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Abstract In this paper we present an information theoretic frameworkthat pro-
vides an optimality criterion for the selection of the best sensor data regarding
state estimation of dynamic system. One relevant application in practice is track-
ing a moving object in 3–D using multiple sensors. Our approach extends previ-
ous and similar work in the area of active object recognition, i.e. state estimation
of static systems. We derive a theoretically well founded metric based on the con-
ditional entropy that is also close to intuition: select those camera parameters that
result in sensor data containing most information for the following state estima-
tion. In the case of state estimation with a non–linear Kalman filter we show how
that metric can be evaluated in closed form.
The results of real–time experiments prove the benefits of our general approach
in the case of active focal length adaption compared to fixed focal lengths. The
main impact of the work consists in a uniform probabilistic description of sensor
data selection, processing and fusion.

1 Introduction

In active vision it has been shown, also theoretically, thatan active processing strategy
that includes the image acquisition step can be superior to apassive one. The question
of course is: how to figure out, which strategy is the best, i.e. how to actively control
the image acquisition step in a theoretically optimal way? Answers to this question will
have an enormous impact on broad areas in computer vision.

In recent work on active object recognition [2, 5, 11, 12] it has already been shown
that sensible selection of viewpoints improves recognition rate, especially in settings,
where multiple ambiguities between the objects exist. The work of [8] is another exam-
ple from robotics, where such ideas have been implemented for self–localization tasks.

Besides the success in the area of active object recognitionno comparable work is
known for selecting the right sensor data during object tracking. The advantages are
quite obvious:

– For a single camera setting, i.e. one camera is used to track the moving object, the
trade–off between a large and a small focal length can be resolved. Depending on
the position, velocity, acceleration of the object, and on the associated uncertainty
in the estimation of these state values, a small focal lengthmight be suited to ensure
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that the object is still in the image at the next time step. On the other hand, a large
focal length can be advantageous for estimation of the classof an object in an high
resolution image.

– For a setting with multiple cameras the possibility exists to focus with some cam-
eras on dedicated areas in space, depending on the state estimation, while some
other cameras keep on tracking using an overview image. Without mentioning the
problems of sensor data fusion in such a setting and the weighting of the different
sensors depending on the expected accuracy, the gain of dynamic focal length ad-
justment is expected to be relevant in a combined tracking and recognition scenario.
Demonstrating this behavior is the focus of our ongoing research.

In this paper we make an important step toward active object tracking. The basis of
our work is the information theoretic approach for iterative sensor data selection for
state estimation in static systems presented in [4]. We extend this framework to have a
metric for selecting that sensor data that yields most reduction of uncertainty in the state
estimate of a dynamic system. We mainly differ to the work of [7, 10] in how to select
the optimal focal length. In [7] zooming is used to keep the size of the object constant
during tracking, but it is not taken into account the uncertainty in the localization. The
work of [10] demonstrates how corner based tracking can be done while zooming using
affine transfer. However, the focus is not on how to find the best focal length.

Our framework is completely embedded in probabilistic estimation theory. The
main advantage is that it can be combined with any probabilistic state estimator. Also
sensor data fusion, which is important in multiple camera settings, can be done at no
extra costs. We show the realization for a two–camera setting in the experimental part of
the paper later on. Another side effect of the information theoretic metric is its intuitive
interpretation with respect to state estimation.

The paper is structured as follows. In the next section the main contribution of our
work can be found. The general framework for selecting optimal observation models
during state estimation of dynamic systems is applied to thecase of binocular object
tracking. Real–time experiments with a mobile platform in an office environment, pre-
sented in Section 3, give us definite, quantitative results:first, our optimality criterion
causes the expected behavior, second, adapting the focal length during tracking is better
than using a fixed setting, and third, the theoretical framework also works in practice.
Some problems and future extension of our approach are discussed in Section 4.

