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Abstract. Shape and color information are important cues for object
recognition. An ideal system should give the option to use both forms of
information, as well as the option to use just one of the two. We present
in this paper a kernel method that achieves this goal. It is based on
results of statistical physics of disordered systems combined with Gibbs
distributions via kernel functions. Experimental results on a database of
100 objects confirm the effectiveness of the proposed approach.

1 Introduction

Object recognition is a challenging topic of research in computer vision [8]. Many
approaches use appearance-based methods, which consider the appearance of ob-
jects using two-dimensional image representations [9,15,23]. Although it is gen-
erally acknowledged that both color and geometric (shape) information are im-
portant for object recognition [11,22], few systems employ both. This is because
no single representation is suitable for both types of information. Traditionally,
the solution proposed in literature consists of building up a new representation,
containing both color and shape information [11,22,10]. Systems using this kind
of approach show very good performances [11,22,10]. This strategy solves the
problems related to the common representation; a major drawback is that the
introduction of a new representation does not permit the use of just color or
just geometrical information alone, depending on the task considered. A huge
literature shows that color only, or shape only representations work very well
for many applications (see for instance [8,9,21,23]). Thus, the goal should be a
system that uses both forms of information while keeping them distinct, allowing
the flexibility to use the information sometimes combined, sometimes separate,
depending on the application considered.

Another important point is the dimension of the feature vector relative to
the new representation. If it carries as much information about color and shape
as separate representations do, then we must expect the novel representation to
have more parameters than each separate representation alone, with all the risks
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of a curse of dimensionality effect. If the dimension of the new representation
vector is kept under control, this means that the representation contains less
color and shape information than single representations.

In this paper we propose a new strategy to this problem. Given a shape only
and color only representation, we focus attention on how they can be combined
together as they are, rather than define a new representation. At the end, we use
a new kernel method: Spin Glass-Markov Random Fields (SG-MRF) [2]. They
are a new class of MRF that integrates results of statistical physics of disordered
systems with Gibbs probability distributions via non linear kernel mapping.
The resulting model, using a Hopfield energy function [1], has shown to be very
effective for appearance-based object recognition and to be remarkably robust to
noise and occlusion. Here we extend SG-MRF to a new SG-like energy function,
inspired by the ultrametric properties of the SG phase space. We will show that
this energy can be kernelized as the Hopfield one, thus, it can be used in the
SG-MRF framework. The structure of this energy provides a natural framework
for combining shape and color representations together, without any need to
define a new representation. There are several advantages to this approach:

– it permits us to use existing and well tested representations both for shape
and color information;

– it permits us to use this knowledge in a flexible manner, depending on the
task considered.

To the best of our knowledge, there are no previous similar approaches to the
problem of combining shape and color information for object recognition. Ex-
perimental results show the effectiveness of the new proposed kernel method.

The paper is organized as follows: after a review of existing literature (Sec-
tion 2), we will define the general framework for appearance-based object recog-
nition (Section 3) and Spin Glass-Markov Random Fields (Section 4). Section
5 will present the new ultrametric energy function, show how it can be used
in a SG-MRF framework (Section 5.1) and how it can be used for combining
together shape and color representation for appearance-based object recognition
(Section 5.2). Experiments are presented in Section 6; the paper concludes with
a summary discussion.

2 Related Work

Appearance-based object recognition is an alternative approach to the geometry-
based methods [8]. In an appearance-based approach [17] the objects are modeled
by a set of images, and recognition is performed by matching directly the input
image to the model set. Swain and Ballard [23] proposed representing an object
by its color histogram. The matching is performed using histogram intersection.
The method is robust to changes in the orientation, scale, partial occlusion and
changes of the viewing position. Its major drawbacks are its sensitivity to lighting
conditions, and that many object classes cannot be described only by color.
Therefore, color histograms have been combined with geometric information
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(see for instance [22,10]). In particular, the SEEMORE system [11] uses 102
different feature channels which are each sub sampled and summed over a pre-
-segmented image region. The 102 channels comprise color, intensity, corner,
contour shape and Gabor-derived texture features. Strikingly good experimental
results are given on a database of 100 pre-segmented objects of various types.
Most interestingly, a certain ability to generalize outside the database has been
observed.

