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Abstract

In this paper we present a neural network (NN) based system for recognition and pose estimation of 3D objects from a single 2D
perspective view. We develop an appearance based neural approach for this task. First the object is represented in a feature vector derived
by a principal component network. Then a NN classifier trained with Resilient backpropagation (Rprop) algorithm is applied to identify it.
Next pose parameters are obtained by four NN estimators trained on the same feature vector. Performance on recognition and pose estimation
for real images under occlusions are shown. Comparative studies with two other approaches are carried out. © 2001 Elsevier Science B.V.

All rights reserved.
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1. Introduction

Recognition and pose estimation of 3D objects from arbi-
trary viewpoint is a fundamental issue in computer vision
and has applications in many areas such as automatic target
recognition (ATR), navigation, manufacturing and inspec-
tion. Despite the considerable endeavor and success
achieved so far, a practical system which has a good
compromise involving performance, implementation and
computational complexity, still remains a desired goal.
Beyond being accurate, such system must be robust, low
in computational requirement during run-time, and simple
to implement. In this work, we aim to develop a system that
satisfies all these criteria. Instead of using additional infor-
mation such as depth or color which demands additional
hardware and software costs but contributes few to the
recognition improvement [19], the input data is the mini-
mum possible information that one can extract from a 3D
pattern, namely a single 2D gray-level image. With this less
demanding input, both the complexity of the system as well
as its execution time can be reduced.

In this paper, a fast and robust system is presented that
recognizes a 3D object from a single 2D image of the object
viewed from an arbitrary angle in the 3D space. In addition,
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two translation and two rotation parameters are computed.
The two translation parameters are the x- and y-coordinate
of the object (in pixel) in the image plane. And the two
rotation parameters are the rotation angles of the object
with respect to the camera: the aspect (viewing) angle «
and the elevation angle ¢ accordingly. In concrete, « is
the rotation of the object within the image plane (internal
rotation), and ¢ is the rotation out of the image plane (exter-
nal rotation). Schematic views of these angles are shown in
Fig. 1.

There has been extensive research on object detection and
classification [7,27]. The approaches vary mainly in the
representation of 3D objects and in the search techniques
for matching data to models [21,22]. The shape-based repre-
sentations usually store an explicit 3D model for each
known object, where the models are obtained either manu-
ally or by a computer-aided design (CAD) system [12]. The
recognition is performed by matching object data structure
derived from the observed 2D images to the 3D model data
structure. Thus, 3D to 2D or 2D to 3D transformations must
be performed before a matching can take place [2].

Another frequently used approach is feature-based repre-
sentation. Some early works use regular moment (RM) or
Fourier descriptors (FD) to characterize the boundary of
segmented object [6,28]. Unfortunately RM and FD are
shown to be rather sensitive to noise and to perturbations
in the object boundary [23]. Structural features based on
corners and line segments are used in Refs. [3,8]. Other
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Fig. 1. Schematic of the two rotation parameters.

approaches extract complex features based on geometric/
projective/perspective invariants [13,15,24]. Yet, extraction
of such features is not only time consuming but often
unreliable.

In contrast to the above representation paradigm, a
number of appearance-based systems have emerged.
Begin with the eigenface approach proposed by Turk and
Pentland [26] for face recognition, and later extended by
Nayar [18] and Murase [17] to general object recognition,
appearance-based approach uses a set of images obtained
from different views as its implicit description. [25] applies
a probabilistic approach for appearance modeling where
receptive field histogram was used to represent objects.
Yet, it is difficult to use this histogram-based strategy for
object pose estimation. A recent work [20] in this category
applies Gabor wavelet filters for statistical object localiza-
tion. A statistical object model is built whose parameters are
estimated using maximum likelihood estimation. A multi-
matching strategy is necessary for object pose estimation,
which consists of a global pose search and succeeding local
search. Though it achieves considerable accuracy in para-
meter estimation, no direct report on recognition result can
be found. A comparison of this work to our approach on
object pose estimation can be found in Section 5.

