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Abstract

In the past decades most object recognition systems were
based on passive approaches. But in the last few years a lot
of research was done in the field of active approaches for
object recognition. In this context there are several unique
problems to be solved. One of them is how to fuse images
from several viewpoints.

In this paper we present a well-founded approach for the
fusion of multiple views based on a recursive density prop-
agation problem. It uses the well-known CONDENSATION
algorithm for solving the fusion in a continuous pose space.

Our experimental result we will show how the fusion can
improve classification rates substantial especially for diffi-
cult conditions like heterogeneous background and not per-
fectly suited or weak classifiers.

1. Introduction
Object recognition has been tackled by passive approaches
in the past. This means that based on one image a deci-
sion for a certain class and pose must be made or the image
must be rejected. This neglects both facts that some other
views might exist, which allow for a more reliable classifi-
cation and that the fusion of multiple views might improve
the recognition rates noticeable. This is one reason, why
research has focused on active object recognition over the
past years [6, 12, 2, 10, 3, 13].

One of the most important aspects in active object recog-
nition is the fusion of a sequence of images taken from dif-
ferent viewpoints to obtain an overall classification and lo-
calization result. It is comprehensible that the fusion will
not only be helpful for ambiguous objects (for which more
than one view might be necessary to resolve the ambigu-
ity) but will improve recognition rate in general. This is
especially true for real world environments where one has
to deal with, for example, heterogeneous background.

In this paper we present of a general fusion scheme based
on the CONDENSATION algorithm [7]. There are three main
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reasons for applying the CONDENSATION algorithm. First,
one has to deal inherently with multimodal distributions
over the class and pose space of the objects. Second, mov-
ing the camera from one viewpoint to another will add un-
certainty in the fusion process as the movement of the cam-
era will always be disturbed by noise. Thus this uncertainty
must be taken into account in the fusion process of the re-
sults acquired so far with the results computed from the cur-
rent image. Third, it is not straight forward to model the
involved probability distributions in closed form, especially
if multiple hypothesis, i.e. multimodal distributions, shall
be handled. These three aspects are strong criterions that
the CONDENSATION algorithm is perfectly suited for the
fusion of views in active object recognition. Especially, the
ability to handle dynamic systems is advantageous because
in viewpoint fusion the dynamics is given by the known but
noisy camera motion between two viewpoints.

In Section 2, we will present the theoretical background
of our approach base on the CONDENSATION algorithm and
we will show how to apply our sensor data fusion to a real
world object recognition system. The performed experi-
ments and an introduction to the classifier used in the ex-
periments are presented in Section 3. This section shows
the practicability of our method in the context of classifica-
tion of objects with heterogeneous background. Section 4
will close this paper with a conclusion and a short outlook
to further investigations.

2 Fusion of Multiple Views

Active object recognition extends the classic passive ap-
proach in a manner that object classification and localiza-
tion of an object is based on a sequence or series of images.
These images are used to improve the robustness and reli-
ability of the object classification and localization. In this
active approach object recognition is not simply a task of
repeated classification and localization for each image, but
a well directed combination of a funded fusion of images.



PSfrag replacements

0◦

90◦

90◦

180◦

270◦

1ϕn
2ϕn

Ωκ

Figure 1: Experimental setup consists of turntable/arm combination. The possible pose space is defined by the azimuthal
1ϕn and the latitude 2ϕn.

2.1 Density Propagation with the Condensa-
tion Algorithm

In active object recognition a series of observed images
fn, fn−1, . . . , f0 of an object are given together with the
camera movements an−1, . . . , a0 between these images.
Based on these observations of images and movements one
wants to draw conclusions for a non-observable state qn of
the object. This state qn must contain both the discrete class
and the continuous pose of the object. This fact is important
for the further proceeding.