Schiele and Crowley [21] generalized this method by introducing multidimen-
sional receptive field histograms to approximate the probability density function
of local appearance. The recognition algorithm calculates probabilities for the
presence of objects based on a small number of vectors of local neighborhood
operators such as Gaussian derivatives at different scales. The method obtained
good object hypotheses from a database of 100 objects using small number of
vectors.

Principal component analysis has been widely applied for appearance-based
object recognition [24,14,7,19]. The attractiveness of this approach is due to
the representation of each image by a small number of coefficients, which can be
stored and searched efficiently. However, methods from this category have to deal
with the sensitivity of the eigenvector representation to changes of individual
pixel values, due to translation, scale changes, image plane rotation or light
changes. Several extensions have been investigated in order to handle complete
parameterized models of objects [14], to cope with occlusion [7,19] and to be
robust to outliers and noise [9].

Recently, Support Vector Machines (SVM) have gained in interest for ap-
pearance based object recognition [5,16]. Pontil [18] examined the robustness of
SVM to noise, bias in the registration and moderate amount of partial occlu-
sions, obtaining good results. Roobaert et al. [20] examined the generalization
capability of SVM when just a few views per object are available.

3 Probabilistic Appearance-Based Object Recognition

Appearance-based object recognition methods consider images as feature vec-
tors. Let x ≡ [xij ], i = 1, . . .N , j = 1, . . .M be an M × N image. We will
consider each image as a feature vector x ∈ G ≡ �m,m = MN . Assume we
have k different classes Ω1, Ω2, . . . , Ωk of objects, and that for each object is
given a set of nj data samples, dj = {xj

1,x
j
2, . . . ,x

j
nj
}, j = 1, . . . k. We will

assign each object to a pattern class Ω1, Ω2, . . . , Ωk. The object classification
procedure will be a discrete mapping that assigns a test image, showing one of
the objects, to the pattern class the presented object corresponds to. How the
object class Ωj is represented, given a set of data samples dj (relative to that
object class), varies for different appearance-based approaches: it can consider
shape information only, or color information only or both (see Section 2 for a
review). Here we will concentrate on probabilistic appearance-based methods.

The probabilistic approach to appearance-based object recognition considers
the image views of a given object Ωj as random vectors. Thus, given the set
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of data samples dj and assuming they are a sufficient statistic for the pattern
class Ωj , the goal will be to estimate the probability distribution PΩj (x) that
has generated them. Then, given a test image x, the decision will be made using
a Maximum A Posteriori (MAP) classifier:

j∗ = argmax
j

PΩj (x) = argmax
j

P (Ωj |x),

and, using Bayes rule,

j∗ = argmax
j

P (x|Ωj)P (Ωj). (1)

where P (f |Ωj) are the Likelihood Functions (LFs) and P (Ωj) are the prior
probabilities of the classes. In the rest of the paper we will assume that the prior
P (Ωj) is the same for all object classes; thus the Bayes classifier (1) simplifies
to

j∗ = argmax
j

P (x|Ωj). (2)

Many probabilistic appearance-based methods do not model the pdf on raw pixel
data, but on features extracted from the original views. The extension of equation
(2) to this case is straightforward: consider a set of features {hj

1,h
j
2, . . . ,h

j
nj
}, j =

1, . . . k, where each feature vector hj
nj

is computed from the image xj
nj
,hj

nj
=

T (xj
nj
),hj

nj
∈ G ≡ �m. The Bayes classifier (2) will be in this case

j∗ = argmax
j

P (h|Ωj). (3)

Probabilistic methods for appearance-based object recognition have the dou-
ble advantage of being theoretically optimal from the point of view of classifica-
tion, and to be robust to degradation of the data due to noise and occlusions [21].
A major drawback in these approaches is that the functional form of the proba-
bility distribution of an object class Ωj is not known a priori. Assumptions have
to be made regarding to the parametric form of the probability distribution, and
parameters have to be learned in order to tailor the chosen parametric form to
the pattern class represented by the data dj . Thus, the performance will depend
on the goodness of the assumption for the parametric form, and on whether the
data set dj is a sufficient statistic for the pattern class Ωj and thus, permits us
to estimate properly the distribution’s parameters.