Generally, vision systems must be able to reason about
both identity and pose of objects. In this paper we utilize
several neural nets (NNs) for appearance-based recognition
and pose estimation. In this scheme, expensive storage of a
multiview database is not needed, since during training the
NNs are expected to extract all the relevant information and
to form a compact representation of the objects. Also, due to
generalization capability of the NNs, good results can be
obtained with a relative small number of views. The adap-
tive feature of NNs causes the system to be robust and to
perform well when distortions are present. Finally since a
trained NN can execute quickly, the need for slow matching
strategies is eliminated, and the overall speed of the system
becomes quite reasonable.

The organization of the rest of this paper is as follows.
Section 2 deals with feature extraction using the principal
component network (PCN) approach. Section 3 describes

the NN classifier. Pose estimation by NN is discussed in
Section 4. Experimental results based on both 2D and 3D
objects are presented in Section 5. Finally, Section 6
summarizes the whole paper.

2. Feature extraction using principal component
network

A judicious selection of features reducing the dimension-
ality of the input vector while preserving most of the
intrinsic information content is an approach that will
improve the generalization of a classifier. Subspace methods
such as Principal Component Analysis (PCA) and Indepen-
dent Component Analysis (ICA) are proved to be very effec-
tive ways for extracting low-dimensional manifolds from
the original data space [4,10]. While ICA seeks statistically
independent and non-Gaussian components and is suitable
for blind source separation, PCA is an eigenvector-based
technique which is commonly used for dimensionality
reduction. Through PCA, a n-dimensional pattern vector x
can be mapped to a feature vector ¢ in a m-dimensional
space, where m < n. In other words, PCA finds the inverti-
ble transform T such that truncation of x to ¢ (¢ = T-x) is
optimum in the mean square error sense. The linearity and
invertibility of transform 7 makes the components of such
PCA orthogonal, ordered and linear.

Standard linear PCA has found wide applications in
pattern recognition and image processing. Yet the linearity
can cause problems in some cases [5]. The alternative non-
linear PCA builds a non-linear (curved) lower-dimensional
surface called principal surface that “passes through the
middle of the data” and thus yield a relatively accurate
representation of the data. Suppose functions g and h are
two non-linear mapping each from R" to R™ and from R" to
R", respectively, the target of the non-linear PCA is the
minimization of the non-linear reconstruction mean squared
error

J = Ellx — hgx)|’ (1)

by an optimal choice of g and h.
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One of the simplest methods for computing non-linear
principal manifolds is the PCNs which has a non-linear
hidden layer incorporating the sigmoid activation function
[29]. As shown in Fig. 2(a), the output of the network is set
to be equal to the input pattern vector x, because it is to be
trained to reproduce the input x. And the hidden unit activa-
tions correspond to a feature vector ¢ in R™. The mapping
from the input layer to hidden layer and from the hidden
layer to the output layer can be regarded accordingly as
the non-linear function g and k. The main advantage of
PCN is that it can be done automatically and no prior
knowledge regarding the joint distribution of the compo-
nents is necessary. It has been shown in Refs. [1,9] that,
a PCN with linear functions can be made to converge to
the principal components. Intuitively, one expects a
greater discriminative power to result from the non-linear
neurons.

We are interested not in the exact principal components,
but in components of variables, or features, which are non-
linearly related to the input variables. Thus in our imple-
mentation, we first train a 4-1-4 PCN and then apply the
result function g hierarchically to the input image f
(256 x 256 pixels). During the training process the network
receives the 2 X 2 subimages which are cut sequentially out
of f, without overlap. The result function g is similar to that
of a lowpass filter:

4
gx) = Act(z (Wi + 0)) )
k=1
where wy;, 0 are the weight vector and thresholds of the
hidden neuron and Act(s) the sigmoid activation functions
1/(1 + exp(—s)). Apply the function g one time, we get an
image f; which is one-fourth of the original image f;, (see
Fig. 2(b)). By repeating such operation

fn(i’j) =8 *fnfl(i’j) (3)

four times, we get a feature vector ¢ = f,, which is of 256
(16 X 16) dimensions and will be used in the subsequent
recognition and localization process.

