during the training of the object. functionsgm (ex t_e"‘l) and_the (Ijocalr:eatt)turi vee- q
If we have only internal transformatiows,. and tors e are respectively assigned to the backgroun

tint, ONly one image of the object in front of a back- or to the object:
ground that is darker than the object is necessary

for the calculation. For the training of the bounded Em(Pexts text) {
region A, a local feature vectoe,, is assigned to

the object, i.e. the bounded regieh if the value with 0 < S < 1. Thereby the threshold; de-

of its first component (that is derived by the low- termines, how tightly the bounded regidnenclose
pass value of the multiresolution analysis) is highethe object. Note that this means no segmentation
than a threshold 4, else it is assigned to the back- during the recognition, because the trained the size
ground: of the bounded region is used.

<S§:>CmECX\A
>SS = em€eCa

4)

e { <Sa=@m€XNA gy 23 Statistical Model
’ >Sa=>zn€A

We apply a statistical model and interpret the local

For the out-of-image-plane rotationg_,, and feature vectors,, as random variables. Thereby
the scalingtext, we model the form and size of the randomness among others is the noise of the
the bounded regiod as a function of the external image sampling process and changes in the light-
transformations (see right image in figure 2). Foming conditions. Assuming that the object features

this purpose, we define for each local feature vec€'4 are statistically independent from the back-

tor ¢, a function&,, (¢, text) that assigns the ground featuresC'x\ 4, for the object model we
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only need to consider the object featu@s inside
the bounded regior. Because of the varying size
of the bounded region A, it depends on the exter-
nal transformations, which local feature vectors
belong toC'4.

So, the object can be described by the den-
sity function p(Ca|B, ¢,t), depending on the
learned model parameter sBY, the rotationgp =
(Gint, Boy) T and translatiort = (tins, text)”. We  Figure 3: Different viewpoints for a pillbox, the im-
suppose that the single object feature veciofg  ages are 256 pixels in square. In the left image the
are statistical independent; in [5] also a row depenpillbox takes about 8900 pixels, in the right image
dency was modelled, but it gave worse results, andbout 3800 pixels
therefore we take it no longer into account. Fur-
ther we assume that the features are normally dis-

tributed. So the density function can be written as . This works very well as long we usea fix bound-
ing box so that the numbel 4 of object feature

p(Ca|B, ¢, t) = H p(emltt,,, Sm, b, 1), vectorsc.,; is constant for all external transforma-
tions and as long all the objects have nearly the
(5) same size. But, as one can see in figure 3, the
wherebyp,,, is the trained mean vector aiig},, the ~ Size of an object can vary very much for the ex-
trained covariance matrix of the-th local feature ternal transformations. Besides, the objects in our
vector. For the supposition that the single compodataset (see figure 5 below) have different sizes.
nents of the feature vectors,, are statistical inde- This causes wrong localizations respective wrong
pendencey.,, is a diagonal matrix. classifications: the density Va|U@$Cm|.B7 o, t)
Since the appearance of the object varies for thef the single feature vectoe, € C4 are nor-
external transformations’ the Componept&n of maIIy smaller than 1 even for the rlght VieWpoint
the single mean vectorg,, depend on the ex- and class. Therefore it could happen that a wrong
ternal transformationgi,m,n = fim,n(Peyy, text)- viewpoint respective a wrong class with a distinctly
We modely., . as continuous functions of the ex- Smaller numberV of object feature vectors than
ternal transformations and approximate them by &he right viewpoint and class have sometimes a
weighted sum of basis functions higher density valug(C|B, ¢, t) than the right
viewpoint and class.
For this purpose we propose two new approaches
Km,n = Z bm,n,q Vg 6)  for handling the different size of the objects. For
q=0 the first approach we normalize the density func-

Tm €A

Ly—1

using polynomials and learn the coefficients in thdioN ?(Ca|B, ¢, t) by the respective numbeV 4
training as for (3). of local object feature vectoi§ 4 for this transfor-

mation:
2.4 Localization and Classification (R, ¢, 1) =

In [5] a maximum likelihood estimation over all  argmaxargmax VA%/p(Ca 1| Bx, ¢, £). (9)
possible transformations is performed for the local- " (@t)
ization: Because of the statistically independence of the lo-
A cal feature vectors:4,; (see (5)) the expression
(@.1) = aﬂ%ﬂ?Xp(CA'B’ ¢.t) . () in (9) is the geometric mean of the density values
' of the single feature vectorss ;. For the local-
For the classification an additional maximum Iike'ization one respective|y for the C|assification two
lihood estimation over all possible object classes isnaximum-likelihood estimations are performed as