4 Spin Glass-Markov Random Fields

A possible strategy for modeling the parametric form of the probability function
is to use Gibbs distributions within a Markov Random Field framework. MRF
provides a probabilistic foundation for modeling spatial interactions on lattice
systems or, more generally, on interacting features. It considers each element of
the random vector h as the result of a labeling of all the sites representing h,
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with respect to a given label set. The MRF joint probability distribution is given
by

P (h) =
1
Z
exp (−E(h)) , Z =

∑
{h}

exp (−E(h)) . (4)

The normalizing constant Z is called the partition function, and E(h) is the
energy function. P (h) measures the probability of the occurrence of a particular
configurations h; the more probable configurations are those with lower energies.
Thus, using MRF modeling for appearance-based object recognition, eq (2) will
become

j∗ = argmax
j

P (h|Ωj) = argmin
j

E(h|Ωj) (5)

Only a few MRF approaches have been proposed for high level vision problems
such as object recognition [26,13], due to the modeling problem for MRF on
irregular sites (for a detailed discussion about this point, we refer the reader
to [2]). Spin Glass-Markov Random Fields overcome this limitation and can be
effectively used for appearance-based object recognition [2]. To the best of our
knowledge, SG-MRF is the first and only successful MRF-based approach to
appearance-based object recognition.

The rest of this Section will review SG-MRFs (Section 4.1) and how they
can be derived from results of statistical physics of disordered systems (Section
4.2). Section 5 will show how these results can be extended to a new class of
energy function and how this extension makes it possible to use this approach
for appearance-based object recognition using shape and color features combined
together.

4.1 Spin Glass-Markov Random Fields: Model Definition

Spin Glass-Markov Random Fields (SG-MRFs) [2] are a new class of MRFs
which connect SG-like energy functions (mainly the Hopfield one [1]) with Gibbs
distributions via a non linear kernel mapping. The resulting model overcomes
many difficulties related to the design of fully connected MRFs, and enables
us to use the power of kernels in a probabilistic framework. Consider k ob-
ject classes Ω1, Ω2, . . . , Ωk, and for each object a set of nj data samples, dj =
{xj

1, . . .x
j
nj
}, j = 1, . . . k. We will suppose to extract, from each data sample dj a

set of features {hj
1, . . .h

j
nj
}. For instance, hj

nj
can be a color histogram computed

from xj
nj
. The SG-MRF probability distribution is given by

PSG−MRF (h|Ωj) =
1
Z
exp [−ESG−MRF (h|Ωj)] , (6)

Z =
∑
{h}

exp [−ESG−MRF (h|Ωj)] ,

with
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ESG−MRF (h|Ωj) = −
pj∑

µ=1

[
K(h, h̃(µj))

]2
, (7)

where the function K(h, h̃(µj)) is a Generalized Gaussian kernel [27]:

K(x,y) = exp{−ρda,b(x,y)}, da,b(x,y) =
∑

i

|xa
i − ya

i |b. (8)

{h̃(µj)}pj

µ=1, j ∈ [1, k] are a set of vectors selected (according to a chosen ansatz,
[2]) from the training data that we call prototypes. The number of prototypes
per class must be finite, and they must satisfy the condition:

K(h̃(i), h̃(l)) = 0, (9)

for all i, l = 1, . . . pj , i �= l and j = 1, . . . k. Note that SG-MRFs are defined on
features rather than on raw pixels data. The sites are fully connected, which ends
in learning the neighborhood system from the training data instead of choosing
it heuristically. As we model the probability distribution on feature vectors and
not on raw pixels, SG-MRF is not a generative model. Another key characteristic
of the model is that in SG-MRF the functional form of the energy is given by
construction. This is achieved using results for statistical physics of Spin Glasses.
The next Section sketches the theoretical derivation of the model. The interested
reader will find a more detailed discussion in [2].