3. Neural classifier

To recognize an object, we need to classify it as belong-
ing to one class (2, out of k object classes 2,, A =1,...,k
based on the feature vector c¢. A three layer feed-forward
network whose input neuron numbers equal to the dimen-
sion of ¢ and whose output neuron numbers equal to k can be
applied to form a model for classification. The output of the
net o), A=1,...,k can be interpreted as measuring the
posterior possibility function p(£2,lc) for each class.
According to Bayes rule, vector ¢ should be classified as
coming from (2, with k = argmax{0,}, A=1,....,k. In
order to reject objects that do not belong to any of
the classes, additional criteria have been incorporated into
the system. Let k, = argmax{o,}, A =1,...,k, A # k, the

image with feature vector ¢ can be classified as containing
an object of class (2, only if:

0« = @0 (4)
and

I =0, 5)
0

O, and O, are fixed before the experiment. Since the neuron
output can vary between 0.0 and 1.0, we set &, = 0.6 for all
the NNs we use. As to @, it is set based on experience to
0, =13.

The number of hidden nodes of the neural classifier is set
by trail and error, varying from 20 to 80. By alternating the
number of hidden nodes, a best net can be found, which can
make the comparison of different approaches more reason-
able. Training is done with the Rprop algorithm, which we
describe briefly in the following. The basic principle of
Rprop is to eliminate the harmful influence of the size of
the partial derivative on the weight step. As a consequence,
only the sign of the derivate is considered to indicate the
direction of the weight update. Concretely the weight
change Awg) is determined as follows:

9E ©

—AP i = >0
wij
AW = OE @ 6
v AP i = <0 ©
Wij
0 else

Then the new update-value Af]’ Dig determined, basing on a
sign-dependent adaptation process

( =1 (1)
1 -1
AT = n * AP if O D E (’)< 0 @
{ Ag) else

where 0<7n <1<n".

In our experiment we set 7 =12 and 1~ = 0.5.
Because Rprop modifies the size of the weight-step directly
by introducing the concept of resilient update-value Ay, it
converges very fast. Another advantage is that no special
choice of parameters is needed at all to obtain optimal or at
least nearly optimal convergence time.

4. Neural pose estimator

After the object is recognized, the module that provides
estimation of its pose parameters, namely the translation and
rotation parameters is activated. The module consists of two
stages with the first one estimating the x- and y-coordinates
of the recognized object in the image plane and the second
one providing the estimation of the internal and external
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Fig. 2. (a) Topology of PCN. (b) Hierarchic feature generation.

rotation parameters. At each stage, the task is partitioned
into simpler sub-problems, and multiple NNs are utilized to
solve it. Each of these NNs receives the same feature vector
as the NN classifier.

For computing of the translation parameters in x and y
direction, two three-layer feed-forward NNs are implemen-
ted for each of the object class. Different from the NN for
classification which is a full connected one there is only
horizontal or vertical connection between the input layer
and the hidden layer as illustrated in Fig. 3. Also they are
NN estimators rather than classifiers. As shown in Fig. 3,
each estimator has 16 neurons in the hidden layer and one
output neuron. The output of each estimator is a real value
between 0 and 1. By multiplying the output with the width
or height of the image which is in our case both 256 pixel,
we obtain the object position in x or y direction, respec-
tively.

For each of the object classes, two NN estimators with
identical architecture are configured to estimate the two
rotation angles « and ¢. In contrast to the translation para-
meter estimators which approximate the geometric center of
the objects, we try to distinguish the different views as
different rotation categories of an object. For this reason, a
topology different from that of the translation parameter
estimators is chosen. As Fig. 4 illustrates, each estimator
receives the same feature vector and has only one output
neuron. By initialization, the number of neurons in the
hidden layer is equal to the discrete number of possible
different category of viewing angles. For example, both «
and ¢ span from —45° to 45° in our 3D experiment. And the
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Fig. 3. Translation parameter estimators.

interval of viewing angles is A = 3° (both in the internal and
external rotation). In this situation, each rotation estimator
should have N = 30 hidden neurons arranged in ascending
order at the initialization stage (Fig. 4). Moreover views
with rotation angles belonging to [nA, (n+ 1)A),
0=n<N, are in the same rotation category. Though
there is only N different rotation categories, within
each rotation category, the views can have a difference
within A.

