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Abstract

This paper presents a Bayes classifier with a hierar-
chical structure for appearance-based object recog-
nition. It consists of a new kernel method, Ultra-
metric Spin Glass-Markov Random Fields, that in-
tegrates results of statistical physics with Gibbs dis-
tributions. Experiments show the effectiveness of
our approach.

1 Introduction

Object recognition is an important part of our lives.
We recognize objects in all our everyday activities:
we recognize people when we talk to them, we rec-
ognize our cup on the breakfast table, our car in
a parking lot, and so on. While this task is per-
formed with great accuracy and apparent little effort
by humans, it is still unclear how this performance
is achieved. This has challenged the computer vi-
sion research community to build artificial systems
able to reproduce the human performance. After
30 years of intensive research, the challenge is still
open.

Most of work on object recognition tries to an-
swer the following question: given a collection of
objects, can we recognize correctly one of them
among the others? This problem is faced in a
wide variety of situations: in cluttered of heteroge-
neous background [6, 10], under different lighting
conditions [12], in presence of noise or occlusion
[12, 6, 3], and so on. The success of an algorithm
is then measured in terms of recognition rates, as to
say how many times the object was recognized suc-
cessfully. Although the recognition rate is undoubt-
fully an important indicator of the performance of
an algorithm, it cannot be the only one. In other

words, not all errors can be considered in the same
way. This is something we experience everyday:
we know that not all errors have the same conse-
quences, and that there are mistakes that we cannot
do more that once in life. If we ask someone “Please
give me my pen”, and (s)he makes a mistake, it is
not the same if we get a different pen, or a cup.
Many times, a pen (even if not ours) will do, but
cup won’t. If we walk in the forest and hear a noise
that makes us realize that there is an animal close to
us, the point is not to recognize whether it is a lion,
a tiger, an antelope or a rabbit, but to decide whether
it is dangerous or not, and react consequently.

Many experiments [11] show that biological sys-
tems tackle this problem using a hierarchical orga-
nization of visual information, based on visual cat-
egories . Coding by category is fundamental to
mental life because it greatly reduces the demands
on perceptual processes, storage space, and reason-
ing processes. This also induces a hierarchical clas-
sification system: a visual pattern is recognized first
as a member of a visual category, then as a member
of a relative sub-category, and so on until it is rec-
ognized as individual (if known).

Recently, there has been some interest in the
recognition of visual categories [13, 14]. In this
paper we concentrate the attention on the hierar-
chical organization of information, and we propose
a probabilistic Bayes classifier with a hierarchical
structure for appearance-based object recognition.
To this purpose, we use a new kernel method, Spin
Glass-Markov Random Fields (SG-MRF, [2, 3]).
They are a new class of MRF that integrates results

1We are aware that some researchers in the computer vision
community argue that such parallel are unneeded. Although we
understand their motivations, it should be firmly kept in mind that
“biological vision is currently the only indication we have that the
general vision problem is even open to solution” [11]

VMV 2002

Erlangen, Germany, November 20-22, 2002



of statistical physics of disordered systems with
Gibbs probability distributions via nonlinear kernel
mapping [16]. The resulting model, using a Hop-
field energy function, has shown to be very effec-
tive for appearance-based object recognition [2] and
to be remarkably robust to noise and occlusion [3].
Here we extend SG-MRF to a new SG-like energy
function, inspired by the ultrametric properties of
the SG phase space. We will show that this energy
can be kernelized as the Hopfield one, thus, it can be
used in SG-MRF modeling. This new class of SG-
-MREF, that we call Ultrametric Spin Glass-Markov
Random Fields (USG-MRF) has shown to be very
effective for combining color and shape information
[5]- Here we show that the structure of this energy
provides as well a natural framework for hierarchi-
cal appearance-based object recognition; we report
experimental results that show the effectiveness of
our approach.

The paper is organized as follows: Section 2 de-
fines the general framework for appearance-based
object recognition, and Section 3 review SG-MRF.
Section 4 presents the new ultrametric energy func-
tion, shows how it can be used in a SG-MRF
framework (Section 4.1) and applied for hierarchi-
cal appearance-based object recognition (Section
4.2). Experiments are presented in Section 5; the
paper concludes with a summary discussion.