2 Selection of Optimal Observation Models

2.1 Review: Kalman filter for Changing Observation Models

In the following we consider a dynamic system, whose state issummarized by ann–
dimensional state vectorx t. The dynamic of the system is given by

x t+1 = f (x t, t) + w , (1)

with f (·, ·) ∈ IRn being a non–linear state transition function, andw ∈ IRn being
additive Gaussian noise with zero mean and covariance matrix W . The observationot

is given by the observation equation

ot = h(x t,a t, t) + r , (2)



which relates the statex t to the observationot ∈ IRm. The non–linear functionh ∈
IRm is called observation function and might incorporate the observations made byk
different sensors. Again, an additive noise processr ∈ IRm disturbs the ideal observa-
tion, having zero mean and covariance matrixR.

The main difference to the standard description of a dynamicsystem is the depen-
dency of the observation functionh(x t,a t, t) on the parametera t ∈ IRl. The vector
a t summarizes all parameters that influence the sensor data acquisition process. As a
consequence the parameter also influences the observationot, or in other words: we
allow changing observation models. In the following the parametera t is referred to as
action, to express that the observation model (i.e. the sensor data) is actively selected.
One example for the parametera t might bea t = (α, β, f)

T, with α andβ denoting
the pan and tilt angles, andf the motor controlled focal length of a multimedia camera.

State estimation of the dynamic system in (1) and (2) can be performed by applying
the standard non–linear Kalman filter approach. Space limitations restrain us from giv-
ing an introduction to the Kalman filter algorithm. The reader is referred to [1]. In the
non–linear case given by (1) and (2) usually a linearizationis done by computing the
Jacobian of the state transition and the observation function. As a consequence of the
linearization the distributions of the following random vectors are Gaussian distributed:

– A priori distribution over the statex t (and posterior, if no observation is made)

p(x t|Ot−1,At−1) ∼ N (x−

t ,P−

t ) ,

with the two setsAt = {a t,a t−1, . . . ,a0} andOt = {ot,ot−1, . . . ,o0} denoting
the history of actionsa t and observationsot respectively. The quantitiesx−

t
and

P−

t
are the predicted state and error covariance matrix, respectively [1].

– Likelihood function, i.e. the likelihood of the observationot given the statex t and
the actiona t

p(ot|x t,a t) ∼ N (h(x−

t ,a t),R) .

– A posteriori distribution over the state space (if an observation has been made)

p(x t|Ot,At) ∼ N (x+
t ,P+

t (a t)) . (3)

The vectorx+
t is the updated state estimate, the matrixP+

t (a t) is the updated
error covariance matrix. The matrix explicitly depends on the actiona t since the
observation function in (2) depends ona t. In the case, that no observation has been
made, the quantitiesP+

t (a t) andx+
t equal the corresponding predicted quantities

P−

t
andx−

t
.

These three distributions are essential ingredients of ourproposed optimality criterion,
which is presented in the following. Note, that all quantities (i.e.x−

t ,x+
t ,P−

t ,P+
t ) are

updated in the Kalman filter framework over time [1]. As a consequence, this informa-
tion is available at no extra cost for our approach.

2.2 Optimal Observation Models

The goal is to find an optimal observation model, i.e. the bestactiona t, that a priori
most reduces the uncertainty in the state estimation with respect to the future observa-
tions. In order to find the optimal observation model the important quantity to inspect is



the posterior distribution. After an observation is made wecan figure out, how uncertain
our state estimate is. Uncertainty in a distribution of a random vectorx can be measured
by the entropyH(x ) = −

∫
p(x ) log (p(x )) dx . Entropy can also be calculated for a

certain posterior distribution, for example forp(x t|Ot,At), resulting in

H(x+
t
) = −

∫

p(x t|Ot,At) log (p(x t|Ot,At))) dx t . (4)

This measure gives usa posteriori information about the uncertainty, if we took action
a t and observedot. Of more interest is of course to decidea priori about the expected
uncertainty under a certain actiona t. This expected value can be calculated by

H(x t|ot,at) = −

∫

p(ot|a t)

∫

p(x t|Ot,At) log (p(x t|Ot,At))) dx tdot . (5)