In the context of a Bayesian approach, the knowledge
on the object’s state is given in form of the a posteriori
density p(qn|fn, an−1, fn−1, . . . , a0, f0) and can be cal-
culated from

p(qn|fn, an−1, . . . , a0, f0) =

1

kn

p(qn|an−1, fn−1, . . . , a0, f0)p(fn|qn) (1)

where
kn = p(fn, an−1, . . . , a0, f0)

denotes a normalizing constant that is left out in the follow-
ing considerations. Under the Markov assumption

p(qn|qn−1, an−1, . . . , q0, a0) = p(qn|qn−1, an−1)

for the state transition, equation (1) can be recursively
rewritten as

p(qn|an−1, fn−1, . . . , a0, f0) =
∫

qn−1

p(qn|qn−1, an−1) ·

p(qn−1|an−1, fn−1, . . . , a0, f0)dqn−1 (2)

It is obvious that this probability depends only on the cam-
era movement an−1. Its inaccuracy is modeled with a nor-
mally distributed noise component. Consequently the state
transition probability can be written as

p(qn|qn−1, an−1) = N (qn−1 + an−1, Σ)

with the covariance matrix Σ of the inaccuracy of the cam-
era movement. This covariance matrix has to be estimated
in advance by experiments or has to be set heuristically.

If continuous components in the state qn can be avoided,
the integral in equation (2) can be simplified to

p(qn|fn−1, . . . , f0) =
∑

qn−1

p(qn|qn−1, an−1)p(qn−1|fn−1, . . . , f0) (3)

and can easily be evaluated in an analytical way. For exam-
ple, to classify an object Ωκ in a sequence of images with

qn =
(

Ωκ

)

,

p(qn|qn−1, an−1) in equation 3 degrades to

p(qn|qn−1, an−1) =

{

1 if qn = qn−1

0 otherwise
(4)

since the object class does not change if the camera is
moved, and consequently equation (3) must have an ana-
lytically solution.

But if one wants to use the fusion of multiple views in a
general way with the possibility of continuous pose param-
eters in qn it is no longer possible to simplify equation (2)
to equation (3).

The classic approach for solving this recursive density
propagation is the Kalman Filter [8, 1]. But in computer
vision the necessary assumptions for the Kalman Filter
(p(fn|qn) being normally distributed) are often not valid.
In real world applications this density p(fn|qn) usually is
not normally distributed due to object ambiguities, sensor
noise, occlusion, etc. This is a problem since it leads to a
distribution which is not analytically computable. An ap-
proach for the complicated handling of such multimodal
densities are the so called particle filters. The basic idea is
to approximate the a posteriori density by a set of weighted
particles. In our approach we use the CONDENSATION al-
gorithm (CONditional DENSity propaATION) [7]. It uses a



Figure 2: Objects of the data set within heterogenous background: Coke gray, Coke red, stapler green, stapler white, hole
punch green, hole punch red, NaCl-bottle, pillbox, cup, cup with saucer.

sample set Cn = {cn
1 , . . . , cn

K} to approximate the multi-
modal probability distribution in equation (1). Please note
that we do not only have a continuous state space for qn

but a mixed discrete/continuous state space for object class
and pose as mentioned at the beginning of this section. The
practical procedure of applying the CONDENSATION to the
fusion problem is illustrated in the next section.

2.2 Fusion of Multiple Views with the Con-
densation Algorithm

After the presentation of the theoretical background we will
show how to use the CONDENSATION algorithm in a prac-
tical realization of sensor data fusion of multiple views.

As noted in section 2.1 we need to include the class and
pose of the object into our state qn to classify and localize
objects. This leads to the following definitions of the state

qn =











Ωκ
1ϕn

...
Jϕn











(5)

and the samples

cn
i =











Ωκ
1ϕn

i

...
Jϕn

i











(6)

where jϕn denotes the pose of the j-th degree of freedom
for the camera position. The camera movements are defined
accordingly as

an =







∆1ϕn

...
∆Jϕn






(7)

with ∆jϕn denoting the relative changes of the viewing po-
sition of the camera.

In our experimental setup (see Figure 1) we have only
two degrees of freedom. The camera can move on a
half-sphere around the object with the azimuthal 1ϕn ∈
[0◦; 360◦) and the latitude 2ϕn ∈ [0◦; 90◦].

