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Abstract

In this paper we present an improved appearance-
based approach for the localization and classifi-
cation of 3-D objects in 2-D gray level images.
Thereby we calculate local feature vectors by the
coefficients of the wavelet multiresolution analysis
and model them statistically. Since the appearance
of the objects, i. e. also the size of the objects in the
image, vary due to out-of-image-plane transforma-
tions, the features themselves as well as the region
of interest are modelled as function of the external
transformations. Further, we present and test dif-
ferent measurements for the recognition of objects
that have different sizes. The experiments on a large
dataset with more than 40000 images show that the
approach is well suited for this recognition task.

1 Introduction

For object recognition there are two main ap-
proaches: the approaches that use the results of
a segmentation process as features and the ap-
proaches that use the image data, i. e. the pixel in-
tensities, directly. In the segmentation process geo-
metric attributes like lines or vertices are detected.
Both, themselves [2] and the relationship between
them [9] are used as features. But these approaches
suffer from two disadvantages: segmentation errors
and loss of informations.

Appearance-based approaches avoid these disad-
vantages. One approach are the so called “mul-
tidimensional receptive field histograms” used by
[8] that contain the results of local filtering, e. g.
by Gaussian derivatives filters. But for mod-
elling 3-D transformations, e. g. a turntable rotation,

∗This work was funded by the German Science Foundation
(DFG) Graduate College ”3-D Image Analysis and Synthesis”.

Figure 1: Different viewpoints for a fork. The size
of the required fix bounding box is plotted. As one
can see the fork takes up only a small part of the
bounding box

they need different view-classes, whereby adja-
cent viewpoints are summarized to one view-class.
[4] apply principal component analysis and encode
image data as “eigen-images”, whereby only one
“eigenspace” is necessary for all possible view-
points. Likewise [1], who model the feature by
Gaussian mixtures, needs only one view-class. Ad-
mittedly only [4] can classify and localize objects,
whereas [8] and [1] can only classify objects, but
not estimate its pose.

But all these approaches share the same problem:
they employ a fix bounding box that has to be so
large that the object lays for all external transforma-
tions, i. e. out-of-image-plane transformations, in-
side the box. If the appearance of the object in the
image varies very much for the external transforma-
tions, the bounding box encloses very much back-
ground and the object takes up only a little part of
the bounding box, as one can see in figure 1. But
for a reliable recognition only object features and
as sparse background features as possible should be
considered. The problem can be decreased, but not
solved by using view-classes for the different view-
points.

VMV 2001 Stuttgart, Germany, November 21–23, 2001
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Figure 2: left: image covered by the grid for the local feature vectors, the object is enclosed by a tight
boundary (black line), the old fix bounding box [5] is plottedin gray; middle: the object grid moves with
the same internal rotationφint and internal translationt int as the object;right: for the external rotation�ext

and the external transformation (scaling)text the number of the feature vectors that belong to the bounded
regionA, i. e. the object, changes

We use and improve the approach of [5]: Local
features are derived from the wavelet multiresolu-
tion analysis and are modelled statistically by nor-
mal distributions. So this approach is robust with
respect to noise and to changes in the lightning con-
ditions. For external transformation, the means of
the feature vectors are modelled as functions of the
external transformations.

In this paper, we additionally model the size of
the region of interest - that is the region of the ob-
ject in the image - as a function of the external
transformations, so that this region enclose the ob-
ject tightly for the respective transformation. The
parameter of these functions are learned automat-
ically in the training. The localization and classi-
fication of the objects are performed hierarchically
by maximum-likelihood estimations. Thereby we
propose different measurements and compare their
ability to handle objects of different sizes.

In the following section we describe our im-
proved model and present in section 3 the results of
the experiments for the old and the improved model.
We will end in section 4 with a summary and a out-
look.

2 Object Model

2.1 Features

A grid with the sampling resolutionrs = 2s,
whereby s is the index for the scale, is laid
over the square imagef as one can see in the
left image of figure 2. These grid locations
will be summarized in the following asXs =
{x m̃,s}m̃=0,...,M̃−1, x m̃,s ∈ IR2. On each grid
point x m̃,s a local feature vectorc(x m̃,s) = cm̃,s

is calculated. The advantage of local features is
that if only one pixel in the image changes, e. g. by
noise or occlusion, only the respective feature vec-
tor cm̃,s changes, the other feature vectors will be
unchanged.