2 Probabilistic Appearance-based
Object Recognition

Appearance-based object recognition methods con-
sider images as feature vectors. Let x = [z;5],¢ =
1,...N,j = 1,...M be an M x N image.
We will consider each image as a feature vector
x € G =R",m=MN. Assume we have k dif-
ferent classes Q1, s, ..., Qy of objects, and that
for each object is given a set of n; data samples,
dj = {x{,x3,...,x}.},j = 1,... k. We will as-
sign each object to a pattern class Q1,Q2, ..., Q.
The object classification procedure will be a dis-
crete mapping that assigns a test image, showing
one of the objects, to the pattern class the presented
object corresponds to. Here we will concentrate on
probabilistic appearance-based methods.

The probabilistic approach to appearance-based
object recognition considers the image views of a
given object 2; as random vectors. Thus, given the
set of data samples d; and assuming they are a suffi-
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cient statistic for the pattern class €2, the goal will
be to estimate the probability distribution Po, (x)
that has generated them. Then, given a test image
x, the decision will be made using a Maximum A
Posteriori (MAP) classifier:

§° = argmax Po, (x) = argmax P(Q;|x),
J J

and, using Bayes rule,

j° = argmax P(x|Q;)P(Q;).
J
where P(f|Q2;) are the Likelihood Functions (LFs)
and P(£2;) are the prior probabilities of the classes.
In the rest of the paper we will assume that the prior
P(£Q;) is the same for all object classes; thus the
Bayes classifier (1) simplifies to

)

j* = argmax P(x|9;).
J

@

Many probabilistic appearance-based methods do
not model the pdf on raw pixel data, but on features
extracted from the original views. The extension of
equation (2) to this case is straightforward: consider
a set of features {hj,h},...,hJ },j = 1,...k,
where each feature vector h{lj is computed from the
image x, , b, = T(x}, ),h),, € G=R". The
Bayes classifier (2) will be in this case

j* = argmax P(h|Q;). (3)
J

3 Spin Glass-Markov Random Fields

A possible strategy for modeling the parametric
form of the probability function is to use Gibbs dis-
tributions within a Markov Random Field frame-
work. MRF considers each element of the random
vector h as the result of a labeling of all the sites
representing h, with respect to a given label set. The
MREF joint probability distribution is given by

P(h) = exp (~E(W), Z = Y exp(~E(h).
{h}
@

The normalizing constant Z is called the partition
function, and E(h) is the energy function. Thus,
using MRF modeling for appearance-based object
recognition, eq (2) will become

j* = argmax P(h|Q;) = argmin E(h|Q;) (5)
J J



Only a few MRF approaches have been proposed
for high level vision problems such as object recog-
nition [15, 8], due to the modeling problem for
MRF on irregular sites (for a detailed discussion
about this point, we refer the reader to [2]). Spin
Glass-Markov Random Fields overcome this limi-
tation and can be effectively used for appearance-
based object recognition [2].

The rest of this Section will review SG-MRFs
(Section 3.1) and how they can be derived from
results of statistical physics of disordered systems
(Section 3.2). Section 4 will show how these results
can be extended to a new class of energy function
and how this extension makes it possible to use this
approach for hierarchical appearance-based object
recognition.

3.1 Spin Glass-Markov Random Fields:
Model Definition

Spin Glass-Markov Random Fields (SG-MRFs) [2]
are a new class of MRFs which connect SG-like en-
ergy functions (mainly the Hopfield one [1]) with
Gibbs distributions via a non linear kernel map-
ping. The resulting model overcomes many difficul-
ties related to the design of fully connected MRFs,
and enables us to use the power of kernels in a
probabilistic framework. Consider k object classes
Q1,Q2,...,Q, and for each object a set of n; data
samples, d; = {x],...x} },j =1,... k. We will
suppose to extract, from each data sample d; a set
of features {h{,...h_ }. The SG-MRF probabil-
ity distribution is given by