The quantityH(x t|ot,a t) is calledconditional entropy [3], and depends in our case
on the chosen actiona t. Having this quantity it is straight forward to ask the most
important question for us: Which action yields the most reduction in uncertainty? The
question is answered by minimizing the conditional entropyfor a t, i.e. the best action
a∗

t is given by

a∗

t = argmin
at

H(x t|ot,a t) . (6)

Equation (6) defines in the case of arbitrary distributed state vectors the optimality cri-
terion we have been seeking for. Unfortunately, in the general case of arbitrary distri-
butions the evaluation of (6) is not straightforward. Therefore, in the next section we
consider a special class of distributions of the state vector, namely Gaussian distributed
state vectors. This specialization allows us to combine theselection of the best action
with the Kalman filter framework. We will show, that this approach allows us to com-
pute the best actiona priori.

2.3 Optimal Observation Models for Gaussian Distributed State Vectors

We now continue with the posterior distribution in the Kalman filter framework. As
a consequence of the linearization in the non–linear Kalmanfilter we know that the
posterior distribution is Gaussian distributed (compare (3)). From information theory
textbooks [3] we also know that the entropy of a Gaussian distributed random vector
x ∈ IRn with x ∼ N (µ,Σ) is H(x ) = n

2 + 1
2 log ((2π)n|Σ |) . Combining this

knowledge we get for the conditional entropyH(x t|ot,at) of the distribution in (3)

H(x t|ot,a t) =

∫

p(ot|a t)

(
n

2
+

1

2
log

(
(2π)n|P+

t (a t)|
)
)

dot . (7)

Thus, neglecting the constant terms equation (6) becomes

a∗

t
= argmin

at

∫

p(ot|a t) log
(
|P+

t
(a t)|

)
dot . (8)



From this equation we can conclude, that we have to select that actiona t that minimizes
the determinant ofP+

t (a t). The key result is thatP+
t (a t) can be computed a priori,

since the covariance matrix is independent of the observationot.
The criterion in (8) is only valid in any case if for the chosenactiona t an obser-

vation from the system can be made. Obviously, in practice the selected action (i.e.
camera parameter) will affect observability. How to deal with this situation is consid-
ered in more detail in the next section.

2.4 Considering Visibility

Up to now we have assumed that at each time step an observationis made to perform
the state estimation update in the Kalman filter cycle. Obviously, when changing the
parameters of a sensor, depending on the state there is a certain a priori probability
that no observation can be made that originates from the dynamic system. An intuitive
example is the selection of the focal length of a camera to track a moving object in the
image. For certain focal lengths (depending on the 3–D position of the moving object)
the object will no longer be visible in the image. As a consequence no observation is
possible. How are time steps treated, for which no observations can be made, and what
is the consequence for the state estimate? If no observationcan be made, no update of
the state estimate is possible. The resulting final state estimate for such a time step is the
predicted state estimatex−

t , with the corresponding predicted covariance matrixP−

t .
The implication on the state estimate is significant: duringthe prediction step in the
Kalman filter algorithm the covariance matrix of the state estimate is increased; thus,
uncertainty is added to the state estimate. The increase in uncertainty depends on the
dynamic of the system and the noise processw disturbing the state transition process.

Now, the task of optimal sensor parameter selection can be further substantiated
by finding a balance between the reduction in uncertainty in the state estimate and
the risk of not making an observation and thus getting an increase in the uncertainty.
Considering this trade–off in terms of the Kalman filter state estimation the conditional
entropy has to be rewritten as

H(x t|ot,a t) =

∫

{visible}

p(ot|a)dot

︸ ︷︷ ︸

w1(a)

Hv(x
+
t ) +

∫

{invisible}

p(ot|a)dot

︸ ︷︷ ︸

w2(a)

