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ABSTRACT

Most speech recognition systems are based on mel-
frequency cepstral coefficients and their first- and second-
order derivatives. The derivatives are normally approxi-
mated by fitting a linear regression line to a fixed-length
segment of consecutive frames. The time resolution and
smoothness of the estimated derivative depends on the
length of the segment. We present an approach to improve
the representation of speech dynamics, which is based on
the combination of multiple time resolutions. The resulting
feature vector is transformed to reduce its dimension and
the correlation between the features. Another possibility,
which has also been evaluated, is to use probabilistic PCA
(PPCA) for the output distributions of the HMMs. Different
configurations of multiple time resolutions are evaluated as
well. When compared to the baseline system a significant
reduction of the word error rate can been achieved.

1. INTRODUCTION

1.1. Motivation
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Fig. 1. Energy contour and two different approximations of
its first-order time derivative in the German wordBahnhof.

Mel-frequency cepstral coefficients (MFCCs) are the stan-
dard features for most speech recognition systems. As
MFCCs are based on static short-time spectral represen-
tations of the speech signal, they are usually extended by
dynamic features. Frequently, first- and second-order time
derivatives of the static features [1] are employed. The
derivative of a time-sampled sequence of the static features
can be approximated robustly by the coefficients of that lin-
ear regression line which fits best to a segment of several
consecutive frames. A simpler approach would be taking
the difference of two adjacent frames, a more complex one
is the use of a higher-order polynomial instead of the lin-
ear regression line [2]. For the computation, all methods
employ a time segment of fixed length typically 5, 7 or 9
frames.

Fig. 1 gives an example of the progression of the energy
contour in the German wordBahnhof(station). The dotted
curves depict two approximations of the first-order deriva-
tive of the energy contour, the approximations differ in the
length of the time segment. It can be seen that both curves
are highly correlated. For a larger size of the time segment
the curve is smoothed and many details, for instance the fall
of the energy contour at the end of the/o:/, are lost. How-
ever, the smoother estimation of the derivative eliminatesir-
relevant variations in energy as within/n/ and/h/. Three
relative maxima correspond to the vowels and to the frica-
tive. Both curves provide the acoustic models with different
aspects of the speech signal and we can not tell in advance
which one should be preferred.

1.2. Approach

Instead of deciding for a certain fixed time segment, the ex-
periments described in this paper attempt to combine the
advantages of different resolutions in the dynamic features.
For each time frame multiple regression lines correspond-
ing to different sizes of the time segment are computed. To-
gether with the static features all regression coefficientslead
to a high-dimensional feature vector. As the components of



the feature vector are highly correlated, the obvious thing
to do is to apply a transformation for a reduction of the di-
mension and of the correlation. Another possibility is not
to transform the feature vector, but to use an appropriate
output distribution for the acoustic models, which is able to
cope with the special quality of the feature vector. Section
4 describes an investigation of both approaches.

1.3. Related Work

The idea of the integration of several different features
which have been computed on the base of different
timescales or time resolutions into one feature vector re-
lates our approach to other works known from the litera-
ture. For instance, H. Hermansky and S. Sharma describe
an approach to increase the robustness of a recognizer by
the incorporation of long-term information [3]. K. Weber
[4] describes an approach to achieve a higher robustness
against additive noise by combining static features, which
have been computed on a much longer timespan (up to two
seconds) than the normal MFCCs in a feature vector.

2. SHORT DESCRIPTION OF THE SYSTEM

The system which has been used for the experiments is a
speaker independent continuous speech recognizer. It is
based on semi-continuous HMMs, the output densities of
the HMMs are full-covariance Gaussians. Please refer to
[5] for a detailed description of the speech recognizer. Ev-
ery 10 ms 12 static MFCCs are computed.

Dynamic adaptive cepstral subtraction (DACS) and a
temporal filter are applied to the coefficients. The dynamic
features of the baseline system are 12 first-order derivatives
of the static MFCCs. They are estimated by means of a
linear regression covering a time segment of 9 consecutive
frames. The experiments will show (Tab. 2) that 9 frames
is not optimal for our test set. This may be due to the fact
that the parameters of the feature extraction algorithm were
optimized on read speech [6].

If the baseline system is only trained on the training data
set described in the next section and no other data is used for
training or initialization of the acoustic models, it achieves
a word error rate of 31.1% on the test data.