4.2 Spin Glass-Markov Random Fields: Model Derivation

Consider the following energy function:

E = −
∑
(i,j)

Jij si sj i, j = 1, . . .N, (10)

Fig. 1. Gaussian kernels map the data to an infinite dimension hyper-sphere of
radius unity. Thus, with a proper choice of ρ, it is possible to orthogonalize all
the training data in that space
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where the si are random variables taking values in {±1}, s = (s1, . . . , sN ) is a
configuration and J = [Jij ], (i, j) = 1, . . . , N is the connection matrix, Jij ∈
{±1}. Equation (10) is the most general Spin Glass (SG) energy function [1,12];
the study of the properties of this energy for different Js has been a lively area
of research in the statistical physics community for the last 25 years.

An important branch in the research area of statistical physics of SG is
represented by the application of this knowledge for modeling brain functions.
The simplest and most famous SG model of an associative memory was proposed
by Hopfield; it assumes Jij to be given by

Jij =
1
N

p∑
µ=1

ξ
(µ)
i ξ

(µ)
j , (11)

where the p sets of {ξ(µ)}p
µ=1 are given configurations of the system (that we

call prototypes) having the following properties: (a) ξ(µ) ⊥ ξ(ν), ∀µ �= ν; (b)
p = αN,α ≤ 0.14, N → ∞. Under these assumptions it has been proved that
the {ξ(µ)}p

µ=1 are the absolute minima of E [1]; for α > 0.14 the system loses
its storage capability [1]. These results can be extended from the discrete to the
continuous case (i.e. s ∈ [−1,+1]N , see [6]); note that this extension is crucial
in the construction of the SG-MRF model.

It is interesting to note that the energy (10), with the prescription (11), can
be written as:

E = − 1
N

∑
i,j

∑
µ

ξ
(µ)
i ξ

(µ)
j sisj = − 1

N

∑
µ

(ξ(µ) · s)2. (12)

Equation (12) depends on the data through scalar products, thus it can be
kernelized, as to say it can be written as

EKAM =
1
N

∑
µ

[K(ξ(µ), s)]2. (13)

The idea to substitute a kernel function, representing the scalar product in a
higher dimensional space, in algorithms depending on just the scalar products
between data is the so called kernel trick [25], which was first used for Sup-
port Vector Machines (SVM); in the last few years theoretical and experimental
results have increased the interest within the machine learning and computer
vision community regarding the use of kernel functions in methods for classifi-
cation, regression, clustering, density estimation and so on. We call the energy
given by equation (13) Kernel Associative Memory (KAM). KAM energies are of
interest in two different research fields: in the formulation given by equation (13)
it is a non linear and higher order generalization of the Hopfield energy func-
tion [4]. The other research field is computer vision, on which we concentrate
the attention here. Indeed, we can look at equation (13) as follows:

E =
1
N

∑
µ

(ξ(µ) · s)2 = − 1
N

∑
µ

[Φ(hµ) · Φ(h)]2 = − 1
N

∑
µ

[K(hµ,h)]2 (14)
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provided that Φ is a mapping such that (see Figure 1):

Φ : G ≡ �m → H ≡ [−1,+1]N , N → ∞,
that in terms of kernel means

K(h,h) = 1, ∀ h ∈ �m, dim(H) = N,N → ∞. (15)

If we can find such a kernel, then we can use the KAM energy, with all its
properties, for MRF modeling. As the energy is fully connected and the minima
of the energy are built by construction, the usage of this energy overcomes all the
modeling problems relative to irregular sites for MRF [2]. Conditions (15) are
satisfied by generalized Gaussian kernels (8). Regarding the choice of prototypes,
given a set of nk training examples {xκ

1 ,x
κ
2 , . . . ,x

κ
nκ

} relative to class Ωκ, the
condition to be satisfied by the prototypes is ξ(µ) ⊥ ξ(ν), ∀(µ �= ν) in the mapped
space H , that becomes Φ(h̃(µ)) ⊥ Φ(h̃(ν)), ∀µ �= ν in the data space G. The
measure of the orthogonality of the mapped patterns is the kernel function (8)
that, due to the particular properties of Gaussian Kernels, has the effect of
orthogonalize the patterns in the spaceH (see Figure 2). Thus, the orthogonality
condition is satisfied by default: if we do not want to introduce further criteria for
the choice of prototypes, the natural conclusion is to take all the training samples
as prototypes. This approximation is called the naive ansatz. Note that when a
single feature vector is computed from each view, the naive ansatz approximation
becomes exact.
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G ≡ �m H ≡ [−1, +1]N , N → ∞
dim1 dim1

dimm

dimN

1

1

1−1
Φ

Fig. 2. The kernel trick maps the data from a lower dimension space G ≡ �m

to a higher dimension space H ≡ [−1,+1]N , N → ∞. This permits to use the
H-L energy in a MRF framework

