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Abstract In this paper we present an information theoretic framewtakt pro-
vides an optimality criterion for the selection of the beshsor data regarding
state estimation of dynamic system. One relevant appdigati practice is track-
ing a moving object in 3—D using multiple sensors. Our apghaaxtends previ-
ous and similar work in the area of active object recognjtien state estimation
of static systems. We derive a theoretically well foundedrimbased on the con-
ditional entropy that is also close to intuition: selectdd@amera parameters that
result in sensor data containing most information for tHefdng state estima-
tion. In the case of state estimation with a non-linear Kalfilter we show how
that metric can be evaluated in closed form.

The results of real-time experiments prove the benefits bfeneral approach
in the case of active focal length adaption compared to figedlflengths. The
main impact of the work consists in a uniform probabilistésdription of sensor
data selection, processing and fusion.

1 Introduction

In active vision it has been shown, also theoretically, Hraactive processing strategy
that includes the image acquisition step can be superioptsaive one. The question
of course is: how to figure out, which strategy is the best hicav to actively control
the image acquisition step in a theoretically optimal way@wers to this question will
have an enormous impact on broad areas in computer vision.

In recent work on active object recognition [2,5, 11, 12]astalready been shown
that sensible selection of viewpoints improves recogniti@e, especially in settings,
where multiple ambiguities between the objects exist. Thgkwf [8] is another exam-
ple from robotics, where such ideas have been implementexfis-localization tasks.

Besides the success in the area of active object recogmiti@momparable work is
known for selecting the right sensor data during objectkiraz The advantages are
quite obvious:

— For a single camera setting, i.e. one camera is used to tnaakoving object, the
trade—off between a large and a small focal length can bévexkdDepending on
the position, velocity, acceleration of the object, andleassociated uncertainty
in the estimation of these state values, a small focal lemggiht be suited to ensure
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that the object is still in the image at the next time step. I@ndther hand, a large
focal length can be advantageous for estimation of the ofaas object in an high
resolution image.

— For a setting with multiple cameras the possibility existéacus with some cam-
eras on dedicated areas in space, depending on the stabatést, while some
other cameras keep on tracking using an overview image.otitmentioning the
problems of sensor data fusion in such a setting and the weggbf the different
sensors depending on the expected accuracy, the gain ofnityfzcal length ad-
justment is expected to be relevantin a combined trackidg@eognition scenario.
Demonstrating this behavior is the focus of our ongoingasse

In this paper we make an important step toward active objacking. The basis of
our work is the information theoretic approach for iteratsensor data selection for
state estimation in static systems presented in [4]. Wenedigis framework to have a
metric for selecting that sensor data that yields most réaluof uncertainty in the state
estimate of a dynamic system. We mainly differ to the workfl0] in how to select
the optimal focal length. In [7] zooming is used to keep ttre sif the object constant
during tracking, but it is not taken into account the undatyein the localization. The
work of [10] demonstrates how corner based tracking can be ddnile zooming using
affine transfer. However, the focus is not on how to find the fuesl length.

Our framework is completely embedded in probabilisticreation theory. The
main advantage is that it can be combined with any probébiksate estimator. Also
sensor data fusion, which is important in multiple camettrggs, can be done at no
extra costs. We show the realization for a two—camera gdttithe experimental part of
the paper later on. Another side effect of the informaticgotietic metric is its intuitive
interpretation with respect to state estimation.

The paper is structured as follows. In the next section thia w@ntribution of our
work can be found. The general framework for selecting oatiabservation models
during state estimation of dynamic systems is applied toctise of binocular object
tracking. Real-time experiments with a mobile platforminadfice environment, pre-
sented in Section 3, give us definite, quantitative resfittst; our optimality criterion
causes the expected behavior, second, adapting the fogé#hléuring tracking is better
than using a fixed setting, and third, the theoretical franr&valso works in practice.
Some problems and future extension of our approach aressiedun Section 4.