Psa(h|Q;) = %exp [-Esc(h|;)], (6)
Z =" exp[-Esc(hlQ))],
{h}
with
Eso(hly) = - [KMma™)]* @)
p=1

where the function K(h, h*3)) is a Generalized
Gaussian kernel [16]:

K(X, y) = exp{—pda,b(x, y)}7

dap(x,y) =D |af —yi|" ®
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{h)}"7 |5 € [1, k] are a set of vectors selected

(according to a chosen ansatz, [2]) from the training
data that we call prototypes. The number of proto-
types per class must be finite, and they must satisfy
the condition:

K™ n") =o, )
foralli,i =1,...p;,i #land j = 1,...k. Note
that SG-MRFs are defined on features rather than
on raw pixels data. The sites are fully connected,
which ends in learning the neighborhood system
from the training data instead of choosing it heuris-
tically. As we model the probability distribution on
feature vectors and not on raw pixels, SG-MRF is
not a generative model. Another key characteris-
tic of the model is that in SG-MRF the functional
form of the energy is given by construction. This is
achieved using results for statistical physics of Spin
Glasses. The next Section sketches the theoretical
derivation of the model. The interested reader will
find a more detailed discussion in [2].

3.2 Spin Glass-Markov Random Fields:
Model Derivation

Consider the following energy function:

E:_Zjij Si Sj

(4:9)

i,j=1,...N, (10)

where the s; are random variables taking values in
{£1},s= (s1,...,sn) isaconfiguration and J =
[Jij 1, (i,5) = 1,..., N is the connection matrix,
Ji; € {£1}. Equation (10) is the most general Spin
Glass (SG) energy function [1, 7].

An important branch in the research area of sta-
tistical physics of SG is represented by the appli-
cation of this knowledge for modeling brain func-
tions. The simplest and most famous SG model of
an associative memory was proposed by Hopfield;
it assumes J;; to be given by

p
1 (1) ()
NZ&Z fj )
p=1

where the p sets of {¢*)}*_ are given configura-
tions of the system (that we call prototypes) having
the following properties: (a) € L £®) vy £ v;
(b) p = aN,a < 0.14,N — oo. Under these
assumptions it has been proved that the {¢(*)}2_,

Jig = (11)



are the absolute minima of E [1]; for o > 0.14 the
system loses its storage capability [1]. These results
can be extended from the discrete to the continuous
case (i.e. s € [—1,+1]"); note that this extension
is crucial in the construction of the SG-MRF model.

Energy (10), with the prescription (11), can be

written as:
_ 1 () 2
E=-—= D (" -s)%
"

Equation (12) depends on the data through scalar
products, thus it can be kernelized, as to say it can
be written as

R DGR

o DR(B) - b)) =

(12)

1 ~
=~ D_[K(0" ) (13)
1
provided that ® is a mapping such that (see Figure
1):

P:G=R" - H=[-1,+1]",N - o,
that in terms of kernel means

K(h,h) =1,V heR" dim(H)=N,N — oco.

(14)
The idea to substitute a kernel function, represent-
ing the scalar product in a higher dimensional space,
in algorithms depending on just the scalar prod-
ucts between data is the so called kernel trick [16],
which was first used for Support Vector Machines
(SVM). Conditions (14) are satisfied by general-
ized Gaussian kernels (8). Regarding the choice
of prototypes, given a set of n; training examples
{x7,x5,...,x; _} relative to class Q, the con-
dition to be satisfied by the prototypes is £ L
€Y Y(u # v) in the mapped space H, that be-
comes ®(hW) L ®(h™)),Yu # v in the data
space GG. The measure of the orthogonality of the
mapped patterns is the kernel function (8) that, due
to the particular properties of Gaussian Kernels, has
the effect of orthogonalize the patterns in the space
H. Thus, the orthogonality condition is satisfied by
default: if we do not want to introduce further crite-
ria for the choice of prototypes, the natural conclu-
sion is to take all the training samples. This approx-
imation is called the naive ansatz.
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4 Ultrametric Spin  GlassMarkov

Random Fields

SG-MRF, with the Hopfield energy function (10)-
(11), have been successfully applied to appearance-
based object recognition, showing to be very effec-
tive, and presenting remarkable robustness proper-
ties [3]. A major drawback of the Hopfield energy
function is the condition of orthogonality on the set
of prototypes. Although the properties of general-
ized Gaussian kernels ensure theoretically that there
exists at least one p such that all the prototypes are
orthogonal to each other, this can be not enough
from the point of view of computer vision applica-
tions. In other words, the naive ansatz can turn out
to be in some cases too rough an approximation.