H¬v(x
−

t ), (9)

which is the weighted sum ofHv(x+
t ) andH¬v(x

−

t ) where the weights are given by
w1(a) andw2(a). The first integral in (9) summarizes the entropy of the a posteriori
probability for observations that are generated by the system and that arevisible in the
image. The probability of such observations weight the entropy Hv(x+

t ) of the corre-
sponding a posteriori probability (for simplifications in the notation, we use herex+

t

as synonym for the posterior). The observations that cannotbe measured in the image
(invisible) result in a Kalman filter cycle where no update of the state estimate is done
and thus only a state prediction is possible. This state prediction is treated as a posteri-
ori probability, without observationot. Again, the probability of such observations are
used to weight the entropyH¬v(x

−

t ) of the a posteriori probability, when no observa-
tion has been made (again, we simplify notation by usingx−

t
for the predicted state



distribution). Now the conditional entropy can be rewritten similar to (7). Thus, for the
minimization ofH(x t|ot,at) the optimization problem is given by

a∗

t
= argmin

at

[
w1(a) log

(
|P+

t
(a t)|

)
+ w2(a) log

(
|P−

t
|
)]

. (10)

The minimization in (10) is done by Monte Carlo evaluation ofthe conditional entropy
and discrete optimization. For more details on the derivation of the approach, on the
optimization, and some special cases in practice the readeris referred to [6].

3 Real–time Experiments and Results

The following real–time experiments demonstrate the practicability of our proposed
approach. It is shown that actively selecting the focal lengths significantly increases the
accuracy of state estimation of a dynamic system.

For our experiments we used a calibrated binocular vision system (TRC Bisight/
Unisight) equipped with two computer controlled zoom cameras that are mounted on
top of our mobile platform. In the following, tracking is done in a pure data driven
manner, without an explicit object model. Thus, at least twocameras are necessary to
estimate the state (position, velocity, and acceleration)of the object in 3–D.

In contrast to the usual setup for object tracking we did somekind of role reversal.
Instead of a moving object with an unknown trajectory, we keep the object fixed at a
certain position and track the object while moving the platform (with the mounted on
cameras) on the floor in a defined manner. With this little trick, we obtain ground truth
data from the odometry of the platform. It should be noted, that this information is not
used for state estimation, but only for evaluation. For our experiments we decided to
perform a circular motion with a radius of300 mm. The object is located at a distance
of about2.7 m from the center of the circle in front of the platform. The optical axes of
the two cameras are not parallel and lie not in the plane of themovement.

For the tracking itself, we used the region-based tracking algorithm proposed by
[9], supplemented by a hierarchical approach to handle larger motions of the object
between two successive frames. Given an initially defined reference template, the al-
gorithm recursively estimates a transformation of the reference template to match the
current appearance of the tracked object in the image. The appearance of the object
might change due to motion of the object or due to changes in the imaging parameters.
The advantage of this method for our demands is that it can directly handle scaling of
the object’s image region, as it will appear while zooming.

We conductedthree real–time experiments that differ in the objects, in the back-
grounds, and in the starting positions of the platform. We performed two runs for each
experiment, one with fixed focal lengths and one with active selection. For the fixed case
we chose the largest possible focal length that guarantees the visibility of the object for
the whole run.

In Figure 1 images are shown from the left camera of the binocular camera system,
taken during one of the experiments at approx. each twelfth planning step. The images
give a visual impression of the planning results. As long as the uncertainty in the state
estimate is high and the object is close to the border of the image the focal length
is reduced (images 2 to 4, numbering line-by-line, startingtop left). As soon as the



uncertainty in the state estimate (i.e. not only position, but also velocity and acceleration
in 3–D) is low, the approach follows intuition and increasesfocal length, even in the case
that the object is close to the border of the image (6 and 12). The reader should take into
account, that not 2–D centering of the object in the image wasour criterion for success
of tracking. The goal was estimation of the movement path in 3–D by selecting the best
focal length setting of the two cameras.

Figure 1. Sample images from the left camera while tracking the cola can and actively adjusting
the focal length. Note, that it centering of the object was not the criterion during tacking!

The quantitative evaluation of the estimation error for thereal–time experiments
has been done by computing the Euclidean distance between the circular path and the
estimated position. Averaged over all experiments, the mean distance in the case of
fixed focal lengths is206.63mm (standard deviation:76.08mm) compared to an error
of 154.93mm (standard deviation:44.17mm) while actively selecting the optimal focal
lengths. This results in a reduction in the error by25%, as it has been similarly observed
in simulations [6].