2 Selection of Optimal Observation Models

2.1 Review: Kalman filter for Changing Observation Models

In the following we consider a dynamic system, whose stageiismarized by an—
dimensional state vectar;. The dynamic of the system is given by

Tip1 = flz,t) +w 1)

with f(-,-) € IR" being a non—linear state transition function, ande IR" being
additive Gaussian noise with zero mean and covariancexm#fri The observatiow,
is given by the observation equation

0y = h(zct,at,t)—i-?“ 5 (2)



which relates the state; to the observatiom; € IR"*. The non-linear functiok <
IR™ is called observation function and might incorporate theepbations made by
different sensors. Again, an additive noise proeessIR™ disturbs the ideal observa-
tion, having zero mean and covariance mafgix

The main difference to the standard description of a dynaystem is the depen-
dency of the observation functidn(z:, a+,t) on the parametet; € IR!. The vector
a: summarizes all parameters that influence the sensor datiéséico process. As a
consequence the parameter also influences the observatian in other words: we
allow changing observation models. In the following thegmaetera, is referred to as
action, to express that the observation model (i.e. theosetata) is actively selected.
One example for the parametey might bea; = (o, 5, f)T, with « and 8 denoting
the pan and tilt angles, arfdthe motor controlled focal length of a multimedia camera.

State estimation of the dynamic system in (1) and (2) can Henmeed by applying
the standard non—linear Kalman filter approach. Spacedftioits restrain us from giv-
ing an introduction to the Kalman filter algorithm. The reaidereferred to [1]. In the
non-linear case given by (1) and (2) usually a linearizaigsotione by computing the
Jacobian of the state transition and the observation fomcfis a consequence of the
linearization the distributions of the following randontters are Gaussian distributed:

— A priori distribution over the state, (and posterior, if no observation is made)
p(wtlot—lv-At—l) NN(:‘B;vP;) )

with the two setsd; = {a¢, a;—1,..., a0} andO; = {04, 01_1, ..., 0o} denoting
the history of actions:, and observationse, respectively. The quantities, and
P, are the predicted state and error covariance matrix, réspd1].
— Likelihood function, i.e. the likelihood of the observatio; given the state:; and
the actiona,
p(odzy, ar) ~ N(h(z; , ar), R)

— A posteriori distribution over the state space (if an obagon has been made)
p(®:|Op, Ap) ~ Nz, P (ar)) 3)

The vectorz; is the updated state estimate, the mafiX (a,) is the updated
error covariance matrix. The matrix explicitly depends be &ctiona; since the
observation function in (2) depends ap. In the case, that no observation has been
made, the quantitieR; (a;) andz;" equal the corresponding predicted quantities
P, andx, .

These three distributions are essential ingredients opmposed optimality criterion,
which is presented in the following. Note, that all quaest{i.e.x; ,z;", P, , P;") are
updated in the Kalman filter framework over time [1]. As a camgence, this informa-
tion is available at no extra cost for our approach.

2.2 Optimal Observation Models

The goal is to find an optimal observation model, i.e. the betibn a;, that a priori
most reduces the uncertainty in the state estimation witpeet to the future observa-
tions. In order to find the optimal observation model the intgiat quantity to inspect is



the posterior distribution. After an observation is madecae figure out, how uncertain
our state estimate is. Uncertainty in a distribution of al@n vectorz can be measured
by the entropyH (z) = — [ p(z)log (p(x)) dz. Entropy can also be calculated for a
certain posterior distribution, for example fafx,|O,, A;), resulting in

Hzf) = - / (@401, A log (p(24] 01, A))) day 4

This measure gives wsposteriori information about the uncertainty, if we took action
a; and observed;. Of more interest is of course to decideriori about the expected
uncertainty under a certain actia. This expected value can be calculated by

H(zt|ot, ar) = —/p(otIGt)/p(thOt,At)log (p(z¢|Ot, Ar))) dzidor . (5)

The quantityH (x| o, a;) is calledconditional entropy [3], and depends in our case
on the chosen action,. Having this quantity it is straight forward to ask the most
important question for us: Which action yields the most cdigen in uncertainty? The
question is answered by minimizing the conditional entrfipya,, i.e. the best action
a; is given by

a; = argmin H (x¢|o¢, ay) . (6)

Equation (6) defines in the case of arbitrary distributetestactors the optimality cri-

terion we have been seeking for. Unfortunately, in the garease of arbitrary distri-

butions the evaluation of (6) is not straightforward. Tliere, in the next section we
consider a special class of distributions of the state veetonely Gaussian distributed
state vectors. This specialization allows us to combines#iection of the best action
with the Kalman filter framework. We will show, that this appch allows us to com-

pute the best actioapriori.