Because of their particular topology, training of the rota-
tion parameter estimators is done with the dynamic learning
vector quantization (DLVQ) algorithm [30]. With DLVQ a
natural grouping in a set of data can be found very quickly.
Since vectors belonging to the same class (in our case with
the same rotation category) should have smaller difference
than those belonging to different classes (different rotation
categories), we estimate the rotation angles by trying to find
a natural grouping in the set of image data. The mathematic
formulation of this training algorithm is as follows: Suppose
that the vector ¢; belonging to the same class (in our case
within the same category of perspective views) are distrib-
uted normally with a mean vector u;. A feature vector c is
assigned to the class (2; with the smallest Euclidean distance
|p; — ¢|’. During the learning phase, the algorithm
computes a new mean vector ; for each class once every
cycle and generates the hidden layer dynamically. Training
is finished when correct p; is found stable for every class.
After training the network outputs a natural number n
(0=n<N). The rotation angle is computed as to be
equal to n * A.

D U Q-1
00 --- O
og --- 0O O
oQ --- O

Input layer Hidden layer Output layer

Fig. 4. Topology of the rotation parameter estimators.
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Fig. 5. Objects used in the first experiment.

5. Experimental study

Though there exist some image databases such as the
famous Colombia image database, most such databases are
designed for recognition, but not for pose estimation. And
the unavailability of the original objects make it unfavorable
in such situation where real-time application must be devel-
oped. Our goal is to develop an object recognition system to be
used later by a service robot which can act in an office or a
home environment. For the robot to be able to locate and grasp
objects, we develop in the first step a neural system for object
recognition and pose estimation. The system is built on a SGI
02 (R10000) workstation, which is connected to a CCD-
camera (focal length = 16 mm) mounted on a robot (Scorbot
ER-VII). By now, two experiments have been carried out on
the system. The first experiment is based on five 2D objects
shown in Fig. 5. By these objects there exists only the internal
rotation «. In the second experiment we use three 3D objects
(a), (b) and (c) shown in Fig. 6. All the images have a dimen-
sion of 256 X 256 pixels with the objects appearing in uniform
scale. It takes about 0.5 s for feature extraction, recognition
and pose estimation altogether. The achieved precision of the
computed object center using neural estimators is in average
1.2 pixel. And the average errors of the rotation parameter are
1.8° for the internal rotation « and 2.6° for the external rotation
¢.
In the 2D experiment, 400 images are taken with 10
different positions and 40 different rotation categories for
each object class. The image data is divided into training
and test samples randomly, so that some views of the test
images have never appeared in the training process at all.
Training set consists of 160 images/class, Test set consists
of 240 image/class. The achieved recognition results on the
test set using PCN as well as different wavelet transform are
shown in Table 1. As we know, a 2D discrete wavelet trans-
form is computed by applying a separable filterbank to the

image repeatedly [16]. Through lowpass filter H followed
by subsampling along image rows and columns, a low reso-
Iution image can be retrieved, which can be denoted math-
ematically as follows:
Sne,y)=[H,*[H, *fn—l]\2,1]|1,2()f, y) (8)
By applying the lowpass filter H four times, we can get the
wavelet feature vector f;, which has the same dimension as
the PCN networks. As for the description of the coefficients
of the different kinds of wavelet transforms, please refer to
Ref. [11]. Though the similarity of the three kinds of lid
makes the recognition task a very difficult one, PCN based
feature extraction achieves an average recognition rate of
99.6%. The best wavelet-based features resulted from
Daubechies 4-tap wavelet, which is more than 1% lower
than that of the PCN feature. Another superiority of the
PCN feature detector is its fast convergence during training,
which can be obviously seen from Fig. 7.