The solution we propose consists in kernelizing
a new SG energy function, that allows us to store
non mutually orthogonal prototypes. As this energy
was originally derived taking into account the ul-
trametric properties of the SG configuration space,
we will refer to it as the ultrametric energy. The
interested reader will find a complete description
of ultrametricity and of the ultrametric energy in
[1, 7]. In the rest of the Section we will present
the ultrametric energy and we will show how it can
be kernelized (Section 4.1); we will also show that,
as a main feature of the ultrametric energy is that
it induces a hierarchical organization of the data, it
can be used for hierarchical appearance-based ob-
ject recognition.

4.1 Ultrametric Spin Glass-Markov Ran-
dom Fields: Model Derivation

Consider the energy function (10)

E=—- Z JijSiSj
ij

B
{,,
|9 B

‘ Descendant ‘ Descendant

‘ Descendant

Figure 2: Hierarchical structure induced by the ul-
trametric energy function.



dimam,

dimq

dimq

G=Rm - H=[-1,+1]V,N — oo

Figure 1: The kernel trick maps the data from a lower dimension space G = R™ to a higher dimension
space H = [~1, +1]~, N — oco. This permits to use the H-L energy in a MRF framework.

with the following connection matrix:

p

P
1 (1) ¢ () 1 (1) (1)
%—NEQQ-UMWQ}iQ
=

p=1

an
> 0 —a)m —a)  (15)
v=1

with
N
v v 1 v A
gz(u ) gl(u)m(u )7 ai =< Zm@u )m(u )|
i=1

This energy induces a hierarchical organization of
stored prototypes ([1], see Figure 3). The set of pro-
totypes {£'*)}%_, are stored at the first level of the
hierarchy and are usually called the ancestors. Each
of them will have ¢ descendants {¢(*)}% . The
parameter nz(‘“’) measures the similarity between
ancestors and descendants; the parameter a, mea-
sures the similarity between descendants. A(ay)
is a normalizing parameter, that guarantees that the
energy per site is finite. In the rest of the paper we
will limit the discussion to the case?

The connection matrix thus becomes:

p
1 (1) £ (1)
By =5 > 67
p=1

2Considering the general case would not add anything from the
conceptual point of view and would make the notation even heav-
ier.

666

P L
1 (1) (1) (uv) ()
+m z;fi &; 2;(?71 —a)(n;""" —a)
p= v=

= Terml + Term?2.

Term1l is the Hopfield energy (10)-(11); Term2 is
a new term that allows us to store as prototypes
patterns correlated with the {¢£ (“)}ﬁzl, and corre-
lated between each other. This energy will have
p+>_»_, ¢ minima, of which p absolute (ances-
tor level) and (37 _ ¢*) local (descendant level).

When a — 0, the ultrametric energy reduces to
a hierarchical organization of Hopfield energies; in
this case the prototypes at each level of the hierar-
chy must be mutually orthogonal, but they can be
correlated between different levels. Note also that
we limited ourselves to two levels, but the energy
can be easily extended to three or more. For a com-
plete discussion on the properties of this energy, we
refer the reader to [1].

Here we are interested in using this energy in the
SG-MRF framework reviewed in Section 3. To this
purpose, we show that the energy (10), with the con-
nection matrix (15), can be written as a function of
scalar product between configurations:

P

L
N

p=1

E= (€™ - 9)*+

P 4du

1 v 2
N 2 2

p=1rv=1
p  du

N(lzi a?) ZZ@(M) 'S)@w) -8)+

p=1rv=1



2 P qu

- ?) ZZ(f(H) 'S)2~

—_ 16

N(1l-a (16)
p=1rv=1

If we assume that a — 0, as to say we impose or-

thogonality between prototypes at each level of the

hierarchy, the energy reduces to

P
1
—3E DE 8
p=1

E=

qu

DD €

p=1rv=1
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The ultrametric energy, in the general form (16)
or in the simplified form (17) can be kernelized as
done for the Hopfield energy and thus can be used
in a MRF framework. We call the resulting new
MRF model Ultrametric Spin Glass-Markov Ran-
dom Fields (USG-MRF).