2.3 Optimal Observation Models for Gaussian Distributed Sate Vectors

We now continue with the posterior distribution in the Kahmfdter framework. As
a consequence of the linearization in the non-linear Kalfitear we know that the
posterior distribution is Gaussian distributed (comp&). (From information theory
textbooks [3] we also know that the entropy of a Gaussianildiged random vector
z € R" with z ~ N(p, X) is H(z) = 2 + Llog((2m)"|X|). Combining this
knowledge we get for the conditional entrof{ z:| o+, a:) of the distribution in (3)

H(zt|ot, at) = /p(ot|at) (g + % log ((27r)"|Pf(at)|)) dos . (7)

Thus, neglecting the constant terms equation (6) becomes

a; = argmin/p(odat)log (|P;f (ar)]) doy . (8)

at




From this equation we can conclude, that we have to selecttiana,; that minimizes
the determinant oP; (a;). The key result is thaP; (a;) can be computed a priori,
since the covariance matrix is independent of the observaij.

The criterion in (8) is only valid in any case if for the chossstion a; an obser-
vation from the system can be made. Obviously, in practieestected action (i.e.
camera parameter) will affect observability. How to deatwithis situation is consid-
ered in more detail in the next section.

2.4 Considering Visibility

Up to now we have assumed that at each time step an obseristitade to perform
the state estimation update in the Kalman filter cycle. Obisliyy when changing the
parameters of a sensor, depending on the state there isaincanpriori probability
that no observation can be made that originates from therdirsystem. An intuitive
example is the selection of the focal length of a camera tktaamoving object in the
image. For certain focal lengths (depending on the 3-D jpositf the moving object)
the object will no longer be visible in the image. As a congte no observation is
possible. How are time steps treated, for which no obsemsaitan be made, and what
is the consequence for the state estimate? If no obsenadiobe made, no update of
the state estimate is possible. The resulting final staiteats for such a time step is the
predicted state estimate, , with the corresponding predicted covariance makfix.
The implication on the state estimate is significant: dutimg prediction step in the
Kalman filter algorithm the covariance matrix of the statgneate is increased; thus,
uncertainty is added to the state estimate. The increasedertainty depends on the
dynamic of the system and the noise processisturbing the state transition process.

Now, the task of optimal sensor parameter selection can tieefusubstantiated
by finding a balance between the reduction in uncertaintyhé dtate estimate and
the risk of not making an observation and thus getting are®e in the uncertainty.
Considering this trade—off in terms of the Kalman filter stastimation the conditional
entropy has to be rewritten as

H(z¢|ot, ar) = / p(o¢|la)dos Hy(z}) + / ploi|la)dos Ho(x;),| (9)
{visible} {invisible}

w1 (a) wa(a)

which is the weighted sum df,(z,") and H-,(x; ) where the weights are given by
w1 (a) andws (a). The first integral in (9) summarizes the entropy of the a grit
probability for observations that are generated by theesystnd that argisible in the
image. The probability of such observations weight theaoytiZ, (z;") of the corre-
sponding a posteriori probability (for simplifications imet notation, we use hete,

as synonym for the posterior). The observations that cammoteasured in the image
(invisible) result in a Kalman filter cycle where no update of the statienege is done
and thus only a state prediction is possible. This stateigtied is treated as a posteri-
ori probability, without observation,. Again, the probability of such observations are
used to weight the entropl/—, (x, ) of the a posteriori probability, when no observa-
tion has been made (again, we simplify notation by usingfor the predicted state



distribution). Now the conditional entropy can be rewrit@milar to (7). Thus, for the
minimization of H (x| o+, a;) the optimization problem is given by

a; = argmin [wi(a)log (|Pf (ay)]) + wz(a)log (|P;[)] . (10)

at

The minimization in (10) is done by Monte Carlo evaluatiorted conditional entropy
and discrete optimization. For more details on the devatif the approach, on the
optimization, and some special cases in practice the réadeferred to [6].

3 Real-time Experiments and Results

The following real-time experiments demonstrate the jrability of our proposed
approach. It is shown that actively selecting the focaltesgignificantly increases the
accuracy of state estimation of a dynamic system.

For our experiments we used a calibrated binocular visiatesy (TRC Bisight/
Unisight) equipped with two computer controlled zoom camsdhat are mounted on
top of our mobile platform. In the following, tracking is dern a pure data driven
manner, without an explicit object model. Thus, at least tameras are necessary to
estimate the state (position, velocity, and acceleratibt)e object in 3-D.

