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Abstract. This contribution discusses the thermodynamic phases and
storage capacity of an extension of the Hopfield-Little model of asso-
ciative memory via kernel functions. The analysis is presented for the
case of polynomial and Gaussian kernels in a replica symmetry ansatz.
As a general result we found for both kernels that the storage capacity
increases considerably compared to the Hopfield-Little model.

1 Introduction

Learning and recognition in the context of neural networks is an intensively stud-
ied field. A lot of work has been done on networks in which learning is Hebbian,
and recognition is represented by attractor dynamics of the network. Particu-
larly, the Hopfield-Little model (H-L, [6],[7]) is a network exhibiting associative
memory based on the Hamiltonian
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where the s; are N dynamical variables taking on the values +1 and the fz(“)

(with 51(“ )+ 1) are M fixed patterns which are the memories being stored. The
storage capacity and thermodynamic properties of this model have been studied
in detail within the context of spin glass theory [3]. Many authors studied gen-
eralizations of the H-L model which include interactions between p (> 2) Ising
spins ([1,[8]), excluding all terms with at least two indices equal (symmetric
terms). As a general result, higher order Hamiltonians present an increase in the
storage capacity compared to the H-L model.

It was pointed out in [4] that if the symmetric term is included in the Hamil-
tonian (), it can be written as a function of the scalar product between 130
and s. The Euclidean scalar product can thus be substituted by a Mercer kernel
[9], providing a new higher order generalization of the H-L energy. We call this
new model Kernel Associative Memory (KAM). This new energy was used in
[] within a Markov Random Field framework for statistical modeling purposes.
There are several reasons for considering this generalization. First, we will show
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in this paper that this model presents a higher storage capacity with respect to
the H-L model. Second, the higher order generalization of the H-L model via
Mercer kernel gives the possibility to study a much richer class of models, due
to the variety of possible Mercer kernels [9]. Here we study the storage capacity
and thermodynamic properties of KAM for polynomial and Gaussian kernels, in
a replica symmetry ansatz. To our knowledge, no previous works has considered
the storage capacity of such a generalization of the H-L model.

The paper is organized as follows: Section 2 presents KAM; in Section 3 we
compute the free energy and the order parameters within a replica symmetry
ansatz, and in Section 4 we study in detail the zero temperature limit. The paper
concludes with a summary discussion.

2 Kernel Associative Memories

The H-L energy () can be rewritten in the equivalent form
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This energy can be generalized to higher order correlations via Mercer kernels
[91:
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The possibility to kernelize the H-L energy function was recognized first in [4]. We
call this model Kernel Associative Memory (KAM). It is fully specified once the
functional form of the kernel is given. In this paper we will consider polynomial
and Gaussian kernels:

Kpoly(may) = (m ! y)p, KGauss(may) = exp(—p||a} - y‘|2) (4)

Our goal is to study the storage capacity of energy (3) for kernels (@), using tools
of statistical mechanics of spin glasses. To this purpose, we note that the study
of energy ([B) can be done for both kernels (H)) considering the general case
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For A, = 1, p finite, equations () represent the KAM energy () for polynomial
kernels (). For A, = p?/pl,p — o0, equations (5)) describe the behavior of the
KAM energy (B) for Gaussian kernels (#). This can be shown as follows: note
first that

exp(—plls =€) = exp(—p[s-s+£1) £ —25-£1]) = exp(—2p[N —s-£1)]).
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The multiplicating factor can be inglobated in the p, and the constant factor
can be neglected. The Gaussian kernel function thus becomes

2 3
exp(—plls—€1][%) — exp(pls-€W]) = 1460 +5 (560242 (56100

A generalization of the H-L energy function in the form (&) was proposed first
by Abbott in [I]. In that paper, storage capacity and thermodynamic properties
were derived for a simplified version of (B), where all terms with at least two
equal indices were excluded; a particular choice of A, was done. Other authors
considered this kind of simplifications for higher order extension of the H-L
models (see for instance [5] ). The analysis we present here include all the terms
in the energy and is not limited to a particular choice of the coefficient A,; thus
is more general. To the best of our knowledge, this is the first analysis on the
storage capacity and thermodynamic properties of a generalization of the H-L
model via kernel functions.