For the feature extraction we performs times
(respective the chosen sampling resolutionrs) the
wavelet multiresolution analysis [3] using Johnston
8-TAP wavelets. The first component of the local
feature vectorcm̃,s is the logarithmic amount of the
low-pass coefficient on the respective position, the
second component of the local feature vector is the
logarithmic sum of the amounts of the first high-
pass coefficients on the respective positions [5]. We
improve the feature extraction by using not only the
integer values of the multiresolution analysis, but
the real values. This meliorates the estimation of
the variance of the statistical model in subsection
2.3, and thus it improves the recognition rate. To
simplify the notation, we omit the indexs for the
scale in the following.

2.2 Region of Interest

For the object model we lay a close boundary
around the object as one can see in the left image
of figure 2. We assume that the local feature vec-
tors inside the bounded regionA ⊂ X, in the fol-
lowing written asCA = {cA,l}l=0,...,L−1 belong
to the object and that the feature vectors outside
the bounded regionX \ A, written asCX\A =
{cX\A,k}k=0,...,K−1 with cX\A,k ∈ IR2, belong
to the background. For internal rotationsφint and
internal translationst int the position of the bounded
regionA and the position of the object feature vec-
tors cA,l are transformed with the same transfor-
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mation as the object (see the image in the middle of
figure 2). Thereby the positionsxm of the object
grid are calculated byxm = R(φint)x m̃ + t int,
wherebyR(φint) is the rotation matrix. In the fol-
lowing we refer to the object grid with the index
m. Since after the transformation the positionsxm

of the feature vectorscm normally do not coincide
with the positionsx m̃ of the image grid, an interpo-
lation is necessary for calculating the feature vec-
torscm. In [5] a interpolation scheme that is sim-
ilar to a linear interpolation was used, in contrast
we apply a bilinear interpolation. Additionally, for
the calculation of the geometric transformations we
employ no longer the inverse rotation matrix, but
the transposed rotation matrix; this improves nu-
merical stability.

In [5] the bounded regionA was modelled by a
rectangular box that was positioned manually. Be-
cause of the rectangular form, even for 2-D transfor-
mations, there are feature vectors inside the bound-
ing box, i. e. assigned to the object, that properly
belong to the background, see the left image in fig-
ure 2. Furthermore the size of the bounding box
was fix, so for external transformations there are the
same problems as we explained in the introduction.

Therefore we improve this approach: the form of
the bounded regionA was no longer restricted to a
rectangle and we now model its size as variable de-
pending on the external transformations. Addition-
ally, its size and form is calculated automatically
during the training of the object.

If we have only internal transformationsφint and
t int, only one image of the object in front of a back-
ground that is darker than the object is necessary
for the calculation. For the training of the bounded
regionA, a local feature vectorcm is assigned to
the object, i. e. the bounded regionA, if the value
of its first component (that is derived by the low-
pass value of the multiresolution analysis) is higher
than a thresholdSA, else it is assigned to the back-
ground:

cm,1

{

< SA ⇒ xm ∈ X \ A

≥ SA ⇒ xm ∈ A
. (1)

For the out-of-image-plane rotations�ext and
the scalingtext, we model the form and size of
the bounded regionA as a function of the external
transformations (see right image in figure 2). For
this purpose, we define for each local feature vec-
tor cm a functionξm(�ext, text) that assigns the

local feature vectorcm dependent on the external
transformation to the object or to the background.
For the training of these functionsξm(�ext, text),
images of the object in front of a dark background
are necessary from different viewpoints. The deci-
sion whether a local feature vectorcm belongs to
the object or to the background for a certain exter-
nal transformation is taken analogly to the 2-D case
and the valueξm(�ext, text) was set respective the
assignment to 1 (object) or 0 (background) for this
external transformation:

cm,1(�ext, text)

{

< SA ⇒ ξm(�ext, text) = 0
≥ SA ⇒ ξm(�ext, text) = 1

.