Inthe 3D experiment, Each object is available in four image
sequences with 6144 image each. Each sequence is taken
under a different illumination. Under each illumination,
objects are taken having translational variation within the
whole image plane and rotational variation (both & and ¢)
of 90°. This means that for each object, there are 24,576 images
taken in different positions, at different perspective view-
points, and with different lightning conditions. Here we divide
the four sequences into two disjoint parts: training data and test
data. The test data is further subdivided into a validation set
and a test set. The training data is used for training the network.
The validation set is used to estimate network performance
during training as we use the early stopping criteria to avoid
overfitting. Yet, the validation set is never used for weight
adjustment. Therefore it is used with the fest set together to
evaluate the network performance after training is finished.
Training set consists of 2048 images/class, which are

Fig. 6. Objects used in the second experiment.
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Table 1
Recognition results-2D experiment

Table 2
Results of 3D object recognition

Recognition rate (%)

LidO Lid1l Lid2 Case Fan Aver.
PCN 100 98.3 100 100 99.6 99.6
Haar 100 91.3 99.6 100 100 98.2
Daub4 99.6 93.75 98.3 100 99.6 98.25
Daub6 100 91.7 98.3 100 99.2 98.0
Daub7 100 91.3 99.6 99.6 98.75 97.8
Daub9 99.6 82.5 100 100 97.5 95.9
QMF8 100 87.5 100 100 99.2 97.3
QMF12 100 92.1 98.75 100 99.6 98.1
Villa6 100 83.3 99.6 100 100 96.6
Zhu4 93.75 79.2 98.3 100 97.9 93.75
QZ10 100 75.9 100 99.6 99.6 95.0

randomly selected only from the first and second sequence.
Another 2048 images/class randomly selected from the third
and fourth sequence form the validation set. And the rest are
used as fest set. As such, the ratio of the amount of training
data, validation setand test set is 1:1:10.

To evaluate the system performance on the 3D objects,
first we have compared the PCN with Kohonen’s self-
organization feature map (SOM). As there is not enough
room here, we refer to Ref. [14] for a detailed description
of the SOM-based feature extraction method. The total
processing time for feature extraction, recognition and
pose estimation using SOM is 1.6 s on the same SGI work-
station. Since the dimension of the feature vector resulting
from this method is also 256, which is the same with our
PCN features, we can compare the influence of SOM-
feature and our PCN-feature on the NN classifier as well
as NN estimators with same network architecture. In both

230, 00
220. 004
218,80
200,00
190. 00
188. 88
179,00
160. 60~
158. 88—
140,00
130. 00+
128. 88
110,00
100, 00
98. 88
60, 00
70. 00+
68.088-
59. 00+
40. 00
38, 88
29,00+
10. 00

8.0 T T T T T Y

Approach Object Recognition rate (%)

Without occlusion when hidden With
occlusion
with
hidden
neurons =

neurons =

30 42 56 64 56

PCN (a) 97.6 98.4 98.4 98.3 67.1
(b) 92.3 93.2 93.8 93.4 87.5
(o) 97.2 97.8 99.2 98.2 88.4
SOM (a) 96.5 96.3 97.1 96.5 57.4
(b) 90.9 91.8 92.0 92.0 78.1
(c) 93.1 93.8 93.9 93.2 76.9

cases, we vary the number of neurons in the hidden layer
from 20 to 80 so as to find the best classifier. The best results
are achieved with the number of hidden neurons between 30
and 64. Using the best NN configurations, we further test the
robustness of both approach (PCN and SOM) for new views
and in case of noise and occlusion. For this reason,
Gaussian noise with zero mean and a standard deviation
up to 75 is added to the images after objects are
occluded up to 60% as shown in Fig. 6(d). Since occlu-
sion is done by translating or rotating the objects out of
their image plane, the resulted images have not only
noise and occlusion, but also views different from the
original data. Through such operations, a new data set
with 4096 images/class is generated.