5 Ultrametric Spin Glass-Markov Random Fields

SG-MRF, with the Hopfield energy function (10)-(11), have been successfully
applied to appearance-based object recognition. The modeling has been done on
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raw pixels [3], on shape representations [2] and on color representations [4]. In
all cases, it has shown to be very effective, and has shown remarkable robustness
properties. A major drawback of the Hopfield energy function is the condition
of orthogonality on the set of prototypes. When the modeling is done on the
raw pixel data (as in [3]), or when a single feature vector is computed from a
single image (as in [2,4]), then the naive ansatz approximation becomes exact.
But there are many applications in which the number of prototypes (as to say
the number of features extracted from a single image) can be > 1. This is the
case for example in most texture classification problems; it is also the case if we
want to combine together shape and color features, as it is the purpose here.
Two problems arises in this case: first, whether it is possible or not to combine
together these representations. Second, assuming the answer is yes, whether the
property of generalized Gaussian kernels is sufficient to ensure the orthogonality
of prototypes. In other words, the naive ansatz can turn out to be in some cases
too rough an approximation.

The solution we propose consists in kernelizing a new SG energy function,
that allows us to store non mutually orthogonal prototypes. As this energy was
originally derived taking into account the ultrametric properties of the SG con-
figuration space, we will refer to it as the ultrametric energy. The interested
reader will find a complete description of ultrametricity and of the ultrametric
energy in [1,12]. In the rest of the Section we will present the ultrametric energy
and we will show how it can be kernelized (Section 5.1); we will also show how
it can be used for appearance-based object recognition using shape and color
information contained in different representations.

5.1 Ultrametric Spin Glass-Markov Random Fields: Model
Derivation

DescendantDescendantDescendant

Ancestor
→
ξµ

→
ξ

Fig. 3. Hierarchical structure induced by the ultrametric energy function
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Consider the energy function (10)

E = −
∑
ij

Jijsisj

with the following connection matrix:

Jij =
1
N

p∑
µ=1

ξ
(µ)
i ξ

(µ)
j

(
1 +

1
∆(aµ)

qµ∑
ν=1

(η(µν)
i − aµ)(η

(µν)
j − aµ)

)
(16)

with

ξ
(µν)
i = ξ(µ)

i η
(µν)
i , a2µ =

1
N

N∑
i=1

η
(µν)
i η

(µλ)
i .

This energy induces a hierarchical organization of stored prototypes ([1], see
Figure 3). The set of prototypes {ξ(µ)}p

µ=1 are stored at the first level of the
hierarchy and are usually called the ancestor. Each of them will have q descen-
dants {ξ(µν)}qµ

ν=1. The parameter η(µν)
i measures the similarity between ancestors

and descendants; the parameter aµ measures the similarity between descendants.
∆(aµ) is a normalizing parameter, that guarantees that the energy per site is
finite. In the rest of the paper we will limit the discussion to the case1

a2µ = a2.

The connection matrix thus becomes:

Jij =
1
N

p∑
µ=1

ξ
(µ)
i ξ

(µ)
j

(
1 +

1
1− a2

qµ∑
ν=1

(η(µν)
i − a)(η(µν)

j − a)
)

=
1
N

p∑
µ=1

ξ
(µ)
i ξ

(µ)
j +

1
N(1− a2)

p∑
µ=1

ξ
(µ)
i ξ

(µ)
j

qµ∑
ν=1

(η(µν)
i − a)(η(µν)

j − a)

= Term1 + Term2.