(2)
For reducing the data-size and also handling

viewpoints between the trained viewpoints, we
model the single functionsξm as continuous and
approximate them by a sum of weighted basis func-
tionsvr

ξm =

Lξ−1
∑

r=0

am,r vr . (3)

Thereby we use polynomials for the basis functions
vr. The coefficientsam,r are learned in the train-
ing by minimizing the quadratic error between the
values of training and the approximated values of
ξm(�ext, text).

During the recognition, the size and form of the
bounded regionA is calculated by these trained
functionsξm(�ext, text) and the local feature vec-
torscm are respectively assigned to the background
or to the object:

ξm(�ext, text)

{

< Sξ ⇒ cm ∈ CX\A

≥ Sξ ⇒ cm ∈ CA
(4)

with 0 < Sξ < 1. Thereby the thresholdSξ de-
termines, how tightly the bounded regionA enclose
the object. Note that this means no segmentation
during the recognition, because the trained the size
of the bounded regionA is used.

2.3 Statistical Model

We apply a statistical model and interpret the local
feature vectorscm as random variables. Thereby
the randomness among others is the noise of the
image sampling process and changes in the light-
ning conditions. Assuming that the object features
CA are statistically independent from the back-
ground featuresCX\A, for the object model we
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only need to consider the object featuresCA inside
the bounded regionA. Because of the varying size
of the bounded region A, it depends on the exter-
nal transformations, which local feature vectorscm

belong toCA.
So, the object can be described by the den-

sity function p(CA|B ,�, t), depending on the
learned model parameter setB , the rotation� =
(φint,�ext)

T and translationt = (t int, text)
T . We

suppose that the single object feature vectorscA,l

are statistical independent; in [5] also a row depen-
dency was modelled, but it gave worse results, and
therefore we take it no longer into account. Fur-
ther we assume that the features are normally dis-
tributed. So the density function can be written as

p(CA|B ,�, t) =
∏

xm∈A

p(cm|�m,Σm,�, t),

(5)
whereby�m is the trained mean vector andΣm the
trained covariance matrix of them-th local feature
vector. For the supposition that the single compo-
nents of the feature vectorscm are statistical inde-
pendence,Σm is a diagonal matrix.

Since the appearance of the object varies for the
external transformations, the componentsµm,n of
the single mean vectors�m depend on the ex-
ternal transformationsµm,n = µm,n(�ext, text).
We modelµm,n as continuous functions of the ex-
ternal transformations and approximate them by a
weighted sum of basis functions

µm,n =

Lµ−1
∑

q=0

bm,n,q vq (6)

using polynomials and learn the coefficients in the
training as for (3).

2.4 Localization and Classification

In [5] a maximum likelihood estimation over all
possible transformations is performed for the local-
ization:

(�̂, t̂) = argmax
(φ,t)

p(CA|B ,�, t) . (7)

For the classification an additional maximum like-
lihood estimation over all possible object classes is
conducted:

κ̂ = argmax
κ

argmax
(φ,t)

p(CA,k|Bκ,�, t) . (8)

Figure 3: Different viewpoints for a pillbox, the im-
ages are 256 pixels in square. In the left image the
pillbox takes about 8900 pixels, in the right image
about 3800 pixels

This works very well as long we use a fix bound-
ing box so that the numberNA of object feature
vectorscA,l is constant for all external transforma-
tions and as long all the objects have nearly the
same size. But, as one can see in figure 3, the
size of an object can vary very much for the ex-
ternal transformations. Besides, the objects in our
dataset (see figure 5 below) have different sizes.
This causes wrong localizations respective wrong
classifications: the density valuesp(cm|B ,�, t)
of the single feature vectorcm ∈ CA are nor-
mally smaller than 1 even for the right viewpoint
and class. Therefore it could happen that a wrong
viewpoint respective a wrong class with a distinctly
smaller numberNA of object feature vectors than
the right viewpoint and class have sometimes a
higher density valuep(CA|B ,�, t) than the right
viewpoint and class.