In the practical realization of the CONDENSATION, one
starts with an initial sample set C0 = {c0

1, . . . , c
0
K} with

samples distributed uniformly over the state space. For the
generation of a new sample set Cn, samples cn

i are

1. drawn from Cn−1 with probability

p(fn−1|c
n−1
i )

K
∑

j=1

p(fn−1|c
n−1
j )

(8)

2. propagated with the necessarily predetermined sample
transition model

cn
i = cn−1

i +











0
r1

...
rJ











(9)

with rj ∼ N (∆jϕn, σj) and the variance parameters
of the Gaussian transition noise σj . They model the in-
accuracy of the camera movement under the assump-
tion that the errors of the camera movements are inde-
pendent between the degrees of freedom. These vari-
ance parameters have to be defined in advance.

3. evaluated in the image by p(fn|cn
i ). This evaluation

is performed by the classifier. The only need to the
classifier that shall be used together with our fusion
approach must be its ability to evaluate this density.



For a more detailed explanation on the theoretical back-
ground of the approximation of equation (1) by the sample
set CN we would like to refer to [7].

At this point we want to note that it is important to in-
clude the class Ωκ into the object state qn and the samples
cn

i . An alternative would be to omit this by setting up sev-
eral sample sets – one for each object class – and perform
the CONDENSATION separately on each set. But this would
not result in an integrated classification/localization, but in
separated localizations on each set under the assumption of
observing the corresponding object class. No fusion of the
object class over the sequence of images would be done in
that case.

3. Experimental Evaluation
In this section we will present our experimental results. We
will also introduce our used classifier to evaluate p(fn|c

n
i )

from Section 2.2 and will shortly describe our data set.

3.1 Statistical Eigenspace

Currently we are evaluating our approach for viewpoint se-
lection with a statistical variation of a classifier based on the
eigenspace approach introduced by [9] which is similar to
[2].

Object recognition is dealing with assigning a class num-
ber Ωκ to an object found in an image of size N × M

which is represented by the column vector f ∈ IR(N ·M).
This image vector f is transformed into a feature vector
v = (v1, v2, . . . , vD)T ∈ IRD by a linear transformation

v = Φf ∈ IRD×(N ·M) (10)

with
Φ = (φ1, φ2, . . . , φD)T . (11)

The φi correspond to the D largest eigenvectors of the
covariance matrix of all the training images f1, f2, . . . , fn.

During the training each training image fi is overlaid by
random noise many times and each resulting picture is pro-
jected into the eigenspace. The obtained feature vectors are
used to estimate parameters µi and Σi of a normal distribu-
tion in the eigenspace. These parameters are stored together
with the know class κi and pose θ of the object in image fi

and form a model

Bi = {µi,Σi, Ωκi
, θi} (12)

for this view.
A necessary enhancement to enable this statistical

eigenspace approach to work with heterogeneous back-
ground were the introduction of binary masks for each train-
ing image. These masks were used to eliminate the back-
ground. We are aware that this method is weak compared to

Number of fusioned images.
Object 1 2 5 10 15 20 25

Coke gray 0 5 40 75 90 100 100
Coke red 0 45 95 95 100 100 100

stapler green 5 10 30 80 100 100 100
stapler white 60 70 85 100 100 100 100
hole punch

green
0 10 20 30 30 30 30

hole punch
red

40 50 85 100 100 100 100

NaCl-bottle 20 30 65 90 100 100 100
pillbox 75 60 90 100 100 100 100

cup 0 15 10 25 35 30 40
cup with
saucer

0 0 0 0 0 0 0

Table 1: Recognition rates (in percent) of the single objects.

other current object recognition techniques but we focus on
the fusion of multiple views in this paper and want to show
that fusion can improve recognition results even under dif-
ficult conditions.

The density p(fn|cn
i ) from Section 2.2 is evaluated by

projecting the image into the eigenspace and evaluating the
normal distribution N (Φfn|µm,Σm) whose

• class Ωκm
is the same as in sample cn

i

• pose θi has a minimum distance to the pose of the sam-
ple cn

i .

In our experiments we restrict the dimension of our
eigenspace from equation 11 to D = 3 to complicate the
object recognition even more.

3.2 Data Set and Results

Our data set consists of the 10 office and hospital objects
shown in Figure 2. The images of the objects were origi-
nally taken in front of homogeneous, black background and
pasted into separately taken pictures of 314 backgrounds.
The training of the classifier described in Section 3.1 was
performed with 18600 images. We want to note that this rel-
ative large number of images for training is a consequence
of our eigenspace-based classifier. If one would use a clas-
sifier such as [11] the number of required training images
would decrease significantly.