Term1 is the Hopfield energy (10)-(11); Term2 is a new term that allows us
to store as prototypes patterns correlated with the {ξ(µ)}p

µ=1, and correlated
between each other. This energy will have p +

∑p
µ=1 q

µ minima, of which p
absolute (ancestor level) and (

∑p
µ=1 q

µ) local (descendant level).
When a → 0, the ultrametric energy reduces to a hierarchical organization

of Hopfield energies; it is remarkable to note that in this case the prototypes
at each level of the hierarchy must be mutually orthogonal, but they can be
correlated between different levels. Note also that we limited ourselves to two
levels, but the energy can be easily extended to three or more. For a complete
discussion on the properties of this energy, we refer the reader to [1].

1 Considering the general case would not add anything from the conceptual point of
view and would make the notation even heavier.
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Here we are interested in using this energy in the SG-MRF framework shown
in Section 4. To this purpose, we show that the energy (10), with the connection
matrix (16), can be written as a function of scalar product between configura-
tions:

E = − 1
N

∑
ij

[
1
N

p∑
µ=1

ξ
(µ)
i ξ

(µ)
j

(
1 +

1
1− a2

qµ∑
ν=1

(η(µν)
i − a)(η(µν)

j − a)
)]
sisj

= − 1
N

p∑
µ=1

(ξ(µ) · s)2 + 1
N(1− a2)

p∑
µ=1

qµ∑
ν=1

(ξ(µν) · s)2−

2a
N(1− a2)

p∑
µ=1

qµ∑
ν=1

(ξ(µ) · s)(ξ(µ) · s) + a2

N(1− a2)
p∑

µ=1

qµ∑
ν=1

(ξ(µ) · s)2. (17)

If we assume that a→ 0, as to say we impose orthogonality between prototypes
at each level of the hierarchy, the energy reduces to

E = −
[

1
N2

[
p∑

µ=1

(ξ(µ) · s)2 +
p∑

µ=1

qµ∑
ν=1

(ξ(µν) · s)2
]]
. (18)

The ultrametric energy, in the general form (17) or in the simplified form (18)
can be kernelized as done for the Hopfield energy and thus can be used in a
MRF framework. We call the resulting new MRF model Ultrametric Spin Glass-
Markov Random Fields (USG-MRF).

5.2 Ultrametric Spin Glass-Markov Random Fields: Model
Application

Consider the probabilistic appearance-based framework described in Section 3.
Given a view xj

nj
, we will suppose to extract two feature vectors from it, hsj

nj

containing shape information and hcj
nj

containing color information. USG-MRF
provides a straightforward manner to use the Bayes classifier (3) using both these
two representations separately. We will consider hcj

nj
as the ancestor and hsj

nj

as the descendant; for each level there will be a single prototype, thus the naive
ansatz approximation will be exact. The USG-MRF energy function will be in
this case:

EUSG−MRF = −
{
[Kc(hcj

nj
,hc)]2 + [Ks(hsj

nj
,hs)]2

}
, (19)

that leads to the Bayes classifier

j∗ = argmin
j

{
−
{
[Kc(hcj

nj
,hc)]2 + [Ks(hsj

nj
,hs)]2

}}
. (20)

The indexes c and s relative to the two kernels acting on the two different repre-
sentations indicates that it is possible to use, at different levels of the hierarchy,
different kernels. Here, we would like to remark, that this newly introduced
model is adaptable for the combination of any kind of features similary to the
demonstarted color and shape.
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6 Experiments

In order to show the effectiveness of USG-MRF for appearance-based object
recognition, we perform several sets of experiments. All of them were ran on the
COIL database [15], which can be seen as a benchmark for object recognition
algorithms. It consists of 7200 color images of 100 objects (72 views for each of
the 100 objects); each image is of 128 × 128 pixels. The images were obtained
by placing the objects on a turntable and taking a view every 5◦. In all the
experiments we performed, the training set consisted of 12 views per object (one
every 30◦). The remaining views constituted the test set.

Among the many representations proposed in literature, we chose a shape
only and color only representation, and we ran experiments using these represen-
tations separated, combined together in a common feature vector and combined
together in the USG-MRF. The purpose of these experiments is to prove the ef-
fectiveness of the USG-MRF model rather than select the optimal combination
for the shape and color representations. Thus, we limited the experiments to one
shape only and one color only representations.