For this purpose we propose two new approaches
for handling the different size of the objects. For
the first approach we normalize the density func-
tion p(CA|B ,�, t) by the respective numberNA

of local object feature vectorsCA for this transfor-
mation:

(κ̂, �̂, t̂) =

argmax
κ

argmax
(φ,t)

NA,κ
√

p(CA,k|Bκ,�, t). (9)

Because of the statistically independence of the lo-
cal feature vectorscA,l (see (5)) the expression
in (9) is the geometric mean of the density values
of the single feature vectorscA,l. For the local-
ization one respectively for the classification two
maximum-likelihood estimations are performed as
in (7) and (8).

For the second approach we calculate the ratio
of the object density (that is the density for the as-
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Figure 4: left: for each possible internal transfor-
mation all the feature vectors have to been interpo-
lated,right: if we translate the object grid according
to the rotated coordinates axes in steps respective to
the chosen resolutionrs, for the same internal rota-
tion only another internal translation the most fea-
ture vectors can be reused

sumption that the featuresCA belong to the object)
and the background density (that is density for the
assumption that the same featuresCA belong to the
background)

(κ̂, �̂, t̂) = argmax
κ

argmax
(φ,t)

p(CA,k|Bκ,�, t)

p(CA,k|B0,�, t)
,

(10)
wherebyB0 are the learned parameters of the back-
ground. We use the background model that we
have introduced in [6]: the background is modelled
as uniform distribution over all possible values of
the feature vectors. Because of the statistically in-
dependence of the object feature vectorscA,l the
background density can be transformed to

p(CA|B0,�, t) = k
NA,κ(�ext,text), (11)

i. e. it depends only from the numberNA,κ of fea-
ture vectors inside the bounded regionA. The ratio
in (10) is very small (nearly or smaller 1) for a to-
tally wrong position or object and get high for the
right position and object.

For accelerating the localization process, it is
done hierarchically: it starts on a rough resolution
rs0

with a global search followed by a local search.
Subsequently, the result of the localization on the
rough resolutionrs0

is refined on a finer resolution
rs1

. For the global search all possible rotations� =
(φint,�ext)

T and translationst = (t int, text)
T are

considered and the expressions in (8), (9) respec-
tively (10) are evaluated on discrete points of the
n-dimensional transformation space spanned by the
possible transformations, withn ≤ 6.

The global search is computationally very expen-
sive, but it can be strongly speed up by using the re-

dundancy. In [5] an algorithm applying a FFT was
employed for this purpose, but this algorithm works
only for a fix bounded regionA. Therefore we de-
velop a new fast algorithm for the global search.
Thereby we use the fact that the interpolation of the
grid depends only on the internal transformations
φint and t int, whereas the size of the bounded re-
gion A and the values of the means�m of the lo-
cal feature vectorscm only depends on the external
transformations�ext andtext. Further, for the in-
ternal translationst int we translate the object grid
according to the rotated coordinates axes in steps
respective to the resolutionrs, so each interpolated
feature vector can be used for many internal transla-
tions and all external transformations, as visible in
the right image of figure 4.

So, we interpolate the required area of the grid
for each internal rotationφint only once and store
it. Then we calculate the size of the bounded region
A and the means�m of the local feature vectorscm

for each external transformations once and combine
it with the stored values of the interpolated grid.
Thus, the global search over the possible transfor-
mations is very fast: in the experiments of section 3
the average computation time for the global search
could be reduced from 150 seconds to 3,5 seconds.

3 Experiments and Results

For the experiments we used the 13 objects shown
in figure 5 [7]. It is a difficult dataset: Some objects
have a similar shape, the appearance and the size
of the objects vary very much for the external rota-
tions and especially the cutlery is very small in the
image. Besides three different lighting conditions
were applied.