conducted: in (7) and (8).
N For the second approach we calculate the ratio
= argm: B., ¢, t) . _ _ : ;
" drgfmx arfgg?Xp(CA’k' ¢ t) ®) of the object density (that is the density for the as-
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dundancy. In [5] an algorithm applying a FFT was
employed for this purpose, but this algorithm works
only for a fix bounded regionl. Therefore we de-
velop a new fast algorithm for the global search.
Thereby we use the fact that the interpolation of the
grid depends only on the internal transformations
¢int and tine, Whereas the size of the bounded re-
gion A and the values of the meaps,, of the lo-
Figure 4: left: for each possible internal transfor- cal feature vectors,,, only depends on the external
mation all the feature vectors have to been interpotransformationsp,,, andtex:. Further, for the in-
lated right: if we translate the object grid according ternal translationg;,; we translate the object grid
to the rotated coordinates axes in steps respective trcording to the rotated coordinates axes in steps
the chosen resolutior,, for the same internal rota- respective to the resolution, so each interpolated
tion only another internal translation the most fea-feature vector can be used for many internal transla-
ture vectors can be reused tions and all external transformations, as visible in
the right image of figure 4.
sumption that the featur&s, belong to the object) g4 e interpolate the required area of the grid
and the background density (that is density for thgq each internal rotatiorbin, only once and store
assumption that the same featuéés belong to the ¢ Then we calculate the size of the bounded region

background) A and the meang,,, of the local feature vectors.,
s p(Cax|Be,d,t) for each external transformations once and combine
(R, 9, ) = argmax ar(%ﬂi?x p(CarlBo, b, )’ it with the stored values of the interpolated grid.

(10 Thus, the global search over the possible transfor-

wherebyB,, are the learned parameters of the backmations is very fast: in the experiments of section 3
ground. We use the background model that Wéhe average computation time for the global search
have introduced in [6]: the background is modellegcou!d be reduced from 150 seconds to 3,5 seconds.

as uniform distribution over all possible values of
the feature vectors. Because of the statistically in
dependence of the object feature vectors,; the
background density can be transformed to

3 Experiments and Results

For the experiments we used the 13 objects shown
in figure 5 [7]. It is a difficult dataset: Some objects
have a similar shape, the appearance and the size
i.e. it depends only from the numbé#, . of fea-  of the objects vary very much for the external rota-
ture vectors inside the bounded regidnThe ratio  tions and especially the cutlery is very small in the
in (10) is very small (nearly or smaller 1) for a to- image. Besides three different lighting conditions
tally wrong position or object and get high for the were applied.
right position and object. We put the objects on a turntable and from each
For accelerating the localization process, it isobject 3720 gray value images with 256 pixels in
done hierarchically: it starts on a rough resolutionsquare were taken by a camera mounted on a robot
rs, With a global search followed by a local search.arm. Thereby the viewpoints was uniformly dis-
Subsequently, the result of the localization on theributed over a hemisphere and the angle between
rough resolutiorr,,, is refined on a finer resolution two adjacent viewpoints was’ 3 Besides the three
rs, . Forthe global search all possible rotatighs=  different lighting was applied so that the lighting is
(¢int, Poy) T and translations = (tins, texs)” are  different between adjacent viewpoints. The trans-
considered and the expressions in (8), (9) respedermation space consists of 4 dimensions: the ex-
tively (10) are evaluated on discrete points of theternal rotationg:gsie With 0° < ¢rape < 360°
n-dimensional transformation space spanned by thef the turntable, the external rotatiay,., with
possible transformations, with < 6. 0° < @arm < 90° of the robot arm, additionally
The global search is computationally very expen-in the experiments we consider the internal transla-
sive, but it can be strongly speed up by using the retionst, andt,. Half of the dataset, i. e. 1860 images

p(Ca|Bo, ¢, t) = k¥ Ar@exvlex) (19
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Figure 5: The objects for the experiments: on the one handedifiols like the green and the white-green
stapler, the red and the green hole punch, the gray and tteamean the other hand hospital objects like
NaCl-bottle, pillbox, cup with and without saucer and cutléfork, knife, spoon)

for each object, was used for the training of the ob-also background feature vectors, inside the bound-
ject recognition system, the images for the test wering box A and the statistical model do not work with
taken from the other half, so training and test set synthetical background that has a constant pixel
were different. intensity without any noise.