In contrast to the usual setup for object tracking we did skimeé of role reversal.
Instead of a moving object with an unknown trajectory, wepktee object fixed at a
certain position and track the object while moving the platf (with the mounted on
cameras) on the floor in a defined manner. With this littlekinige obtain ground truth
data from the odometry of the platform. It should be notedt this information is not
used for state estimation, but only for evaluation. For oyregiments we decided to
perform a circular motion with a radius 800 mm. The object is located at a distance
of about2.7 m from the center of the circle in front of the platform. Theioal axes of
the two cameras are not parallel and lie not in the plane ofrtbreement.

For the tracking itself, we used the region-based trackiggrahm proposed by
[9], supplemented by a hierarchical approach to handlestangptions of the object
between two successive frames. Given an initially definéefeace template, the al-
gorithm recursively estimates a transformation of therexiee template to match the
current appearance of the tracked object in the image. Theaspnce of the object
might change due to motion of the object or due to changesiimtging parameters.
The advantage of this method for our demands is that it catitijrhandle scaling of
the object’s image region, as it will appear while zooming.

We conductedhree real-time experiments that differ in the objects, in thekhac
grounds, and in the starting positions of the platform. Wdqueed two runs for each
experiment, one with fixed focal lengths and one with actalection. For the fixed case
we chose the largest possible focal length that guarartteesdibility of the object for
the whole run.

In Figure 1 images are shown from the left camera of the bilrooamera system,
taken during one of the experiments at approx. each tweldthning step. The images
give a visual impression of the planning results. As longhasuncertainty in the state
estimate is high and the object is close to the border of tregérhe focal length
is reduced (images 2 to 4, numbering line-by-line, startoy left). As soon as the



uncertainty in the state estimate (i.e. not only positian gbso velocity and acceleration
in 3-D) is low, the approach follows intuition and increafse=al length, even in the case
that the object is close to the border of the image (6 and 18 réader should take into
account, that not 2-D centering of the object in the imageauagriterion for success

of tracking. The goal was estimation of the movement path-iD By selecting the best

focal length setting of the two cameras.

Figure 1. Sample images from the left camera while tracking the cotearal actively adjusting
the focal length. Note, that it centering of the object waisthe criterion during tacking!

The quantitative evaluation of the estimation error for teal-time experiments
has been done by computing the Euclidean distance betweairtlular path and the
estimated position. Averaged over all experiments, themubstance in the case of
fixed focal lengths i206.63 mm (standard deviatiorr6.08 mm) compared to an error
of 154.93 mm (standard deviatiod4.17 mm) while actively selecting the optimal focal
lengths. This results in a reduction in the erro25¥%, as it has been similarly observed
in simulations [6].

4 Conclusions and Future Work

In this paper we presented an original approach on how tetsihe right sensor data
in order to improve state estimation of dynamic systems Gaurssian distributed state
vectors, a metric in closed form has been derived, that caevakiated a priori. We
showed how the whole approach fits into the Kalman filter franr& and how to deal
with the problem of visibility depending on the selectedssmsrparameters. Although
not discussed in this paper, the theoretically well founddterion can be formulated
for the general case @fsensors [6].

The main difference to previous work is that the selectealfength depends not
only on the state estimate but also on the uncertainty ofttte gstimate and on the



reliability of the different sensors. Also, the special derds of the state estimator on
the sensor data can be taken into account. This allows, fample, to solve the trade—
off between large focal length for detailed inspection (flassification) and small focal
length for tracking quickly moving objects. Experimentat¥ication of this theoretical
result are subject to future work.

The approach has been tested in real-time experimentsiocidar object tracking.
We tracked a static object while the cameras were moving.eBtimated movement
path of the camera is more accurate, when dynamically atgngste focal lengths. This
result has been also verified in simulations, where the témuin the estimation error
was up to 43% [6].

Thanks to the Gaussian distributed state in the case of Kafitter based track-
ing, the optimality criterion can be easily evaluated. Hegrefor the general case of
arbitrary distributed state vectors, the framework mustxtended to allow the appli-
cation of modern approaches like particle filters. In additio that, we will verify the
computational feasibility of our approach in applicatiowbere frame—rate processing
is necessary. One of the preliminaries to achieve frame-praicessing will be a smart
and efficient way for the minimization in (6).
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