As color only representation, we chose two dimensional rg Color Histogram
(CH), with resolution of bin axis equal to 8 [23]. The CH was normalized to 1.
As shape only representation, we chose Multidimensional receptive Field His-
tograms (MFH). This method was proposed by Schiele in order to extend the
color histogram approach of Swain and Ballard; the main idea is to calculate
multidimensional histograms of the response of a vector of receptive fields. An
MFH is determined once we chose the local property measurements (i.e., the re-
ceptive fields functions), which determine the dimensions of the histogram, and
the resolution of each axis. SG-MRF has been successfully used many times com-
bined with MFH for appearance-based object recognition [2,4]. Here we chose
for all the experiments we performed two local characteristics based on Gaussian
derivatives:

Dx = − x
σ2
G(x, y); Dy = − y

σ2
G(x, y)

where

G(x, y) = exp
(
−x

2 + y2

2σ2

)

is the Gaussian distribution. Thus, our shape only representation consisted of
two dimensional MFH, DxDy, with σ = 1.0 and resolution of bin axis equal to
8. The histograms were normalized to 1.

These two representations were used for performing the following sets of
experiments:

1. Shape experiments: we ran the experiments using the shape features only.
Classification was performed using SG-MRF with the kernelized Hopfield
energy (10)-(11). The kernel parameters (a, b, ρ) were learned using a leave-
-one-out strategy. The results were benchmarked with those obtained with
a χ2 and ∩ similarity measures, which proved to be very effective for this
representation.
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Fig. 4. Examples of different views

2. Color experiments: we ran the experiments using the color features only.
Classification and benchmarking were performed as in the shape experiment.

3. Color-shape experiments: we ran the experiments using the color and
shape features combined together to form a unique feature vector. Again,
classification and benchmarking were performed as in the shape experiment.

4. Ultrametric experiment: we ran a single experiment using the shape and
color representation disjoint in the USG-MRF framework. The kernel pa-
rameters relative to each level (as, bs, ρs and ac, bc, ρc) are learned with the
leave-one-out technique. Results obtained with this approach cannot be di-
rectly benchmarked with other similarity measures. Anyway, it is possible to
compare the obtained results with those of the previous experiments.

Table 1 reports the error rates obtained for the 4 sets of experiments.
Results presented in Table 1 show that for all series of experiments, for all

representations, SG-MRF always gave the best recognition result. Moreover, the
overall best recognition result is obtained with USG-MRF. USG-MRF has an
increase of performance of +2.73% with respect to SG-MRF, best result, and of
+5.92% with respect to χ2 (best result obtained with a non SG-MRF technique).
The fact that the error rates for the color experiments are all above 20% is an

Table 1. Classification results; we report for each set of experiments the obtained
error rates. The kernel parameters learned for SG-MRF, for the color experiment
were ac = 0.5, bc = 0.4, ρc = 0.1. For the shape experiment were as = 0.4, bs =
1.3, ρs = 0.1. For the color-shape experiment were acs = 0.3, bcs = 0.6, ρcs =
0.1 and finally for the ultrametric experiment were ac = 0.5, bc = 0.4, ρc =
0.016589, as = 0.4, bs = 1.3, ρs = 2.46943

Color (%) Shape (%) Color-Shape (%) Ultrametric (%)

χ2 23.47 9.47 19.17

∩ 25.68 24.94 21.72

SG-MRF 20.10 6.28 8.43 3.55
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indicator that the color representation we chose is far from being optimal. These
results confirm our theoretical expectation and show the effectiveness of USG-
MRF for color and shape appearance-based object recognition.

7 Summary

In this paper we presented a kernel method that permits us to combine color
and shape information for appearance-based object recognition. It does not re-
quire us to define a new common representation, but use the power of kernels
to combine different representations together in an effective manner. This result
is achieved using results of statistical mechanics of Spin Glasses combined with
Markov Random Fields via kernel functions. Experiments confirm the effective-
ness of the proposed approach. Future work will explore the possibility to use
different representations for color and shape and will benchmark this approach
with others, presented in literature.
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