Although we used a dark background for taking For each approach we performed 466 localiza-
the images, there was left some information in theion and 154 classification experiments per object.
background like for example the visible edge of theThese are altogether 6058 localization and 2002
turntable. Since we wanted that for the pose estielassification experiments for each approach. In the
mation only the object data and no additional backiocalization experiments for the rough localization
ground data like the visible edge of the turntablea resolution ofr,, = 2° = 8 pixels was applied
were used, we automatically cut the object out andind for the refinement a resolutionigf, = 2% = 4
pasted all the objects in the same homogeneougixels. For the classification experiments we only
background with a constant pixel intensity of 15,used the rough resolution,,, because this resolu-
this is the average value of the original backgroundion is sufficient for a reliable classification. For the
pixels in the images. For the training of the boundedolynomial description of the bounded regidnin
region A, the objects were pasted in fully black (3) the meangs,, in (6) we use polynomials ana-
background with a pixel intensity of 0, so we setlog to the Taylor decomposition. Admittedly this
the thresholdS4 = 0 (see subsection 2.2). For the decomposition is dedicated for external transforma-
training of the object feature§ 4 we laid uniform  tions ¢:ape and ¢qrm With nearly the same size,
noise with a pixel intensity-3 < i, < 3 only  whereas the range of the angle,.;. is four times
over the background (not the object). This is necesbigger than the range for the anglg,,,. Therefore
sary, because for the old model with the fix bound-we need two density functions for each object: one
ing box [5] there are a lot of background pixels, i. e.for the region0° < ¢;qp. < 180° and one for the
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Table 1: Comparison of the error rates of the localizatiod @assification experiments for the old im-
plementation [5] analog eq. (7) and (8), and the new implaaiim, first with maximizing the geometric

mean analog eq. (9), second with maximizing the ratio of thjea and the background density analog
eg. (10)

| | error rate localization experiments || error rate classification experiments]|

| object || old[5] | mean eq. (9)] ratio eq. (10)[| old [5] | mean eq. (9)] ratio eq. (10)]
green stapler 12,4% 2,1% 1, 7% 33,8% 1,9% 0,0%
white-green staple 5,2% 0,9% 0,9% 48,1% 0,0% 0,0%
red hole punch 3,0% 0,0% 0,0% 1,3% 0,0% 0,0%
green hole punch 0,2% 0,0% 0,0% 0,0% 0,6% 0,0%
gray can 13,9% 2,4% 4,5% 97,4% 0,0% 0,0%
red can 1,7% 1,7% 1,5% || 100,0% 0,6% 0,0%
NaCl-bottle 54,9% 10,1% 10,9% 67,5% 0,0% 0,0%
pillbox 54,3% 23,0% 25,5% 12,3% 0,0% 0,0%
cup with saucer 27,5% 5,4% 4, 7% 3,9% 0,0% 0,0%
cup 5,4% 33,5% 9,7% 0,0% 0,0% 0,0%
fork 74,9% 32,6% 37,3% 50,0% 53,2% 39,0%
knife 83,9% 78,3% 71,9% 57,8% 40,3% 8,4%
spoon 78,5% 35,4% 28,8% 92,3% 9,1% 27,3%

| total error rate | 32,0% | 17,3% | 152% [ 43,5% ] 8,1% | 5,7% |

the bounded regiom, but the bounded regioA
gets bigger. Therefore the threshdld = 0,2 is a
compromise. An example for the bounded regibn
for the thresholdS: = 0, 2 can be seen in figure 6.

In table 1 the results of the localization and clas-
sification experiments are presented. A localization
was counted as wrong, if the failure for the inter-
nal translationg, andt, was bigger than 10 pix-
Figure 6: The same viewpoints for the fork as inels or the failure for the external rotatiod§.s:c
figure 1. The bounded regions$ (in gray) for the  and ¢,,., bigger than 15. Since the appearance
thresholdSe = 0, 2 are obviously smaller than the of the cup with and without saucer do not change
bounding boxes in figure 1. Also, one can see thafgr g rotationg:.pe = 180°, the localization is also
on the one hand the bounded regidis bigger than  counted as right, if the “failure” fotb;asic is 180°.
necessary and enclose also the pixels of adjacent rethe |ocalization error rate could be reduced from
tation positions and that on the other hand some pix32,0% to 17,3% (mean eq. (9)) respectively 15,2%
els at the top and the end of the fork are not enclosegtatio eq. (10)) by the new approach. Especially
by the bounded region for the NaCl-bottle, the pillbox, the fork and the

spoon the error rate could be drastically decreased.

Only for the knife the error rate is still very high;
region180° < ¢ianie < 360°. Thereby we used since it has no distinctive “head” like the fork and
21 basis functions. We set the threshSld= 0,2  the spoon, very often the turntable anglg.. is
(see eq. (4)). For a higher threshdldthe bounded estimated wrong about 180 Further, it is narrow,
region will be enclose the object more tightly, buttherefore even for a observer, it is difficult to gauge
there is also the risk to miss the border of the objectthe angleg,.» of the robot arm with the camera.
For a lower threshold, the object will be surely in  The two measurements (9) and (10) have nearly
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the same average localization rate, for some objecthiough we have a difficult dataset.

the mean (9) is better, for other the ratio (10). We In the future we will extend this approach and
also tried to use the maximum-likelihood estimationcombine several object densities and the back-
analog to (7) for the localization experiments withground density so that we can handle heterogenous
the variable bounded regio#. But because of the background, occlusions and images with multi ob-
varying size of bounded regioA we got an error jects.

rate of 36,6%. The computation time for one local-
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