We put the objects on a turntable and from each
object 3720 gray value images with 256 pixels in
square were taken by a camera mounted on a robot
arm. Thereby the viewpoints was uniformly dis-
tributed over a hemisphere and the angle between
two adjacent viewpoints was 3◦. Besides the three
different lighting was applied so that the lighting is
different between adjacent viewpoints. The trans-
formation space consists of 4 dimensions: the ex-
ternal rotationφtable with 0◦ ≤ φtable < 360◦

of the turntable, the external rotationφarm with
0◦ ≤ φarm ≤ 90◦ of the robot arm, additionally
in the experiments we consider the internal transla-
tionstx andty. Half of the dataset, i. e. 1860 images
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Figure 5: The objects for the experiments: on the one hand office tools like the green and the white-green
stapler, the red and the green hole punch, the gray and the redcan, on the other hand hospital objects like
NaCl-bottle, pillbox, cup with and without saucer and cutlery (fork, knife, spoon)

for each object, was used for the training of the ob-
ject recognition system, the images for the test were
taken from the other half, so training and test set
were different.

Although we used a dark background for taking
the images, there was left some information in the
background like for example the visible edge of the
turntable. Since we wanted that for the pose esti-
mation only the object data and no additional back-
ground data like the visible edge of the turntable
were used, we automatically cut the object out and
pasted all the objects in the same homogeneous
background with a constant pixel intensity of 15,
this is the average value of the original background
pixels in the images. For the training of the bounded
region A, the objects were pasted in fully black
background with a pixel intensity of 0, so we set
the thresholdSA = 0 (see subsection 2.2). For the
training of the object featuresCA we laid uniform
noise with a pixel intensity−3 ≤ in ≤ 3 only
over the background (not the object). This is neces-
sary, because for the old model with the fix bound-
ing box [5] there are a lot of background pixels, i. e.

also background feature vectors, inside the bound-
ing boxA and the statistical model do not work with
a synthetical background that has a constant pixel
intensity without any noise.

For each approach we performed 466 localiza-
tion and 154 classification experiments per object.
These are altogether 6058 localization and 2002
classification experiments for each approach. In the
localization experiments for the rough localization
a resolution ofrs0

= 23 = 8 pixels was applied
and for the refinement a resolution ofrs1

= 22 = 4
pixels. For the classification experiments we only
used the rough resolutionrs0

, because this resolu-
tion is sufficient for a reliable classification. For the
polynomial description of the bounded regionA in
(3) the means�m in (6) we use polynomials ana-
log to the Taylor decomposition. Admittedly this
decomposition is dedicated for external transforma-
tions φtable and φarm with nearly the same size,
whereas the range of the angleφtable is four times
bigger than the range for the angleφarm. Therefore
we need two density functions for each object: one
for the region0◦ ≤ φtable < 180◦ and one for the

666



Table 1: Comparison of the error rates of the localization and classification experiments for the old im-
plementation [5] analog eq. (7) and (8), and the new implementation, first with maximizing the geometric
mean analog eq. (9), second with maximizing the ratio of the object and the background density analog
eq. (10)

error rate localization experiments error rate classification experiments

object old [5] mean eq. (9) ratio eq. (10) old [5] mean eq. (9) ratio eq. (10)

green stapler 12,4% 2,1% 1,7% 33,8% 1,9% 0,0%
white-green stapler 5,2% 0,9% 0,9% 48,1% 0,0% 0,0%
red hole punch 3,0% 0,0% 0,0% 1,3% 0,0% 0,0%
green hole punch 0,2% 0,0% 0,0% 0,0% 0,6% 0,0%
gray can 13,9% 2,4% 4,5% 97,4% 0,0% 0,0%
red can 1,7% 1,7% 1,5% 100,0% 0,6% 0,0%
NaCl-bottle 54,9% 10,1% 10,9% 67,5% 0,0% 0,0%
pillbox 54,3% 23,0% 25,5% 12,3% 0,0% 0,0%
cup with saucer 27,5% 5,4% 4,7% 3,9% 0,0% 0,0%
cup 5,4% 33,5% 9,7% 0,0% 0,0% 0,0%
fork 74,9% 32,6% 37,3% 50,0% 53,2% 39,0%
knife 83,9% 78,3% 71,9% 57,8% 40,3% 8,4%
spoon 78,5% 35,4% 28,8% 92,3% 9,1% 27,3%