3. DATA

Acoustic models are trained on a part of the EVAR data set.
It consists of 7438 utterances, which have been recorded by
phone with our conversational train timetable information
system. A detailed description of this system can be found
in [7]. Nearly all utterances are in German language. The
total amount of data is ca. 8 hours. 5440 utterances have

randomly been selected for training and validation, the rest
of 1998 utterances is available for testing.

4. MULTIPLE TIME RESOLUTIONS

4.1. PCA of the Combined Feature Vector

The most natural approach to the integration of multiple
time resolutions in the dynamic features is to build one high-
dimensional feature vector. As there are 12 static MFCCs,
each possible resolution of the regression line results in 12
dynamic features. It is obvious that for a high number of dif-
ferent resolutions the dimension of the feature vector must
be reduced with a suitable transformation. We decided to
apply principal component analysis (PCA) [8], a popular
technique which may be used to compute a low-dimensional
principal subspace of a data set. A projection of the fea-
ture vectors onto the subspace minimizes the squared re-
construction error and the correlation of the components of
the resulting low-dimensional feature vectors is reduced.

We have to decide, whether to put the static MFCCs and
the dynamic features together before or after the dimension-
ality reduction. In our approach the PCA transform is ap-
plied only to the dynamic part of the feature vector and the
static MFCCs are left unchanged, i.e. correlations between
the static and the dynamic part of the feature vector are ig-
nored. The separation has the advantage of protecting the
MFCCs from being eliminated from the feature vector by
the PCA. The static features themselves are already decorre-
lated because of the discrete cosine transform (DCT), which
is part of the computation of the MFCCs. For comparison
purposes we will also give recognition rates when static and
dynamic features are transformed jointly with PCA.

The eigenvectors which are needed for the PCA may
be derived either from the covariance matrix or from the
correlation matrix of the data. For a PCA of MFCCs and
their derivatives, the use of the correlation matrix yielded
better results on our data. Consequently, the results which
are described in the next section have been computed with
a correlation-based PCA transformation. Please note that
the correlation matrix is equivalent to the covariance matrix,
when the standard deviation of the features is one and their
mean is zero. Thus, a correlation-based PCA transformation
is equivalent to the combination of a re-scaling of the data
and a covariance-based PCA.

4.2. Probabilistic PCA

Instead of reducing the dimension of the feature vector,
it is also possible to choose a special output distribution
for the acoustic models which is able to cope with high-
dimensional feature vectors and highly-correlated features.
Probabilistic PCA (PPCA) [9] defines a special Gaussian
probability density function with a constrained covariance



matrixΣ of the formΣ = σ
2
I + WW

⊤. I stands for the
identity matrix. The columns of the weighting matrixW
span the (low-dimensional) principal subspace of the data.
σ

2 represents the noise variance, which is proportional to
the variance that is not represented by the principal sub-
space. The PPCA density is able to model even high di-
mensional feature vectors in an efficient way. If the output
distribution of an HMM is a mixture of PPCA densities, we
can expect that the structure of the feature space can be rep-
resented in a more flexible way than by combining a single
PCA with a mixture of Gaussian densities.

5. EXPERIMENTAL RESULTS

5.1. PCA of the Combined Feature Vector

dim. before no. of adjacent frames WER
PCA trafo. 3 5 7 9 11 13 [%]

- X 31.1
24 X X 26.8
36 X X X 26.2
48 X X X X 26.6
60 X X X X X 26.7
72 X X X X X X 26.9

Table 1. Word error rates (WER) for the PCA transforma-
tion of the dynamic features. For each feature vector con-
figuration, the included resolutions are marked by an ‘X’.
Each resolution adds 12 features to the vector. PCA reduces
the dimension to 12. The first row of the table corresponds
to the baseline configuration.

The word error rate on the test data for a large number of
different combinations of time resolutions has been evalu-
ated and is given in Tab. 1. In order to be able to compare
the results with the baseline system the feature vector which
is modeled by the HMMs is always 24-dimensional. It con-
sists of 12 static MFCCs, which are the same as in the base-
line system. The remaining 12 coefficients are generated
by a PCA transformation from a higher dimensional feature
vector which contains multiple approximations of the first-
order derivative.