4.2 Ultrametric Spin Glass-Markov Ran-
dom Fields: Model Application

The ultrametric energy (17), derived in Section 4.1,
becomes in the SG-MRF framework

»;
Fuysg = — Z[[{a(fl(u)7 h)]2_

p=1

Pj  qu

DO [Ka(h*) h)P,

p=1v=1

(18)

where {h’*}ff:1 will be the set of prototypes rel-
ative to the ancestor level, and {h**}% o, =
1,...p; the set of prototypes at the descendant
level. K, is the generalized Gaussian kernel at the
ancestor level, and K is the generalized Gaussian
kernel at the descendant level. It must be stressed
that the kernel must be the same at each level of the
hierarchy, but can be different between levels (as to
say between ancestor and descendant).

The ultrametric energy (18) has been used
for combining color and shape information for
appearance-based object recognition, with excel-
lent results [5]. Here we apply USG-MRF to hi-
erarchical appearance-based object recognition, in
a straightforward manner: the ancestor level will
contain prototypes relative to the visual category
the object €2; belongs to, while the descendant level
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Figure 3: An example of 5 objects of the 59 con-
tained into the used database. Views have different
sizes for different objects and for different pose pa-
rameters.

will contain prototypes relative to the object class
itself. The Bayes classifier based on USG-MRF is:

Pj
j* = argmin{— > [K, (b, h)*—
min{-

p=1
fj i[f@(ﬁw”% h)J*}. (19)

5 Experiments

We performed a series of experiments in order to
test our model. We ran all the experiments on a
database of 59 objects [10]: 11 cups, 5 dolls, 6
planes, 6 fighter jets, 9 lizards, 5 spoons, 8 snakes
and 9 sport cars. Some examples are shown in Fig-
ure 4.

Each object is represented in the training set by
a collection of views taken approximately every 20
degrees on a sphere; this amounts to 106 views for
a full sphere, and 53 for a hemisphere. The test
set consists of 53 (24) views, positioned in between
the training views, and taken under the same con-
ditions. Cups, dolls, fighters, planes, spoons are
represented by 106 views in the training set and 53
views in the test set; lizards, snakes, sport cars are
represented by 53 views in the training set and 24
views in the test set. As the views in the database
are of different sizes, we decided to use a Multidi-
mensional receptive Field Histogram (MFH) repre-
sentation for all classes [12], that was already ap-
plied and successfully combined with SG-MRF [3].
We used three different kinds of MFH represen-
tation: the first consisted in Gaussian derivatives
along z and y directions and with o = 1.0, that we
called D, D,. The second consisted in Laplacian
Gaussian operator with o1 = 1.6 and o2 = 3.2,
that we called Lp2o. The third consisted in Lapla-
cian Gaussian operator with o1 1.6, o2 = 3.2



and o3 = 6.4, that we called Lp3c. For all these
representations, the resolution for histogram axes
was of 16 bins.

The structure of this database is “naturally” hi-
erarchical: although it is composed by 59 objects,
they can be “naturally” separated in subgroups with
respect to the visual category they belong to (cup,
doll, fighter, lizard, spoon, sport car). The goal of
these experiments is to check whether the use of this
hierarchical structure can lead to a) a higher recog-
nition rate, b) a lower recognition time, c) a lower
category error rate.