total error rate 32,0% 17,3% 15,2% 43,5% 8,1% 5,7%

Figure 6: The same viewpoints for the fork as in
figure 1. The bounded regionsA (in gray) for the
thresholdSξ = 0, 2 are obviously smaller than the
bounding boxes in figure 1. Also, one can see that
on the one hand the bounded regionA is bigger than
necessary and enclose also the pixels of adjacent ro-
tation positions and that on the other hand some pix-
els at the top and the end of the fork are not enclosed
by the bounded region

region180◦ ≤ φtable < 360◦. Thereby we used
21 basis functions. We set the thresholdSξ = 0, 2
(see eq. (4)). For a higher thresholdSξ the bounded
region will be enclose the object more tightly, but
there is also the risk to miss the border of the object.
For a lower thresholdSξ the object will be surely in

the bounded regionA, but the bounded regionA
gets bigger. Therefore the thresholdSξ = 0, 2 is a
compromise. An example for the bounded regionA

for the thresholdSξ = 0, 2 can be seen in figure 6.

In table 1 the results of the localization and clas-
sification experiments are presented. A localization
was counted as wrong, if the failure for the inter-
nal translationstx and ty was bigger than 10 pix-
els or the failure for the external rotationsφtable

and φarm bigger than 15◦. Since the appearance
of the cup with and without saucer do not change
for a rotationφtable = 180◦, the localization is also
counted as right, if the “failure” forφtable is 180◦.
The localization error rate could be reduced from
32,0% to 17,3% (mean eq. (9)) respectively 15,2%
(ratio eq. (10)) by the new approach. Especially
for the NaCl-bottle, the pillbox, the fork and the
spoon the error rate could be drastically decreased.
Only for the knife the error rate is still very high;
since it has no distinctive “head” like the fork and
the spoon, very often the turntable angleφtable is
estimated wrong about 180◦. Further, it is narrow,
therefore even for a observer, it is difficult to gauge
the angleφarm of the robot arm with the camera.
The two measurements (9) and (10) have nearly
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the same average localization rate, for some objects
the mean (9) is better, for other the ratio (10). We
also tried to use the maximum-likelihood estimation
analog to (7) for the localization experiments with
the variable bounded regionA. But because of the
varying size of bounded regionA we got an error
rate of 36,6%. The computation time for one local-
izations depends on the size of the object. The av-
erage computation time on a Pentium III 800 MHz
could reduced from 10 sec for the old approach [5]
to 7 sec for the new approach, although for the new
approach we additionally had to calculate the size
of the bounded regionA.

Also the classification rate could be drastically
improved: for the old approach the classification er-
ror rate was 43,5%, whereas for the new approach it
decrease to 8,1% (mean eq. (9)) respectively 5,7%
(ratio eq. (10)). Thereby the ratio of the object
density and the background density (10) is better
than the mean (9): only the cutlery is confused, all
the other objects are always recognized. For the
maximum-likelihood estimation analog to (8) to-
gether with the variable bounded regionA, we got
an error rate of 74,9%. This shows that for a vari-
able bounded regionA the numberNA,κ of object
vectors has to be considered in the measurement.
The average computation time for one classification
was about 70 sec for the old approach and 50 sec for
the new approach.

4 Conclusions and Outlook

In this paper we presented an improved approach
for the localization of 3-D objects in 2-D gray-
level images. The most important point is that we
modelled the size and form of the region of inter-
est (bounded regionA) as a function of the exter-
nal transformations that is learned in the training.
Therefore this bounded regionA enclose the object
very tightly for all viewpoints and is only a little
bit larger than the object itself. For the recogni-
tion we used the trained form of the bounded re-
gion A and so we only considered object features
and nearly no background features. We also intro-
duced two new measurements that are suited for the
localization and classification of objects of differ-
ent size and we developed a new fast algorithm for
the global search. With this framework we could
improve the localization rate from 68,0% to 84,8%
and the classification rate from 55,9% to 94,3%, al-

though we have a difficult dataset.
In the future we will extend this approach and

combine several object densities and the back-
ground density so that we can handle heterogenous
background, occlusions and images with multi ob-
jects.
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