The lowest word error rate (WER) of 26.2% has been
achieved for the combination of three different approxima-
tions of the first-order derivative: three, five and seven adja-
cent frames are used for the computation of the regression
line. It can be seen from Tab. 1 that the improvement rela-
tive to the baseline system becomes smaller when many dif-
ferent regression coefficients are combined in a very high
dimensional feature vector. This effect may be caused by
the PCA, which seems to select the important features not
robustly enough for very high dimensional input.

When the PCA transformation is applied to the combi-
nation of static and dynamic features in contrast to the dy-
namic features only, the WER is much higher. For the opti-
mal configuration of three, five and seven adjacent frames,
which is mentioned above, the WER is 27.2%.

dim. before no. of adjacent frames WER
PCA trafo. 3 5 7 9 [%]

12 X 27.9
12 X 27.5
12 X 28.6
12 X 30.8

Table 2. Word error rates (WER) for the PCA transforma-
tion of the dynamic features with single resolutions.

One may argue that the improvement of the new fea-
ture vector relative to the baseline system is not caused by
the combination of multiple time resolutions, but would be
just a consequence from a suboptimal configuration of the
baseline features for our test data. The improvement may
also be caused by the PCA transformation of the dynamic
features. Therefore, we tried to find the best single time
resolution for the approximation of the first-order derivative
on our test data set. The dynamic features are decorrelated
with a PCA transformation, but are not reduced in dimen-
sion. As can be seen from Table 2, the optimal single time
resolution for the test set is five consecutive frames. The
WER for this feature vector is worse than for all experi-
ments with multiple time resolutions. From a comparison of
Tab. 2 and Tab. 1 some insight into the multi-resolution ap-
proach can be gained. In Tab. 2 five consecutive frames are
shown to be the best single time resolution. Adding two ad-
ditional resolutions of three and seven frames to the feature
vector reduces the word error rate by ca. 5% relative. This
improvement is still significant at a 95% level. Therefore,
the multi-resolution approach has two advances: firstly, itis
more likely that the optimal time resolution for the specific
test data is contained in the feature vector. Secondly, even
the optimal time resolution can be improved by additional
smoother and more detailed regression coefficients.

5.2. Probabilistic PCA

For the second approach the output distributions of the
HMMs are replaced by PPCA densities. We expect, that the
mixture of PPCA densities is able to cope with a high corre-
lation of the input features, so the PPCA densities are used
to directly model the 48-dimensional feature vector, which
has been shown to be the optimal configuration of the mul-
tiple time resolution approach in the previous experiments
(36 dynamic features plus 12 static MFCCs). The princi-
pal subspace of the PPCA densities is set to a dimension of
24. We improved our results by the application of a pre-



normalization on the data. Unfortunately, in the standard
definition of PPCA densities it is not possible to separate the
static and dynamic features in advance of the projection in
the principal subspace, as we did successfully in the previ-
ous experiments. As a consequence, only a WER of 26.8%
is achieved for the optimal configuration of three, five and
seven adjacent frames. This is slightly better than a single
PCA transformation applied to the full 48-dimensional fea-
ture vector (27.2% WER), but it is still worse than if the
PCA is only applied to the dynamic part of the feature vec-
tor (26.2%). Additional experiments have to be made at this
point.

6. CONCLUSION AND OUTLOOK

First- and second-order derivatives of MFCCs are used in
many speech recognition systems for the representation of
speech dynamics. The derivatives are normally approxi-
mated by a linear regression line, which is computed on a
fixed segment of consecutive frames. For different sizes of
the segment, different aspects of the progression of the cep-
stral coefficients in time can be accentuated. We presented
an approach to combine several different resolutions of the
estimated derivative in the feature vector. Since the result-
ing feature vector is high-dimensional and its components
are highly correlated, it is transformed with PCA. Different
configurations have been evaluated. When compared to the
baseline system, a reduction from 31.1% to 26.2% WER
was achieved.

An important bottleneck, which prevented the PPCA
densities from outperforming the PCA transformation, is
the need for developing a special structure of the covari-
ance matrix, which enables the PPCA density to keep the
static and the dynamic features separated. Another transfor-
mation which can even be optimized simultaneously with
the acoustic models is linear discriminant analysis (LDA)
[10, 11]. Further experiments should investigate the ap-
plication of LDA for the multiple-resolution approach. In
addition to this, experiments concerning the application to
second-order derivatives are needed as well as evaluations
on different speech databases.
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