The evaluation of our fusion approach was done with 20
sequences of 25 images each per object which leads to a
total number of 5000 test images used in our experiments.
The camera movements a were chosen randomly from set
of pre-taken test-images. In our experiments the variance
parameters for the transition noise (see equation (9)) were
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Figure 3: Overall recognition rate. N denotes the number
fusioned images.

set to σ1 = 3.0◦ and σ2 = 3.0◦. Our sample sets Cn con-
sisted of K = 25000 samples (2500 for each of the 10 pos-
sible classes).

In Table 1 we show the recognition rates for an increas-
ing number of fusioned images. The results are separated
into the single objects. As expected, the quality of classi-
fication increases with the number N of fused images, ex-
cept for the “cup with saucer” that is always misclassified as
“cup”. This is a property of the used statistical eigenspace
classifier and the used background treatment. Smaller ob-
jects are always preferred to big objects. This is the reason
why the hypotheses for the “cup” is always rated higher by
p(fn|cn

i ) than the one for “cup with saucer”. In Figure 3
the overall classification rate is illustrated for all performed
fusion steps.

The results of the experiments for the localization ac-
curacy of correct classified images are shown in Figure 2.
The accurateness is given with the so called percentile val-
ues, which describe the limits of the localization error if the
classification is correct and only the x% best localizations
are taken into account. For example, the percentile value
Percentile75 expresses the largest localization error within
the 75% most accurate localizations. As it can be seen in Ta-
ble 2, the Percentile75 localization error, for example, drops
from 81◦ in the first image down to 15◦ after 25 images.

The computation time needed for one fusion step is about
59 seconds on a LINUX PC with an AMD Athlon XP 2000
(1667 MHz) processor. Most of the computational effort is
used for the evaluation of the samples which takes about 2.4
milliseconds per sample. Almost all of the time is spend in
the handling of the masks for the elimination of the back-
ground, the only part of our system that is not optimized
for runtime at the moment. In [5] we have shown for a
less computational expensive fusion problem that in prin-
ciple fusion of multiple views is possible for real-time ap-
plications. And as the computational effort scales linear to

Number of fusioned images.
1 5 10 15 20 25

P50 39◦ 28◦ 14◦ 14◦ 14◦ 10◦

P75 81◦ 60◦ 46◦ 47◦ 41◦ 15◦

P90 93◦ 98◦ 80◦ 80◦ 81◦ 46◦

P95 105◦ 113◦ 92◦ 101◦ 96◦ 82◦

Table 2: Improvement of localization results. The localiza-
tion error is given in degree. P50, P75, P90, P95 denote
the Percentile50, Percentile75, Percentile90 and Percentile95

values.

the size of the sample set it is always possible to decrease
computing time by decreasing the size of the sample set.
Furthermore, as the CONDENSATION algorithm can be par-
allelized very well this is another way realize time critical
applications.

4. Conclusion

In this paper we have presented a general approach for the
fusion of multiple views for active object recognition that
can help to improve classification rates substantial even un-
der difficult conditions like heterogeneous background and
not perfectly suited classifiers.

In the experiments we have shown that our approach is
well suited for the fusion of multiple views as we were able
to more than triple the overall classification rate to 77%. A
passive approach for object recognition would have stopped
after the first image and would have obtained a classification
rate of only 22%.

The main advantages of our approach are the im-
provement of the object recognition results and that our
CONDENSATION-based fusion scheme is independent of
the chosen statistical classifier. Other advantages of our ap-
proach are – as we have shown in [5] – its scalability of
the size of the sample set and possibility to parallelize the
CONDENSATION algorithm.

Presently we use randomly chosen views for our fusion.
But we expect that far better classification rates will be
reached after fewer views if we combine our fusion ap-
proach with our viewpoint selection [4, 3]. The combina-
tion of these two approaches for the selection of views and
their fusion will result in a system that is still independent
of the used classifier and well-suited classifying ambiguous
objects.

Open questions in our approach are the minimal neces-
sary size of the sample set – a problem that has been left
out in this paper – and the optimal parameters for the noise
transition models. Furthermore other sample techniques are
to be evaluated.
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