4 Conclusions and Future Work

In this paper we presented an original approach on how to select the right sensor data
in order to improve state estimation of dynamic systems. ForGaussian distributed state
vectors, a metric in closed form has been derived, that can beevaluated a priori. We
showed how the whole approach fits into the Kalman filter framework and how to deal
with the problem of visibility depending on the selected sensor parameters. Although
not discussed in this paper, the theoretically well foundedcriterion can be formulated
for the general case ofk sensors [6].

The main difference to previous work is that the selected focal length depends not
only on the state estimate but also on the uncertainty of the state estimate and on the



reliability of the different sensors. Also, the special demands of the state estimator on
the sensor data can be taken into account. This allows, for example, to solve the trade–
off between large focal length for detailed inspection (forclassification) and small focal
length for tracking quickly moving objects. Experimental verification of this theoretical
result are subject to future work.

The approach has been tested in real–time experiments for binocular object tracking.
We tracked a static object while the cameras were moving. Theestimated movement
path of the camera is more accurate, when dynamically adapting the focal lengths. This
result has been also verified in simulations, where the reduction in the estimation error
was up to 43% [6].

Thanks to the Gaussian distributed state in the case of Kalman filter based track-
ing, the optimality criterion can be easily evaluated. However, for the general case of
arbitrary distributed state vectors, the framework must beextended to allow the appli-
cation of modern approaches like particle filters. In addition to that, we will verify the
computational feasibility of our approach in applications, where frame–rate processing
is necessary. One of the preliminaries to achieve frame–rate processing will be a smart
and efficient way for the minimization in (6).

References

1. Y. Bar-Shalom and T.E. Fortmann.Tracking and Data Association. Academic Press, Boston,
San Diego, New York, 1988.

2. H. Borotschnig, L. Paletta, M. Prantl, and A. Pinz. Appearance based active object recogni-
tion. Image and Vision Computing, (18):715–727, 2000.

3. T.M. Cover and J.A. Thomas.Elements of Information Theory. Wiley Series in Telecommu-
nications. John Wiley and Sons, New York, 1991.

4. J. Denzler and C.M. Brown. Information theoretic sensor data selection for active object
recognition and state estimation.IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 24(2):145–157, 2002.

5. J. Denzler, C.M. Brown, and H. Niemann. Optimal Camera Parameter Selection for State
Estimation with Applications in Object Recognition. In B. Radig and S. Florczyk, editors,
Pattern Recognition 2001, pages 305–312, Berlin, September 2001. Springer.

6. J. Denzler and M. Zobel. On optimal observation models forkalman filter based tracking
appoaches. Technical Report LME–TR–2001–03a, Lehrstuhl für Mustererkennung, Institut
für Informatik, Universität Erlangen, 2001.

7. J. Fayman, O. Sudarsky, and E. Rivlin. Zoom tracking and its applications. Technical Report
CIS9717, Center for Intelligent Systems, Technion - IsraelInstitute of Technology, 1997.

8. D. Fox, W. Burgard, and S. Thrun. Active markov localization for mobile robots.Robotics
and Autonomous Systems, 25:195–207, 1998.

9. G.D. Hager and P.N. Belhumeur. Efficient region tracking with parametric models of ge-
ometry and illumination.IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(10):1025–1039, 1998.

10. E. Hayman, I. Reid, and D. Murray. Zooming while trackingusing affine transfer. InPro-
ceedings of the 7th British Machine Vision Conference, pages 395–404. BMVA Press, 1996.

11. L. Paletta, M. Prantl, and A. Pinz. Learning temporal context in active object recognition
using bayesian analysis. InInternational Conference on Pattern Recognition, volume 3,
pages 695–699, Barcelona, 2000.

12. B. Schiele and J.L. Crowley. Transinformation for active object recognition. InProceedings
of the Sixth International Conference on Computer Vision, pages 249–254, Bombay, India,
1998.