Furthermore we compared our approach with the statistical

230. 88
220,080+
210.00
268. 80
199.00+
180.004
170.088
168.0808+
150. 080
148.080-
1308.80+
126. 080
118.80-
180,00+
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58. 80
49,90
30. 80
28. 88
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8.00- T T T T T

Fig. 7. Convergence of the neural classifier.
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Table 3
Results of 3D object pose estimation

591

Object Approach Fail (%) Error
Transl. (Pix) Int.rot. (°) Ext.rot. (°)
Mean Max Mean Max Mean Max
(a) PCN 0 1.1 2.8 1.1 34 2.3 6.8
SOM 17 1.1 2.4 3.7 6.8 4.3 6.8
STA. 0 1.1 2.5 1.3 34 1.3 6.8
(b) PCN 4 0.8 1.5 1.7 6.8 32 6.8
SOM 34 0.9 2.9 4.5 6.8 5.4 6.8
STA 15 1.8 3.5 1.3 5.9 3.7 8.9
(©) PCN 2 14 2.6 2.7 6.8 2.2 6.8
SOM 23 1.7 44 43 6.8 5.7 6.8
STA. 18 2.5 5.3 14 34 3.5 8.6

one described in Ref. [20] for pose estimation. On the
same machine it takes about 6 s for feature extraction and
localization of one of the objects by this approach, which is
much time consuming than our neural approach.

We summarize the performance of our system as well as
the other two approaches (named as SOM and STA, respec-
tively) in tables as follows: Table 2 lists the recognition rate
of the three objects on the test data using the two different
feature extraction methods. The precision of pose estimation
using all three different approaches is shown in Table 3. An
estimation result is regarded as failure if the resulted trans-
lation error is more than 10 pixels or the rotation error is
more than 9°.

As shown in Table 2, both PCN and SOM approach
achieve their best recognition results when there are 56
neurons in the hidden layer. One can see no big difference
on the recognition rate when the number of hidden neurons
are between 30 and 56. This proves in somewhat the effec-
tiveness of the Rprop training algorithm. At the same time,
slight degradation of the recognition rate can also be seen
when there are more than 56 neurons in the hidden layer.
This complies with the generally believed weak generation
resulting from an overfitting provided by too many hidden
neurons in a net. In average the recognition rate is 97.1% by
PCN and 94.3% by SOM. Under occlusion and noise, PCN
achieved an average recognition rate of 77%, while SOM
got near to 70%. As to pose estimation accuracy, the
average estimated precision in translation is 1.1 pixel by
PCN, 1.2 pixel by SOM and 1.8 pixel by STA. Based on
PCN, SOM, and STA approach accordingly, there is in
average 1.8° 3.2° and 1.3° estimation error in the internal
rotation parameters and 2.6°, 5.2° and 2.8° in the external
rotation parameters. While SOM achieves comparable
recognition rate with PCN approach, it is shown through
this study that it has a poorer localization ability. Therefore,
we argue that feature extraction through PCN appears to be
a promising one. Also in run-time effectiveness, PCN
outperforms the SOM as well as STA. Though we cannot
see big performance difference on pose estimation exactness

between the statistical and our neural approach from Table
3, the overall fail estimation of our approach is much lower.
Also quite different from the STA method, whose localiza-
tion performance changes when different object is
presented, PCN shows a much lower performance variance
on all three objects. Hence the neural approach proves itself
to be relatively more robust and stable than the statistical
one.

6. Conclusion

We developed an automatic system for the recognition
and pose estimation of 3D objects viewed from arbitrary
location and perspective angles, where NN theory is widely
applied to model the object appearance. The effectiveness
and accuracy of the proposed system is demonstrated in two
experiments involving a data set of eight objects. Compara-
tive studies with two other approaches, a neural and a statis-
tical one, are carried out. It is shown that our system is more
accurate, robust and faster than the other two approaches. It
is concluded that with the proposed appearance based neural
approach, recognition and pose estimation of 3D objects can
be performed with low computational requirement and high
accuracy. Currently we are applying this neural approach to
a set of fourteen 3D objects (cup, plate, box, bottle, fork,
spoon, knife, two kinds of cola dose, two kinds of stapler
and three kinds of hole puncher) and have achieved a similar
recognition rate. In the future, we will enhance the proposed
method to cope with scenes with more than one object
appearing before heterogeneous background.
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