Thus, we ran a first set of experiments on the
complete database of 59 objects, using SG-MRF
in a MAP-Bayes classifier [2, 3], for all the three
representations described above. Kernel parameters
are learnt with a leave-one-out technique. These re-
sults constitute a benchmark for those obtained us-
ing USG-MREF, and are reported in Table 1.

| || D.D, | Lp2o | Lp3o |

Rec. Rate (%) 90.82 | 97.74 | 98.23
Rec. time (sec) 0.67 1.35 6.77
n. misclass. 217 50 39

category errors 42 4 6

Table 1: Classification results using SG-MRF, for
59 objects

We see that the best recognition rate, obtained
with the Lp3o representation, doesn’t correspond
to the lower category error. Moreover, the higher
recognition rate is obtained with a 3D histogram
representation, which leads to a remarkable in-
crease of the computational time.

Then we ran a second set of experiments, con-
sisting in the recognition of the 8 visual categories
mentioned above. For each visual category, the
training (test) set consisted of all the training (test)
view of the object belonging to the category itself.
We used a D,D, and Lp2c representation, and
SG-MREF as described in the previous experiment.
Results are reported in Table 2.

We see that, using the Lp20 representation, we
achieve a recognition rate of 100%, which of course
corresponds in this case to 0 category errors. This
inspired us to perform two hierarchical experi-
ments. In the first experiment, we used the USG-
-MREF classifier as described in Section 4.2, and the
D, D, representation at the ancestor level (visual
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| [ D:D, [ Li2s |
Rec. Rate (%) 98.23 100
category errors 39 0

Table 2: Classification results using SG-MRF, for 8
object categories

category level) and the Lp3o at the descendant level
(object class level). Kernel parameters at each level
were learnt with a leave-one-out technique. Results
are reported in Table 3. In the second experiment,
we used SG-MRF and Lp2c for the visual cate-
gory classification; we considered this result prior
knowledge and then we used again SG-MRF for the
recognition of each object class. This procedure al-
lows to use, for each group of objects belonging to
the same visual category, a different kernel. Results
are reported in Table 3.

| || D.Dy-Lp3oc | Lp20- Lp3oc

Rec. Rate (%) 98.28 98.59
Rec. time (sec) 3.18 4.94
n. misclass. 38 30

category errors 2 0

Table 3: Classification results using USG-MRF, for
59 objects

The best recognition rate is obtained with the sec-
ond experiment, which gives also (not surprisingly)
the lowest category error. Nevertheless, results ob-
tained using USG-MRF are impressive: it is faster
with respect to the second experiment, with just 8
more misclassifications, 2 of which category errors.
This last result is particularly impressive, because
we used the D, D, representation at the ancestor
level, which would give alone 39 category errors
(see Table 2). This result, with the awareness that
the second experiment relies heavily on the perfor-
mance at the first level (that gives a 100% recogni-
tion rate in this case, but that by principle can be dif-
ferent for different databases), makes us conclude
that USG-MRF is the most promising strategy for
hierarchical appearance-based object recognition.

Finally, we compare USG-MRF results with
those obtained with the first set of experiments. We
see from Table 1 and Table 3 that USG-MRF gives
the highest recognition rate and the lowest category



error; it pays a price in terms of computational time
with respect to the Lp20 representation (second
column, Table 1), but this is well compensated by
the higher recognition rate and the lower category
error. We can conclude from these experiments that
USG-MRF is an effective probabilistic method for
hierarchical appearance-based object recognition.

6 Summary

In this paper we presented a new kernel method
for hierarchical appearance-based object recogni-
tion. This result is achieved using results of sta-
tistical mechanics of Spin Glasses combined with
Markov Random Fields via kernel functions. The
new model is an extension of Spin Glass-Markov
Random Fields to a new class of SG-like energy
functions, that use the ultrametric properties of the
Spin Glass phase space; for this reason we call the
new model Ultrametric Spin Glass-Markov Ran-
dom Fields. Experiments confirm the effectiveness
of the proposed approach. This work can be devel-
oped in many ways: first, we intend to develop new
strategies for the recognition of visual categories,
based on the choice of proper representations and
the use of kernel properties. Second, we plan to use
the Ultrametric Spin Glass-Markov Random Field
in the Kernel-Class Specific Classifier framework
[4], in order to fully use the power of kernels. Fi-
nally, we plan to benchmark these results with other
kernel methods like Support Vector Machines.
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