3 Free Energy and Order Parameters

We study the overlap of a configuration s; with one of the stored patterns,
arbitrarily taken to be {El),
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where the angle bracket (...) represents a thermodynamic average while the
double brackets ({...)) represents a quenched average over the stored patterns
{E“ ). The quenched average over patterns is done using the replica methods [§];
in the mean-field approximation, the free energy depends on m and on the order
parameters
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with a, b replica indices. The calculation is analog to that done in [I],[2]. Con-
sidering a replica symmetry ansatz [8], gap = ¢, 7ap = r and the free energy at
temperature T'= 1/ is given by
af 1 1
f=@-1)A4,m’+ 7[7‘(1 —q)—G(q)]— 3 Dz1n[2 cosh B(varz)+pA,mP~"],
(8)

with M = aN?~! and Dz = %6_22/2. The function G(g) is given by
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The free energy leads to the following order parameters:

~9G(q)
dq

m:/ Dztanh B(varz+pA,mP~), r= ,q:/Dz tanh?® B(v/arz+pA,m" ")

(10)
At all temperatures, these equations have a paramagnetic solution r = ¢ =m =
0.

Order parameter m for alpha=0.001, p=3.5,7 Order parameter m for alpha=0.001, p=4,6,8

Fig. 1. Graphical representation of the solutions of the retrieval equation for p = 3,5,7
(left) and p = 4,6, 8 (right), « = 0.001 .
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Fig. 2. The error rate (1 —m)/2 as a function of «, for KAM and Abbott model, for
p =3 (left) and p = 5 (right). For p = 3 the two curves are indistinguishable, for p = 5
the Abbott approximation gives the lower error rate.

4 The Zero—Temperature Limit: 3 — oo

In the zero-temperature limit 3 — oo, equations (I0] ) simplifies to ¢ — 1,

p—1 p
m — erf <%> , T =A? ZRc(p) (11)

with
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Note that, in this approximation, m does not depend on A,:
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Graphical solutions of equation ([3)) are shown in Figure[dl, for several values of
p (odd and even). From these graphics we can make the following considerations:
first, higher order Hamiltonians (B]) with p odd eliminate the symmetry between
the stored memory and their complementary states, in which the state of each
neuron is reversed (see Figure[I]). Second, as p increases, the value of o for which
there is more than one intersection (m = 0, the spin-glass solution), as to say
the storage capacity, goes to zero (see Figure [I]). Figure 2] shows the percentage
of errors (1 — m)/2 made in recovering a particular memory configuration as
a function of a. The percentage of errors for the KAM model, for p = 3,5, is
compared with the same quantity obtained by Abbott [I], considering a higher
order Hamiltonian. In that case m is given by:

2
o p -
mAbbott — orf [(2047!) mP 1] (14)

in the zero temperature limit. In both cases (p=3,5) and for both models (KAM
and Abbott), the overlap with the input pattern m remains quite close to 1 even
for @« — . This can be seen because the fraction of errors is always small. Thus
the quality of recall is good. Nevertheless, the fraction of errors is smaller for
the Abbott model as p increase.

Even if a, — 0 for large p, the total number of memory states allowed is
given by M = aNP~! thus it is expected to be large. In the limit p — oo , a.
and M can be calculated explicitly [2]: for large values of the argument of the
erf function, it holds

Re(p) = [1+ (~1)P+] < [p'),,} (12)

/257, Re(p) pmr ] (15)

Jrpmrt P Ta 2 R.(p)

For stability considerations, m = 1, thus the second term in equation (IH) must
go to zero. This leads to the critical value for «

m~1-—
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The total number of memory states that is possible to store is (using Stirling’s
approximation):
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This result must be compared with the one obtained by Abbott [1]: e/ttt =

iy it I8 easy to see that o = aibbott . 73 C[’i+(_1)c+p]; thus, the introduc-
c=1

tion of terms in which more than one indices is equal in the generalized Hamil-
tonian leads to a decrease in the storage capacity; the decrease will be higher
the higher is the number of these terms introduced in the energy formulations,
according with the retrieval behavior (see Figure 2.

5 Summary

In this paper we presented kernel associative memories as a higher order gener-
alization of the H-L model. The storage capacity of the new model is studied in
a replica symmetry ansatz. The main result is that the storage capacity is higher
than the H-L’s one, but lower than the storage capacity obtained by other au-
thors for different higher order generalizations. This work can be developed in
many ways: first of all, the mean field calculation presented here is only sensi-
tive to states that are stable in the thermodynamic limit. We expect to find in
simulations correlations between spurious states and the memory patterns even
for @ > a,. Simulations should also provide informations about the size of the
basin of attraction. Second, replica symmetry breaking effects should be taken in
account. Third, it should be explored how kernel properties can be used in order
to reduce the memory required for storing the interaction matrix [5]. Finally,
this study should be extended to other classes of kernels and to networks with
continuous neurons. Future work will be concentrated in these directions.
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